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[1] Time compression approximation (TCA) is a practical and often quite accurate tool to
predict postponding infiltration for field applications. A modified approximation (MTCA)
can be used just as easily and, in general, will reduce the error by about 50%. This is based
on two results: (1) After ponding, TCA and MTCA predict very close infiltration rates; and
(2) MTCA, but not TCA, uses the actual cumulative infiltration up to the ponding time.
Thus, TCA has an additional error in its prediction of postponding infiltration. Previously,
those results, including the 50% reduction in error, were observed numerically for linear
and Burger’s soils. They are illustrated here numerically with an actual soil (a Grenoble
sand). More importantly, we developed a general analytical approximation for this problem
and showed that it can provide a very convenient predictive tool which can then be used for
arbitrary soil properties.
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1. Introduction
[2] Time compression (sometimes ‘‘condensation’’)

approximation (sometimes ‘‘analysis’’) or TCA postulates
that infiltration after ponding depends only on the total cu-
mulative infiltration at ponding not on the details of the
rainfall rate [Brutsaert, 2005]. Thus, when TCA applies,
one can replace the true rainfall rate before ponding by its
average value. It follows that if one knows the cumulative
infiltration I as a function of flux q for saturated surface
water content, then for the average rainfall rate qp this rela-
tion will give the cumulative infiltration at ponding and
thus provide an estimate of ponding time tp. After this
ponding time estimate, the saturated solution is continued.

[3] However, if the average value of rainfall rate is
known until ponding, then the ponding time must be known
fairly accurately as well as the cumulative rainfall amount,
which is also the cumulative infiltration, at ponding time.
Thus, MTCA assumes knowledge of ponding time tp and

cumulative infiltration at that time Ip and does not assume
that the average flux before ponding is the flux at ponding.

[4] To further extend our present understanding of TCA
and MTCA see Liu et al. [1998], Parlange et al. [2000],
Basha [2002], Brutsaert [2005], and Barry et al. [2007]. We
will analyze numerically and analytically infiltration for
constant flux and for constant surface water content for non-
linear soils, revisiting earlier papers [Parlange et al., 1985;
Hogarth et al., 1991; Parlange et al., 1997; Parlange et al.,
1999] which compared numerical results with analytical
results. The analytical approach was refined by Barry et al.
[2007] and is used here to reanalyze the numerical results of
Parlange et al. [1985] and Hogarth et al. [1991] obtained
for a Grenoble sand. The sand’s hydraulic properties are
fully reported in those two papers [Parlange et al. 1985;
Hogarth et al., 1991] and will be used here to illustrate our
results. The earlier numerical solutions have been repro-
duced using COMSOL numerical software. The converged
COMSOL finite element solutions agreed with the original
solutions presented by Hogarth et al. [1991].

2. Analysis
[5] The method is based on a double integration of Rich-

ards’ equation [Parlange and Haverkamp, 1989], yielding

zð�; tÞ ¼
Z�s

�

Dð�Þd�

@
R�
0

zd ~�=@t � kð�Þ
: ð1Þ

In equation (1) D and k are the soil water diffusivity and
hydraulic conductivity, respectively, and z is the distance
from the surface (positive downward), t is the time, � is the
water content at z, and �s is � for z ¼ 0 (the surface). The

expression @
R�
0

zd ~�=@t is the flux, which does not vary
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much, unlike k. Parlange [1972] suggested that a first
approximation to solving equation (1) for z is to replace the
flux term by q�=�s, where q is the surface flux. That substi-
tution has the desirable property that it gives the exact
result, usually called the traveling wave solution, when q=�s
is constant [Fleming et al., 1984]. In the long time limit
equation (1) reproduces the so-called ‘‘profile at infinity’’
for �s constant [Philip, 1969]. A straightforward iterative
scheme replacing the resulting value of z from equation (1)
in the integrand has not proved convenient. Another
approach is to generalize the method of Heaslet and Alksne
[1969] and to expand instead the first approximation in
terms of z or [Parlange et al., 1997; Barry et al., 2007]

