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Abstract 12 

Superheated water has been studied by infrared spectroscopy to examine whether the 13 

special ability of liquid water to undergo such metastable state corresponds to the 14 

development of peculiar inter-molecular networking under tension. As the best technique to 15 

superheat water is to trap the liquid inside micro-cavities in solids (the so-called ―fluid 16 

inclusions‖), the role of the water-solid interfaces to stabilize the adjoining liquid is also 17 

explored with the same infra-red micro-spectroscopy tool. The key signal is the intra-18 

molecular OH stretching band, sensitive to the networking in the probed material. The 19 

sample of choice is liquid water occluded inside quartz cavity of micrometric size, synthetized 20 

in laboratory from pure quartz and milli-Q water. The stretching band of the superheated 21 

water shows no significant spectral difference with that of a bulk ―normal‖ water, which 22 

means that the molecular properties of the superheating liquid is quite similar to those of the 23 

stable bulk liquid. Liquid water is readily ―superheatable‖ but retains its ―normality‖ under 24 

these special conditions. Additionally, this result establishes a firm ground to justify that the 25 

properties of the former are predicted extrapolating the usual (though empirical) equation of 26 

state of the latter. The infra-red signals of the water-solid interfaces are more complex. The 27 

water-solid interfaces blue-shift the signal, affecting differently the three sub-bands of the 28 

OH-stretching. This effect was unexpected since the micro-IR spectroscopy probes volume 29 

beyond of what is classicaly assigned for the interfacial properties. In addition, the interfacial 30 

signature is clearer under superheating than with the saturation conditions, which offers an 31 

interesting (and unexpected) way to interpret the special stability of the occluded metastable 32 

water. These encouraging results give confidence on the potentialities of the high-resolution 33 

micro-spectroscopy to get insights into the molecular basis of macroscopic properties. 34 

35 
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1. INTRODUCTION 36 

Water has one peculiar metastable state, the superheated liquid water, which is often 37 

ignored in environmental physical chemistry though it is of frequent occurrence in nature. For 38 

instance, it contributes to the surficial cycle of water through its role on the sap ascent and 39 

then on the evapotranspiration (e.g. Refs 1-2), or by favoring the water retention in non-40 

saturated porous materials (e.g. Refs 3-7). Despite this interest, the properties controlling the 41 

ability of water and aqueous solutions to undergo highly superheated state are not yet 42 

thoroughly understood. 43 

Many experiments were recently performed to record the extreme tensile strength of pure 44 

water and aqueous solutions (Fig. 1), either by the Synthetic Fluid Inclusion Technique (SFIT 45 

hereafter)8-11, or by other techniques (see a recent review in Ref. 12). 46 

 47 

Figure 1. Phase diagram of water (IAPWS-95 equation of state13), extended to the 48 

superheated water domain. Experimental measurements of the extreme tensile strength are 49 

reported. The classic microthermometric path (see text) is reported from the ambient 50 

conditions (A) to the homogenization temperature (Th, B), possibly up to overheating 51 

conditions (C), and cooled after down to the nucleation temperature (Tn, D) (see text). 52 

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

-100 -50 0 50 100 150 200 250 300 350 400

P
re

s
s

u
re

 (
M

P
a
)

Temperature (°C)

Liquid-to-vapour 
spinodal

Triple point
Critical 
point

Superheated water

Isochores:  950       900       850    800  kg.m-3

Others methods
1950-200412

Synthetic

Fluid 

Inclusion 

Technique

(SFIT)

9

27

10

11

8

A B
C

D



Revised version of the Manuscript ID CP-ART-10-2011-023221. Submitted to Physical Chemistry 

Chemical Physics. December 14
h
, 2011. 

4 

 

However, these techniques only explore the superheating limit without giving much 53 

information on the molecular features of the metastable state. We are interested in this paper 54 

to deal with the following question: is the strong cohesion revealed by the superheated water 55 

a behavior of the normal ―bulk‖ liquid, or is it a consequence of a special molecular 56 

networking developed under the stretching conditions? In the literature, Green et al.8 57 

recorded the Raman spectra of an aqueous solution occluded in a fluid inclusion at 92°C, 58 

successively superheated and stable, and found the corresponding OH-stretching bands 59 

almost identical. 60 

On another aspect, the SFIT is the only technique able to come close to the spinodal limit, 61 

despite that its experimental system appears less controlled and ―pure‖ than those of the 62 

others techniques12. In particular, the solid hosting the targeted liquid in micrometric internal 63 

spaces (the so-called ―fluid inclusions‖) certainly has crevices and surface irregularities, 64 

which are classic nucleation sites (theoretically) lowering the superheating ability. 65 

Alternatively, one could speculate that the solid walls might stabilize the trapped liquid by an 66 

adhesion effect which would make the solid-liquid contact especially robust preventing the 67 

dissolved gases and the water vapour from nucleating. In this latter case, is there a 68 

molecular signature of interface peculiarity(ies)? 69 

The two above questions were experimentally studied by using an infrared (IR) microscope 70 

at the SMIS beamline available at the French synchrotron radiation facility SOLEIL. Using 71 

quartz samples containing fluid inclusions filled with water which we can superheat a volo, 72 

we recorded infrared spectra at the micrometric scale giving the shape and the intensity of 73 

the IR OH-stretching band inside these inclusions. The interaction of the IR light with a 74 

sampled body is an efficient and localized probe of the energetic states of this material. 75 