Z�s

�

Dd�

q�=�s � k �
� � ¼ zþMz2 þ � � � : ð2Þ

In practice excellent accuracy is obtained keeping only the
first two terms on the right side of equation (2). M(t) satis-
fies [Barry et al., 2007]

2M ¼ q
�sDs

� 1
q� ks

d�s

dt
; ð3Þ

where Ds and ks are, respectively, the values of D and k at
�s. Note that near saturation, Ds is basically undefined and,
from the short time limit, could be estimated by [Parlange
et al., 1999]

1
�sDs

¼

R�s

0
�s � �ð ÞDd�

R�s

0
Dd�

R�s

0
�Dd�

: ð4Þ

If the relationship between �s and q is known, then equation
(3) yields M. Integrating equation (2) provides the addi-
tional equation

Z�s

0

D�d�

q
�

�s
� k �ð Þ

¼ I þM
Z�s

0

z2d�; ð5Þ

where I(t) is the cumulative infiltration

I ¼
Z�s

0

zd�: ð6Þ

As it is only a small correction, the last term in equation
(5),

R
z2d�, can be evaluated roughly, assuming a Green

and Ampt-type flow, or

Z�s

0

z2d� � I2=�s; ð7Þ

in which case equation (5) becomes

Z�s

0

D�d�

q
�

�s
� k
¼ I þM I2=�s: ð8Þ

Up to now the analysis applies whether q or �s is imposed.
However, equation (3) leads to very different results
depending on whether q or �s is constant.

2.1. Constant Flux Analysis
[6] Differentiation of equation (8) yields

qþ dMI2=�s

dt
¼ �sDs

q� ks

d�s

dt
�
Z�s

0

D�2d�

q
�

�s
� k

� �2 q
d1=�s

dt
; ð9Þ

and, combining with equation (3),

2M�sDs þ
dMI2=�s

dt
¼ �

Z�s

0

D�2d�

q
�

�s
� k

� �2 q
d1=�s

dt
; ð10Þ

we can estimate the order of magnitude of the second term as

MI2d1=�s

dt
¼ O M

Z�s

0

D�2d�

q
�

�s
� k

� �2

Z�s

0

Dd�
d1=�s

dt

2
6664

3
7775: ð11Þ

Thus, if this second term were of the order of the third term
in equation (10), we would have

M
Z�s

0

Dd� ¼ O q½ �: ð12Þ

However, in that case, the first term in equation (10),
2M�sDs, would be an order of magnitude greater than all
the other terms in that equation and it could not be balanced
by any other term. Hence, the second term in equation (10)
can be neglected giving

2M�sDs ¼ q
Z�s

0

D �=�sð Þ2d�

q
�

�s
� k

� �2

d�s

dt
: ð13Þ

Given that M is an order of magnitude smaller than sug-
gested by equation (12), then M can be obtained from equa-
tion (13), replacing d�s=dt by q q� ksð Þ=�sDs from equation
(3), where M has been dropped, or

2M�2
s D2

s ¼ q� ksð Þq2
Z�s

0

D �=�sð Þ2d�

q
�

�s
� k

� �2: ð14Þ

As q ! ks, the integral is singular since q � ks ! 0. We
remove the singularity by using a Gardner-type soil obey-
ing [Barry et al., 2007]

D � �s

Z�s

0

Dd�
dk=�
d�

=ks: ð15Þ
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Although not exact, such a D introduces only a small error
on the value of M giving

2M�sDs ¼ q

R�s

0
Dd�

�sDs

0
BBB@

1
CCCA: ð16Þ

For a rapidly increasing D, the term in the parentheses is
much less than unity, as can be estimated from equation
(4). This also shows that in equation (3) the M term is
much smaller than the other two terms, which basically bal-
ance each other. According to equation (16), M approaches
a constant when t ! 1. This, of course, means that the
MI2=�s correction in equation (8) becomes increasingly
large if t ! 1. For q sufficiently larger than ks, ponding
will occur for short times and the correction remains small.
However, for q less than or close to ksat, the contribution of
dI2/dt in equation (10) has to be considered, so that
2M�sDs in equation (10) is replaced by 2M �sDs þ 2Iq=�sð Þ
and equation (14) is replaced by the more accurate