Specifically, the OH stretching band probes the intra-molecular motions of water molecules 76 

which are sensitive to the hydrogen bonds networking. Therefore, this is a tool well adapted 77 

to probe the molecular cohesion, and to test the arrangement characteristic of the sample of 78 

interest. 79 
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We measured the IR spectra of superheated and stable water and compared the profile of 80 

the OH band throughout a fluid inclusion (IR map). We aim to see if some band shift(s) 81 

and/or deformation(s), especially at the water-solid interfaces, could account for the special 82 

stability of the liquid water inside these materials. This study is exploiting the high spatial 83 

resolution of the IR micro-spectroscopy enhanced by the brilliance of the synchrotron source. 84 

2. SAMPLE AND PROTOCOL 85 

2.1 Quartz sample 86 

The SFI quartz samples hosting biphasic water-filled inclusions were synthetized in 87 

internally-heated pressure vessels (IHPV, or ―gas bombs‖). The hydrothermal synthesis was 88 

performed either at 300 MPa and 626°C during 4 days (sample 1), or at 750 MPa and 600°C 89 

during 13 days (sample 2). The IHPV is loaded with Au-capsules filled with a (millimetric) 90 

piece of quartz, the selected liquid (pure water in the two samples) and amorphous silica. 91 

The solid quartz is first thermally cracked before being put in the capsules with the imbibing 92 

liquid. It will be healed at high P-T conditions owing to the presence of amorphous silica in 93 

the capsule. 94 

The hydrothermal healing restores a massive solid which contains however what is 95 

classically termed ―fluid inclusion‖ (Fig. 2), that is cavities (5-50 µm size) containing the liquid 96 

which was present in the synthesis capsules. Once the required synthesis time elapsed, the 97 

power supply was turned off and the IHPV was allowed to cool down to the room 98 

temperature before be opened to recover the capsules. After cutting and (doubly) polishing 99 

the quartz seeds, the final thickness of samples is around 500 µm, enabling an easy 100 

observation of the included fluid inclusions with classic microscopy (Fig. 2). 101 

The hydrothermal process could favour the dissolution of silica from the quartz matrix inside 102 

the cavity, modifying the original purity of the occluded liquid. However, the possibility of 103 

significant leaching was ruled out by the absence of Si-OH bands in the recorded spectra. 104 
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A.  B.  105 

Figure 2. Photographs of the sampled fluid inclusions (A. sample 1; B. sample 2). On the left 106 

of each sub-figure, the monophasic inclusions contain the superheated liquid. To the right, 107 

the same inclusions after nucleation (biphasic mixture), the arrows point to the visible bubble. 108 

These samples offer many advantages for the targeted experiments. First, the total size of 109 

each sample makes easy to manipulate it, and also the size of the fluid inclusions enables to 110 

map precisely the liquid-only, solid-only and interfacial locations. Meanwhile, the water 111 

volume is significant enough to get signals significantly above the background. The second 112 

great advantage of these materials is that the superheating conditions are easily measured 113 

and controlled, with a reproducible cooling-heating process (microthermometric procedure, 114 

see below). 115 

2.2 Experimental set-up 116 

The IR experiments were performed at SOLEIL Synchrotron (Gif sur Yvette, France) at the 117 

SMIS beamline. The average current in the storage ring was about 400 mA. The beamline is 118 

equipped with a Continuum XL microscope (Thermo Fisher Scientific, USA) coupled to a 119 

Nicolet 5700 FT-IR spectrometer (Thermo Fisher Scientific, USA). The microscope 120 

comprises a liquid nitrogen cooled mercury cadmium telluride (MCT-A) detector (50 µm) and 121 

we used in this work a 32x infinity corrected Schwarzschild objective (NA= 0.65) and a 122 

matching 32x condenser. This objective offers to work in confocal mode, specifically 123 

collecting the transmittance signal from a given plane (2-3 µm thick, equal to the IR 124 

10 µm 
10 µm 
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wavelength) located at a precise depth inside the sample. This functionality is especially 125 

interesting in our ―interface-focused‖ experiments, eliminating the influence of the other 126 

interfaces possibly crossed by the beam along the whole thickness of the sample. All spectra 127 

were obtained using a double path single masking aperture size of 8x8 µm. The spectra were 128 

collected in the 6000 – 2000 cm-1 mid-infrared range at a spectral resolution of 4 cm-1 with 64 129 

co-added scans. The profiles were calculated by using the OMNIC software (Thermo 130 

Scientist, USA). The term "profile" is used to refer to the integrated spectral intensity of a 131 

specified spectral region for each sample point. 132 

The thermal changes in the inclusion required to produce the superheating conditions are 133 

afforded by a heating-cooling stage Linkam IR-compatible (FTIR 600 stage). The sample is 134 

put on a silver block whose temperature is precisely controlled (± 0.1°C) along the heating 135 

and cooling ramps. To avoid thermal gradients, the sample is capped with a silver cover 136 

which has already revealed very efficient11. The micro-thermometry technique enables to put 137 

the trapped liquid into the superheating state. Actually, the procedure (Fig. 3) consists of the 138 

progressive heating with the Linkam stage of one sample, in general containing initially the 139 

biphasic liquid+vapour assemblage (L+V). The first step corresponds to the displacement 140 

along the saturation line, with a progressive change of temperature, liquid density and bubble 141 

pressure (A to B path, Fig. 1). At a particular density, the trapped liquid invades the whole 142 

inclusion space: there is no more vapour and the inclusion is said to be homogenized (B 143 

point, Fig. 1). The temperature at which this filling appears is then the homogenization 144 

temperature, noted Th. Further heating drives the P-T conditions in the inclusion along the 145 

isochore inside the stable domain of liquid (B to C path, Fig. 1). The second step is the 146 

progressive cooling of the sample, which follows the isochoric path as long as the inclusion 147 

remains homogeneously filled with liquid (C to D path without nucleation at B, Fig. 1). The 148 

temperature of the bubble appearance is called the nucleation temperature (Tn) and is 149 

always located within the tensile domain: nucleation in fluid inclusions always disobeys the 150 

saturation conditions. 151 
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The two inclusions studied below have reproducible homogeneization (ThSAMPLE1 = 152 

324.5°C±0.5°C; ThSAMPLE2= 167.7°C±0.5°C) and nucleation temperatures (TnSAMPLE1 = 153 

309.3°C±0.1°; and Tn SAMPLE2 = 115.5°C±0.8°). These values are low enough to work with the 154 

Linkam stage directly put on the IR microscope stage (T  350°C). Also, the lifetime of 155 

superheated water at 313°C (sample 1) is 6 minutes, long enough to record the IR map. 156 

According the IAPWS-95 equation of state13, the occluded liquid has a density of 655.64 157 

kg/m3 (saturation density at 324.5°C and 11.97 MPa), and undergoes at 309.3°C a tension 158 

amounting to -0.62 bars, and to 2.41 MPa at 313°C. As for the sample 2, the lifetime at 117° 159 

is 4 minutes, the superheated liquid is characterized by: Pliquid = -78.5 MPa at 117°C, with a 160 

density amounting to 899.8 kg/m3. It is interesting to notice that the sample 2 display similar 161 

(P,T) pair than that observed by Green et al.8 which was (-80 MPa; 92°C). 162 

2.3 Protocols 163 

First, the OH-stretching band was recorded on the monophasic inclusion at the same 164 

location, at different temperatures along the monophasic path. We aim at comparing the 165 

stable/metastable IR signals: any shifts or deformation in the bands would be related to a 166 

difference in the molecular networking. Second, the inclusion was brought back to the stable 167 

biphasic state (water-vapor system), once the bubble nucleated. 168 

In these protocols, the OH-stretching band was recorded over the whole xy plane, with a 169 

special interest to the different interfaces visible (water-solid, water-air when existing) in the 170 

sampling zone. As already outlined, the confocal signal is collected along a micrometric 171 

thickness around the nominal depth, discarding a significant influence of other interfacial 172 

structures above or below the sampled plane. For instance, the top and down interfaces 173 

compulsory crossed by the light at the entrance and the exit of the solid cavity, do not 174 

contribute to the recorded spectra. Also, we carried out a mapping of the plane surface by 175 

incremental displacement of the 8x8 µm beam (see the aperture size above). The whole 176 

surface is explored by this square records successively processed side-by-side, and 177 

enabling to follow the IR contrast/similarity between the interfacial sites and the bulk parts of 178 
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the inclusion. As developed below, our protocol bears on the idea that the signal taken at the 179 

borders of the inclusion magnifies an-otherwise invisible signature, having a longer 180 

pathlength (equal to the IR plane thickness) to sample the interfacial effects. 181 

The two samples explored in this study are close to each other in terms of composition 182 

(quartz + water), and synthesis conditions (see above), but are significantly different in terms 183 

of geometry. Thus, the inner surface state (roughness, irregularities, …) should be similar, 184 

since it depends upon the synthesis conditions (time and (P,T) pairs) which are close to each 185 

other. By contrast, the global shape is irregular for the sample 1 and regular for the sample 2, 186 

implying that the quantity of wedges, crevices, or corners could be very different from the 1 to 187 

the 2 sample. At last, the intensity of the superheating varies much between the two: the 188 

liquid trapped in the sample 1 is oscillating between a weakly negative and positive 189 

superheating pressure, while that contained in the sample 2 shows a strongly negative 190 

superheating pressure. 191 

As a conclusion, our protocols consist in comparing the absorption of IR light by the same 192 

liquid, contained in the same inclusion (at constant geometry, surface irregularities, …), at 193 

almost the same temperature, but at two different internal pressure (superheating vs. 194 

saturation pressure). It is why we expect that the conclusions gained in these two different 195 

samples, if similar, only refer to the role of the superheating, with a special attention to the 196 

interfaces role, whatever the local peculiarities. 197 

3. RESULTS AND DISCUSSION 198 

A first approach of the global signal can be made by mapping the absorbance maximum in 199 

the two samples, before and after the nucleation (Figs 3-4). 200 
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A.  B.  201 

 202 

Figure 3. IR map of the sampled inclusion in the sample 1, before (3A) and after (3B) 203 

nucleation. Each square scales the beam size (8x8 µm) over each recorded spectrum, and 204 

the colour relates to the absorbance scale, taken at the main peak of the OH-stretching 205 

band: 3640 cm-1. 206 

In figure 3 (sample 1), the spectra that were numbered are those absorbing (at the OH-207 

stretching band) more than 0.05 (abs. u.). Unfortunately, the bubble area (see arrow) and in 208 

general the downside part of the inclusion gave no signal, and so the feed-back of the bubble 209 