2M�sDs �sDs þ Iq=�sð Þ ¼ q
Z�s

0

Dd�: ð17Þ

In Barry et al. [2007] this additional term was not kept as
only q > ksat was considered and ponding occurred, so in
that case this term is normally negligible.

2.2. Infiltration Analysis With Surface Saturation
[7] This case is especially important for using the TCA

technique as it serves as a reference. Of course, for �s ¼ �sat
the d�s=dt term drops out of equation (3) and M is given by

2M ¼ q=�satDsat: ð18Þ

[8] Under constant flux the d�sat=dt term and q=�satDsat
largely balanced each other giving M << q=�satDsat. This
cannot happen here for �s ¼ �sat, so the M term introduces
an order of magnitude larger correction. With such an M,
equation (8) holds and relates I and q.

[9] As noted by Sivapalan and Milly [1985], TCA, to be
exact, would require the same I(q) relation for an arbitrary
dependence of the flux q on time. Obviously this is impossi-
ble. For instance, we have shown that for constant q the M
term has essentially no effect on ponding; here, on the other
hand, the I(q) relationship is affected as M is much larger.

[10] As noted earlier, 1=�satDsat is not a very meaningful
parameter, which means that our condition is unreliable but
the estimate of equation (4) holds in the short-time limit. If
we use that estimate for all times in equation (8), there is
an obvious difficulty for the long-time case as the last term,
no matter how small M is, will eventually dominate and
cease to be a small correction. An alternative is to apply
equation (8) in the short-time limit only so that equation (4)
leads to

MI2=�sat ¼
Z�sat

0

ð�sat � �Þ Dd�=2q: ð19Þ

Writing the correction in this form has the great advantage
that if we apply it for long times (even though it was
derived for short times), it remains finite in the long times
when q ! ks, and as a result, is negligible in that limit,
when I!1 in equation (8). Equation (8) then becomes

Z�sat

0

D�d�

q
�

�sat
� k

� � ¼ I þ
Z�sat

0

ð�sat � �Þ Dd�=2q; ð20Þ

which, for a given q, gives I quite easily. Note that time not
appear in equation (20), and I is only a function of q for
given soil properties. Figure 1 gives various I(q) for the
Grenoble sand. First, for q constant, I corresponds to its
value at ponding obtained numerically and from equation
(2) dropping the M term altogether, the agreement is obvi-
ously excellent. The figure also gives I(q) when � at the sur-
face is saturated for all times and from equation (20).
Again, the agreement is quite good, up to higher order
terms neglected in equation (20).

[11] In the figure the numerical results for the case q ¼
50 cm h�1 until ponding, followed by �sat at the surface is
also given. Of course, as q decreases, with increasing time
this I(q) approaches the results when �sat at the surface
holds for all times. The figure also indicates the relation-
ships assumed by TCA, (BACF) and MTCA (BCF) (see
also sketches of Figure 2). In that sketch, point F represents
the long time limit when all the q(t) merge as q! ksat. The

Figure 1. Cumulative infiltration is given as a function of
flux, showing the relationship between the cases of q con-
stant and � ¼ �sat. The dashed line is equation (2) with M
neglected, the asterisks give the numerical values, the solid
line is equation (20), the crosses give the numerical values,
the dashed-dotted line is equation (21) with � ¼ 18:105,
and the dotted line gives the numerical values for the tran-
sition from q constant to � ¼ �sat. BACF is the TCA and
BCF is the MTCA.
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other points (ABCDEG) are close together, as q2p � qp