(water-air interface) on the IR signal cannot be studied. As a whole, the absorbance appears 210 

more intense after the nucleation in the main part of the inclusion, notably in the downside 211 

part (around the bubble, Fig. 3). 212 
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Figure 4. IR map of the sampled inclusion in the sample 2, before (two left photos) and after 215 

(two right photos) nucleation. Each square scales the beam size (8x8 µm) over the recorded 216 

spectrum, and the colour relates to the absorbance scale, taken at the main peak of the OH-217 

stretching band: 3570 cm-1. 218 

On figure 4, the IR map of the sample 2 appears visibly shifted to the right when turning from 219 

the monophasic (left) to the biphasic (right) inclusion, like the sample 1. The main peak of the 220 

band is located at a smaller wavelength ( = 70 cm-1) which relates to the difference in the 221 

temperature range (310° vs. 110°C). This interval is consistent with the 0.25 - 0.50 cm-1/°C 222 

shift already observed in saline fluid inclusions along similar thermal range30. 223 

At first sight, the absorbance signal appears more pronounced (hot colours) with the 224 

monophasic fluid than with the biphasic one, in the special case of the IR signal taken along 225 

the borders of the inclusion. At these locations, the absorbance reddens before than after the 226 

nucleation, while the three red squares moved to the bottom, toward the bubble. 227 

As a first conclusion, it appears that the IR signal is changing when the nucleation occurs, 228 

and the changes seem different when close or away to the water-solid interfaces. 229 

3.1 Stable/metastable water 230 

3.1.1 Bulk signals 231 

The spectral difference between the spectra of the superheated water and that recorded at 232 

the same location but after nucleation of the bubble was appreciated by plotting each two 233 

records on the same graph (Figs 5-6: dark blue: monophasic liquid; light blue: biphasic 234 

liquid). The baseline was drawn over the 3800-3150 cm-1 interval for the spectra of the 235 

sample 1, and the 3700-3150 cm-1 interval for the spectra of the sample 2. Also, the red 236 

curves on figures 5 and 6 give the (monophasic-biphasic) subtraction using the two baseline-237 

corrected spectra. The subtraction is calculated (omnic software) data point by data point, 238 

and algebraically, it works like this: Sample - Reference x Factor = Result. The ―sample‖ is 239 

always the liquid taken in the monophasic state and the ―reference‖ is the one in the biphasic 240 

state. The ―factor‖ is automatically calculated to scale the intensities of the two spectra, so 241 
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that to magnify the spectral difference in the OH-stretching band.In the sample 1 (Fig. 5), the 242 

spectrum under superheating is taken just before nucleation at 313°C, while the stable liquid 243 

spectrum is taken after having cooled the sample slightly below Tn (309°C) before resetting 244 

its temperature at 310°C. 245 

246 
Figure 5. Baseline-corrected spectra of metastable superheated (at 313°C) and stable water 247 

(at 310°C) in the sample 1. The numbers relate to the location on the map (see Fig. 3). 248 

A slight increase of the absorbance is visible on most of the biphasic spectra (310°C, light 249 

blue) when at the borders of the inclusion (#1, #3, #5, #7). That suggests that the stretching 250 

signal is less intense at the interfaces under the superheated state, which may indicate that 251 

the water-solid interactions are stronger with the superheated liquid than with the stable one. 252 
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Meanwhile, the spectra taken in the thicker part of the inclusion (#2, #4, #6) appear almost 253 

the same before and after the nucleation. In particular, the shape of the band (see the 254 

horizontality of the red subtraction line) does not change between the two (before/after) what 255 

indicates that the energetic features of the water in the two states (monophasic superheated 256 

/ biphasic stable) are similar. In other words, the superheated liquid occluded in a 257 

monophasic inclusion, retains the same properties as the stable liquid trapped in a biphasic 258 

inclusion, despite the two liquids have not the same internal pressure (P = Pbiphasic – 259 

Pmonophasic = 7.3 MPa). Our record indicate that far from any interfaces, the superheated 260 

metastable liquid and the heated stable one absorb IR light similarly along the 3800-3000 261 

cm-1 range, which means they are similar (vibrational) properties. That gives firm ground to 262 

state that, even metastable, the superheated water is classic normal water, obeying the 263 

equation of state. Meanwhile, the interfacial signature is clearly marked by an increase of the 264 

absorbance (light to dark blue), and a change in the band shape (red curve). Adopting the 265 

same line of reasoning as just before, we can feel that these differences correspond to the 266 

presence of properties along interfaces different from those in the thicker parts of the 267 

inclusions. 268 

 269 
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  272 

  273 

Figure 6. Baseline-corrected spectra of metastable superheated (at 117°C) and stable water 274 

(at 110°C) in the sample 2. The numbers relate to the location on the map (see Fig. 4). 275 

When moving to the second sample (Fig. 6), the signals interpretation appears more 276 

complex: the before/after #5 spectra absorbs similarly, but the red curve is clearly not 277 

horizontal, meaning that the band shape changed. The #6 shows an almost horizontal red 278 

line (constant band shape) but with a decreasing absorbance after nucleation. This fact 279 

means that there is only a decreasing quantity of liquid sampled by the beam at constant 280 

location and conditions, except the nucleation event. We propose the presence of tiny vapour 281 

bubbles in the field to account for this decreasing liquid amount. Only one large bubble is 282 

visible on the photo (Fig. 4), but it is current to have rings of tiny bubbles aligned along the 283 

water-solid interfaces11. Actually, the nucleation is always heterogeneous in the inclusions, 284 

classically favoured by the irregularity of the wall surfaces which become bubbles-rich, 285 

especially when the boiling is very large due to the high degree of superheating, like in the 286 

present sample. 287 

As a whole, two trends can be extracted from this sample. The first is the previously-288 

described interfacial signature with a lower absorbance for the superheated liquid compared 289 

to the stable one: #1 to #4, #9 and possibly the #8 and #10. The second shows the opposite, 290 

with the superheating liquid absorbing more than the stable one, for the #6-7, and #11-12. At 291 

first sight, this could be related to a decreasing quantity of sampled liquid, possibly due to the 292 

presence of vapour bubbles. The #5 (same absorbance), and #6 (same shape) give ground 293 
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that the two liquids can be compared, and that the spectral differences otherwise recorded 294 

translate energetic differences linked to the water state. 295 

As an intermediate conclusion, we may propose that the absence of spectral difference 296 

between the metastable and stable liquid (when no interface significantly acts) indicates that 297 

no noticeable changes occurred when the liquid enters a metastable state, in terms of the 298 

dynamics of the molecular network. And that conclusion is met when the saturation-to-299 

spinodal distance is small (high temperature, sample 1), or large (low temperature, sample 300 

2). As a consequence, the properties of the metastable liquid water can be suitably predicted 301 

by extrapolating the equation of state of bulk water from the P-T stable conditions down to 302 

the superheated P-T domain. By that conclusion, the spectroscopic signature supports well 303 

the extrapolative tests performed on the equation of state towards the metastable 304 

domains13,15-16. We can also notice that it was the findings outlined by Green et al.8 through 305 

Raman studies. 306 

3.1.2 Band decomposition 307 

In order to go beyond the simple qualitative trends, we performed a decomposition of the 308 

OH-stretching bands into its sub-bands, to explore how they evolve through the previously 309 

detected changes. The change in the shape and the main peak of the band itself, directly 310 

observed by eyes, can be more quantitatively examined by looking at the behaviour of each 311 

of these sub-bands when the liquid turn from the metastable state to a stable state, and/or 312 

when probing the interface or the bulk. 313 

The OH stretching band is classically composed of three (at least) sub-bands assigned to 314 

different populations of water molecules (e.g. Ref. 14): 3295 cm-1 for the tetrahedrally-315 

bonded molecules (the ―ice-like‖ band); 3460 cm-1, whose position corresponds to a water 316 

structure more or less distorted because the H-bond coordination number is lower than 4; 317 

3590 cm-1 is ascribed to the poorly connected molecules (the ―vapour-like‖ band). 318 

The decomposition was done under the Igor software using the ―multipeak fitting‖ tool. The 319 

three above values were loaded, each sub-band was ascribed a gaussian shape, while the 320 
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three characteristic parameters (location of the main peak, height, width at half height) were 321 

let free to find the best solution (minimal 2). 322 

323 

 324 

 325 

 326 

Figure 7. Decomposition of the OH-stretching band into three sub-bands (see text), for the 327 

samples 1 (four upper graphs), and 2 (four lower graphs). All the ordinates axis are plotted 328 

over the same 90 cm-1 interval. 329 
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The sample 1 gives the simplest results: the sub-bands are quite the same between the 330 

superheated and the stable liquid when the spectra are taken in the thicker parts of the 331 

inclusion (#2, #4, #6, #7). However one can note the similarity of all the sub-bands at the #7 332 

location whereas the two global OH bands were separated (see Fig. 5). The spectra 333 

evidencing the interface effect (#1, #3, #5) are all probed along the same transect (see Fig. 334 

3). The spectral shift of the superheating affects the three sub-bands, more particularly the 335 

first ―ice-like‖ peak: the monophasic liquid deviates systematically by 10-30 cm-1 from the 336 

biphasic liquid, making to suppose that the water-solid interactions are specific under 337 

superheating. As a whole, the monophasic metastable liquid absorbs less the IR light (see 338 

above), and is blue-shifted with respect to the biphasic stable liquid, when the spectra is 339 

taken at the borders of the inclusion. 340 

In the case of the sample 2, the sub-bands are less regularly arranged, but again this is the 341 

first ―ice-like‖ peak which puts best the effects into light. Five spectra (#6, #7, #8, #11, #12) 342 

have their constituting sub-bands plotted at similar wavelength between superheated and 343 

stable liquid, except the first sub-band of the #11 and #12, strongly shifted toward the longer 344 

wavelength (to the ―blue‖). Also, this crude similarity could be discussed, since in detail the 345 

spectra are not identical through the three sub-bands. These differences are small enough to 346 

avoid over-interpret them, just could be outlined that the temperature and pressure 347 

differences between the two liquids (T = 7°C; P = 78.6 MPa) might be accompanied by a 348 

slight relaxation of the water structure. A qualitative indication is the molar volume of liquid 349 

water which is 18.94 cm3/mol at (110°C, 0.14 MPa) and 20.02 cm3/mol at (117°C, -78.5 350 

MPa), a quite small difference in any case. 351 

The other spectra (#1 to #5, #9, #10) of the superheated liquid are shifted toward the longer 352 

wavelength (to the ―blue‖) with respect to the stable liquid, and that whatever the sub-band. 353 