must be small for TCA, and MTCA, to apply, and points
(DCG) are even closer to each other as discussed below.
TCA assumes that, at ponding, point A in Figures 1 and 2,
q is continuous so that I ¼ I1p given by equation (20) for
q ¼ qp. Hence I1p ¼ qpt1p is less than Ip ¼ qptp with, from
equation (20),

qpðtp � t1pÞ ¼
Z�sat

0

ð�sat � �Þ Dd�=2q: ð21Þ

MTCA rather assumes that q ¼ qp until ponding time, point
B, then q drops discontinuously to q2p, to point C in Figure
1 and point D in Figure 2. Equation (20) yields q ¼ q2p tak-
ing I ¼ Ip ¼ qptp.

[12] The I(q) curve when q ¼ 50 cm h�1 at the surface
until ponding followed by infiltration with the surface satu-
rated obviously shows on the figure as an interpolation
between the two cases of q constant and �s ¼ �sat. An ana-
lytical interpolation is now guessed. The expression

Z�sat

0

D�d�

q
�

�sat
� k

� � ¼ I þ 1
2q

Z�sat

0

ð�sat � �Þ

� Dd�
q
qp

� ��
� 1

� �
=

ksat

qp

� ��
� 1

� � ð22Þ

is chosen because it goes to the right limits, i.e., M ¼ 0 at

q ¼ qp and M ¼
R�sat

0
ð�sat � �ÞDd�=2q when q ¼ ksat. In

addition, we introduce a parameter � in equation (22)
which allows us to satisfy another condition which is avail-
able in the transition. As qp!1 the transition is instanta-
neous so we impose the condition dI/dq ¼ 0 in that limit,
giving

� �
Z�sat

0

Dd�=
Z�sat

0

Dð�sat � �ÞDd�; ð23Þ

where we neglected ðksat=qpÞ� compared to 1, since we
assume that qp is not too close to ks and equation (23)
shows that � >> 1:

[13] In our illustration, � � 18. Figure 1 also gives the
transition curve based on equations (22) and (23)—the
agreement is obviously quite good.

[14] We are now going to give analytical expressions to
estimate q(t). Differentiation of equation (20) gives

dt ¼ � dq
q

Z�sat

0

D�2d�

�sat q�=�sat � kð Þ2
� 1

2q2

Z�sat

0

ð�sat � �Þ Dd�

2
4

3
5

ð24Þ

and by integration imposing the condition that q ! 1 as
t! 0:

t ¼
Z�sat

0

D�2

k2�sat
ln

q�=�sat � k
q�=�sat

� �
d�þ

Z�sat

0

D�2d�
k�sat q�=�sat � kð Þ

� 1
4q2

Z�sat

0

ð�sat � �ÞDd�:

ð25Þ

In addition to giving a sketch of the fluxes as a function
of time for TCA (curve ACF) and MTCA (curve DF), Fig-
ure 2 also shows the interpolation case (curve BEF). The
curves t1(q) for TCA and t2(q) for MTCA are based on a
translation of t(q) in equation (25) or

t1 � t1p ¼ tðqÞ � tðqpÞ ð26Þ

and

t2 � tp ¼ tðqÞ � tðq2pÞ: ð27Þ

Repeating the same procedure with equation (22) as with
equation (20), differentiation and integration gives t3(q) for
the interpolation curve (BEF) in Figure 2 or

t3 ¼ t1 þ
1
2
ðq=qpÞ�

q2

Z�sat

0

Dð�sat � �ÞDd� ð28Þ

for � large.

Figure 2. Sketch of fluxes versus time illustrating the
relationship between TCA and MTCA.
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[15] We are now going to prove two general results
observed previously for linear soils and for Burgers’ soils.
First, we are going to show that points C, G, and D are
practically the same (as observed by Basha [2002, Figure
4] for a Burgers’ soil) so that in the q(t) plane the
MTCA curve and the TCA curve are effectively the same
for t > tp.

[16] Second, we are going to show that the area ABC
and the area BDF are of the same order of magnitude,
which means that the error of TCA in predicting the cumu-
lative infiltration is about twice the error of MTCA.