These locations are those along the water-solid interfaces, and therefore the present trend is 354 

consistent to what has been concluded with the sample 1: superheated water is more blue-355 

shifted at the interface than the stable liquid. That makes to suppose a special molecular 356 

arrangement at the interface under superheating as previously observed. Yet, it is clear that 357 
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the shift between the monophasic and the biphasic inclusion is comparatively more 358 

pronounced in this inclusion 2 than with the previous 1 one. 359 

It is the right place to recall the specificity of this present inclusion when in biphasic condition. 360 

According to the global band (previous paragraph), we suspected the presence of tiny 361 

bubbles along the water-solid interfaces. That assumption may account for the present large 362 

variation in the wavelength of the first and second sub-bands, more or less red-shifted as a 363 

function of the location. To see clearly this fact, it is important to fix the reference to the three 364 

(#6, #7, #8) spectra displaying similar sub-bands before and after nucleation. This crossing 365 

behaviour establishes that somewhere inside the inclusion, the two liquids are similar, as 366 

previously argued. As a consequence, the other spectra are read by comparison to these 367 

references, and then appear obviously and variably red-shifted. The fact that the shift is 368 

gradually less pronounced from the first (the ice-like band) to the third sub-band (the vapour-369 

like band) is a consistent indicator that the acting effect may have a vapour-like signature. 370 

The two above paragraph can be synthetized by stating that the comparative blue-shift of the 371 

superheating liquid along the interface is magnified in the sample 2, by a simultaneous red-372 

shift of the liquid hosted by the biphasic inclusion, also along the interfaces. These interfacial 373 

opposite effects, discussed more extensively below, should not overshadow the evidence 374 

that the superheated and the stable liquids display the same energetic profile when not 375 

affected by others effects. 376 

As a conclusion, the decomposition of the main band confirms the previous estimates. First, 377 

the metastable and stable liquids do not differ in terms of energetic features, when recorded 378 

at similar temperature. This experimental fact justifies that the properties of the superheated 379 

liquid be calculated using the classical equation of state, adapted to describe the ―normal‖ 380 

stable water. Second, the water-solid interfacial signature shows features specific of the 381 

water state: the IR absorption is different with the superheated liquid, tending to indicate that 382 

the interfacial contact is energetically different. Third, the water-solid and water-air interfaces 383 

have an IR signature, especially visible on the ―ice-like‖ peak (3295 cm-1) in the case of the 384 

water-air interface, at the sample scale. This fact was not really expected since the classical 385 
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thickness of one interface through high resolution methods, is around 1-5 nm, a size normally 386 

not sensitive with IR micro-spectroscopy. 387 

3.2 Effect of the water-solid interfaces 388 

The IR response ascribed to the water-solid interfaces can be precisely examined by 389 

following the spectral changes in the same inclusion from the center to the periphery, under 390 

the same conditions and materials. 391 

3.2.1 Superheated liquid occluded in monophasic inclusion 392 

The first trend can be observed on sample 1 in the figure 6, by observing how the sub-bands 393 

evolve when moving vertically. 394 

The vertical displacement towards the borders of the inclusion from #2 to #7, corresponds to 395 

an increase of the first peak from the #2 to the three others (#4-6-7), which display nearly  396 

the same profile: these three are most probably all affected by the interface, and the 397 

interfacial signature itself is a shift towards higher wavenumber (to the ―blue‖). On the other 398 

vertical, the #1-3-5 spectra show a enhanced blue-shift than for the #4-6-7, this time affecting 399 

(differently however) the three sub-bands. These data point to a variable weight of the IR 400 

signature of the water-solid interface on the (mainly) first peak of the band, depending on the 401 

respective locations of the beam and the interface. 402 

A close observation of the monophasic data in the sample 2 results bring to the same 403 

conclusion, despite the large differences between the two samples. The spectra taken away 404 

from the solid walls, show the sub-bands absorbing at a smaller wavelength than those taken 405 

along the borders. The first and second sub-bands seem more affected than the third, but the 406 

signal is globally blue-shifted like in the sample 1. If retaining the blue-shift as an interfacial 407 

signature, and following the second and third sub-bands, it appears that the #1 to #3, and #9 408 

to #12 spectra are all affected by the interface. However, the behaviour of the first sub-band 409 

does not give the interfacial signature to the #9 and #10 spectra which should be bulk-like. 410 

That contrasted conclusion evidences the fact that the signature here deduced certainly 411 
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echoes a complex interplay between the respective location of the beam and the interface, 412 

but also echoes the local geometry of the probed interface. 413 

At this stage, we can outline again that the detectability of the interfacial effect at the sample 414 

scale was not at all expected, because the water-solid interfacial thickness is generally 415 

supposed to be around the nanometre. The sub-band with the highest wavenumber is 416 

classically ascribed to poorly connected molecules, especially those originating from dimers 417 

with linear bonds (dimer = 3640 cm-1)17. In parallel, we can outline that the interfacial H2O 418 

molecules are linked to the framework but not bonded to any other molecules18 resulting in a 419 

poor connection to the local network. As a consequence, the blue-shift of the global band 420 

towards higher wavenumber is therefore ascribed to the characteristics of the water-solid 421 

interface along which the water structure is disrupted (chaotrope or structure-breaker effect). 422 

The band decomposition demonstrates that the present reasoning is ignoring other 423 

parameters controlling the behaviour of the sub-bands which are not equally blue-shifted, 424 

possibly due to the local geometry. 425 

As a whole, this conclusion meets the neutron scattering study of water confined in GelSil19 426 

which show that the confinement induces strongly destructive effects on the intermolecular 427 

network of interfacial water. A complementary study using vibrational spectroscopy20 428 

demonstrated that this structure-breaker effect is not always retrieved and depends on the 429 

confining materials: the zeolite-water interactions are structure-maker. Another possible 430 

effect is the decreasing density of water at the vicinity of certain hydrophobic surfaces 431 

presently referred to the development of a vapour-like film21-22. According to our previous 432 

reasoning, we can safely conclude that the IR signal points to a structure breaker effect of 433 

the water-solid interfaces on the water network. 434 

At first sight, this result may be surprising since classically the structure state could be 435 

associated with the level of the molecular cohesion, so that a structure-broken liquid should 436 

be expected less stable than the bulk. However, an ambiguity emerges from dealing with the 437 

water structure without a partial view of the global picture. In particular, the role of the silanol 438 

Si-OH bonds, the exact number and geometry of the hydrogen bonds cannot be completely 439 
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explored with our present approach focused on the OH-stretching band, though these 440 

parameters may contribute to the final cohesion. Among others, the interfacial effect has 441 

been linked to a directionality of the bonds at the interface23, a proposition which cannot be 442 

suitably discussed with our results. The only non-ambiguous result we may propose is that 443 

the water-solid interfacial IR structure under superheating is different than under the 444 

saturation conditions, which may participate in the over-stability of the occluded liquid pointed 445 

out in the introduction. 446 

However, the most surprising point is that we were able to record that effect in a continuously 447 

filled material with a 8x8 µm beam in a transmittance mode. Actually, it is classically admitted 448 

that the interface effect is 2-3 molecular layers thick. Our hypothesis is that the water-solid 449 

contact is sufficiently vertical for the probing light to record the (weak) interfacial signal along 450 

the total thickness of the inclusion allowing the longer pathlenght to sample the effect. It is 451 

here worthwhile to remind that the light is 8x8 µm, but not all the light probes the water, since 452 

part illuminates out of the cavity. Eventually, this proposition is somewhat speculative but 453 

enables us to reconcile the observed blue-shift with the well-established fact of the 454 

nanometric thickness of the interface. 455 

3.2.2 Stable liquid occluded in biphasic inclusion 456 

The spectra were recorded at the same xy locations and following the same protocol as with 457 

the superheating conditions. The temperatures are close the same, only the internal pressure 458 

of the occluded liquid is supposed to vary, turning from the pre-nucleation pressure to the 459 

saturation one after boiling. 460 

Inside the sample 1, the reference spectrum is that at the #2 location which displayed the 461 

bulk-like behaviour, more exactly the behaviour the less affected by the interfacial blue-shift 462 

(we have no real bulk reference). The first sub-band shows the same evolution as previously 463 

when one get farther to this bulk position: a shift toward longer wavelength. Most of the 464 

others spectra are identical, even when decomposing the band into its three sub-bands: the 465 

three sub-bands of the #3 to #7 align in a quasi-straight line, inside the error bars. Among 466 
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these ―other‖ spectra, the #1 appears specific, showing a shift intermediate between the bulk-467 

like behaviour (that shown by #2) and the interfacial one. 468 

Also worthwhile is the ―normality‖ of the #1 to #3 vertical, with no more the additional blue-469 

shift compared to the #2 to #7 vertical, observed under superheating. That means that these 470 

spectra (which are taken along the interface itself, with part of the beam sampling the 471 

occluding quartz) are not recording a specific signal when probing the interface itself. 472 

Therefore, we are lead to conclude that the interface has a minor influence on the stable 473 

liquid with respect to that exerted with the superheated liquid. Yet, the IR profile along the 474 

interface is still different from that of the bulk liquid, especially visible on the first sub-band of 475 

the OH-stretching absorption. Therefore, the stable liquid is blue-shifted at the interface 476 

compared to the bulk, but less than the superheated liquid is. 477 

The examination of the data taken with the sample 2 appears more contrasted. We can 478 

separate the spectra into two groups. First are those with the same IR profile as the bulk-like 479 

under superheating: the #7 and 8 spectra for the whole band, the #6, #11, and #12, for the 480 

second and third sub-bands, are the references. The crossing behaviour between the two 481 

water states (superheated/stable) establishes that the two series can be fully compared, and 482 

gives ground that the spectral difference have real physical significance. The second series 483 

gathers all the other spectra which show a spectral shift reverse to the previously-observed: 484 

this is a red shift, especially pronounced on the first sub-band and when along the interface 485 

(#1 to #4, #9). We propose that this opposite effect takes place due to water-air interfaces 486 

coming now into play with the presence of vapour bubbles in the cavity. Actually the main 487 

bubble appears to the bottom of the photo (Fig. 2), but we have already suspected that rings 488 

of tiny bubbles are invisibly located along the water-solid interface, as also mentioned in the 489 

literature11. 490 

The red-shifting must be measured with respect to the bulk-like liquid (see for instance, #6 or 491 

#7;  = 10-15 cm-1), and not compared to the superheated liquid, itself blue-shifted. 492 

Explicitly, we assume that the liquid recorded at these locations (#6 to #8) where the band 493 

looks like the superheated bands, behaves with the less influence from the water-air 494 
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interfaces. All the other spectra, without exception, show a red-shift from this reference. The 495 

red-shift indicates that the bonded 3250 cm-1 component increases at the expense of the 496 

3650 cm-1, so that the water in this area seems more structured than the bulk. In other words, 497 

the water-air interface promotes the tetrahedrally-networked molecules: this interface is 498 

structure-maker (kosmotrope effect), to use the same framework of reasoning as above. 499 

The present finding is consistent with the Sum Frequency Generation studies of the liquid-air 500 

interface26 which demonstrate an enrichment in 3150 and 3400 cm-1 peaks in the interfacial 501 

layer (and also in the 3700 cm-1, but for the topmost layer). It was additionally showed26 that 502 

the structured peak component significantly increases when inorganic ions concentrate at the 503 

interface. Thus, we cannot exclude that silica (or other) ions dissolved from the host or 504 

trapped during the synthesis procedure, would have concentrated at the interface 505 

highlighting the kosmotrope effect. 506 

3.2.3 Main conclusions 507 

As a whole, our IR study gives grounds that the superheated and the stable liquid have the 508 

same features in terms of molecular networking, which establish an interesting experimental 509 

basis to calculate the thermodynamic properties of superheated water by extrapolating its 510 

usual EoS, calibrated on the stable liquid. 511 

Furthermore, the two liquids seem to act differently when occluded in a solid cavity, in terms 512 

of their interfacial dynamics. We are not able to propose a clear view of the supporting 513 

microphysical mechanisms, but we got evidences that the interfacial signature is enforced 514 

along the superheated water-solid interfaces. Even if we cannot propose any explanations, 515 

we may outline that this fact could be the first direct reason (to our knowledge) of why the 516 

superheating is so efficient in fluid inclusions with respect to any other systems, a still-517 

pending question12. 518 

But again, the main surprise is our ability to record an unambiguous signal while the physico-519 

chemical interfacial effects are classically expected to be some molecular layers thick. 520 

Actually, the inward unbalanced forces which make up the specificity of the interfacial region 521 
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are globally of the van der Waals type and so cannot extend far away the immediate 522 

neighbour layers. We may only speculate on a long-range interaction afforded by dissolved 523 

impurities introduced either during the procedure or by dissolution of the host solid. In the 524 

literature, the finite size effects making up the ―confinement‖ have recently been proposed to 525 

extend over up to 50 nm (slowing dynamics28), or even 320 nm (far- and mid-infrared 526 

spectroscopy29). 527 

4. CONCLUSION 528 

The first evidence obtained through this study is that the superheated water probed during 529 

this experiment is bulk water, in the sense of its intermolecular arrangement. The direct 530 

consequence of such evidence is that the properties of superheated water may be predicted 531 

using the equation of state derived to describe the ―normal‖ water, at least down to the -80 532 

MPa here attained. That result confirms previous observations8 which are easily overlooked 533 

since the authors did not stress their importance on this regard. Extrapolating the equation of 534 

state at (P-T) pairs results in the thermodynamic features of the metastable water, as 535 

assumed more or less empirically by previous authors13,15-16. 536 

The IR signal shows that the water state varies from location to location in a hydraulically 537 

continuous volume, depending on the interfacial effects and the local geometries. Water-solid 538 

and water-air interfaces showed opposite effect in terms of the water structure: the former 539 

blue-shifts the signal, which we summed up (certainly too simply) as a structure-breaker 540 

effect, and the latter red-shifts the OH-stretching band (a structure-maker feature), two 541 

findings which meet others conclusions from the literature, but cannot be generalized since 542 

they obviously depend strongly on the experimental materials and the local conditions. 543 

These effects can play a role on the liquid water behavior when occluded liquid invades all 544 

the volume (monophasic inclusion) and becomes superheated. In particular, it seems that the 545 

molecular networking at the water-solid interfaces could be instrumental under superheating 546 

to stabilize the occluded liquid towards the nucleation. However, the measurements gained 547 
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throughout this study are not sufficient to establish a firm conclusion on the exact role played 548 

by the interfaces to stabilize the entrapped liquid. It is noteworthy to stress that we are not 549 

able to separate the potential mixed effects between the interfacial role and the confinement, 550 

possibly acting also in solids in the thinnest part (50-500 nm28,29) of the cavities. In parallel, 551 

we recorded an IR signature attributed to the water-air interface which appears pretty simple 552 

to interpret, at least qualitatively: the structure-maker effect along the bubble frontier should 553 

add an additional energy cost to the usual surface tension to be paid to form any interfacial 554 

area. This is a well-known fact embedded in the Classical Nucleation Theory. 555 

At last, we must state that the initial question is still pending and more work remains to be 556 

performed to completely address this issue of the excess stability of water in fluid inclusions 557 

as well the IR ability to record the interfacial signatures. However, the IR spectroscopy 558 

appears to be a promising tool when used at high resolution on these special samples. We 559 

confirm the surprising ability of vibrational spectroscopy to get insights the H-bond 560 

networking at the sub-wavelength scale. Le Caer et al.29 observed the effects of confinement 561 

over hundreds of nanometers, and also were able to record the appearance of liquid-air 562 

interfaces during drying experiments. The present work is a further encouraging step in the 563 

same direction, to use the IR micro-spectroscopy in studying the versatility of the liquid water 564 

properties. 565 

In terms of perspective, the first track is to get a precise tri-dimensional image of the cavity, 566 

and the second one to record the IR signals as a function of the size of the air bubble which 567 

can be easily controlled by the temperature. 568 
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