[17] First we want to show that t1 � t2 for q ¼ q2p is
much smaller than t1p � tp so that DG << AB in Figure 2
and the three points CDG are essentially indistinguishable.
Equations (26) and (27) give

t1 � t2 ¼ t1p � tp þ tðq2pÞ � tðqpÞ; ð29Þ

but qp(t1p � tp) ¼ I1p � Ip and I1p � Ip ¼ I(qp) � I(q2p),
with I given by equation (20). Since dI ¼ qdt, thus
ðI1p � IpÞ=qp � ½tðqpÞ � tðq2pÞ��q=qp where q2p < �q < qp.
Finally

t1 � t2 ¼ ½tðq2pÞ � tðqpÞ� 1� �q=qp
� �

; ð30Þ

which is small compared to t1p � tp since 1� �q=qp
� �

is
small for TCA, and MTCA, to be applicable.

[18] Second, the area BAF is obtained as

Zqp

ksat

ðt3 � t1Þdq � q3
pðtp � t1pÞ2= �sat

Z�sat

0

Dd�

0
@

1
A ð31Þ

from equation (28), and the ABC area is given by
1
2 ðtp � t1pÞðqp � q2pÞ or

ABC area � 1
2

q3
pðtp � t1pÞ2= �sat

Z�sat

0

Dd�

0
@

1
A ð32Þ

using equation (24), as long as ks is not close to q. Thus
the area of BAF is roughly twice the area of ABC, or BCF
has about half the area of BAF. Since those areas corre-
spond to the errors in cumulative infiltration of MTCA
and TCA, the latter has roughly twice the error of MTCA
as already observed for linear and Burgers’ soils. The
same improvement of 50% was also observed by Parlange
et al. [2000] for a power law diffusivity in the absence of
gravity to allow analytical treatment with the tools avail-
able at that time. Parlange et al. [2000] obtained some an-
alytical results with gravity; however, it was not possible
to extend them to predict infiltration after ponding. Here
we predict analytically that the reduction of the error in
the cumulative infiltration with MTCA should apply to
any soil. Figure 3 gives the various q(t) obtained numeri-
cally for our example and analytically from equations
(26)–(28). Not surprisingly, the agreement is quite good,
and we cannot distinguish points D, C, and G on Figure 3
as expected.

3. Conclusion
[19] One practical advantage of MTCA over TCA is that

its application requires a knowledge of ponding time rather
than rainfall rates. However, when TCA and MTCA are
accurate tools, they both assume that using average rainfall
rates, rather than the actual values, does not lead to large
errors in predicting postponding infiltration. We assumed
that this is the case here, i.e., we did not discuss those situa-
tions when the use of an average flux leads to large predic-
tive errors. Rather, we showed that when TCA is a good
predictor of postponding infiltration then, MTCA, which is
as easy to apply, reduces the error of cumulative infiltration
by about 50%.

[20] We derived analytically two results valid for any
soil property. First, infiltration rates after ponding are the
same for TCA and MTCA. Second, the error of the pre-
dicted cumulative infiltration for MTCA is about half of
what it is for TCA. Both results were obtained previously
for linear and Burger’s soils and are checked here for a
Grenoble sand. More importantly, we predict that they
should hold for any soil.

[21] We are able to model TCA, MTCA analytically and
the transition from constant flux to constant surface water
content for arbitrary soil properties. Small corrections to
the cumulative infiltration in equation (5) had to be esti-
mated. Being small, we could use rough, i.e., Green and
Ampt or Gardner, approximations that affect the small cor-
rections to a higher order which are negligible. We illus-
trated the accuracy of the analytical model by comparison
with the numerical results for the Grenoble sand.

[22] The analytical results presented here apply poten-
tially to any soil, which is more general than previous ana-
lytical results that use specific forms of the soil water
properties. As a consequence, those results could be used
as a predictive tool under field conditions, when the soil
properties are known but do not follow specific forms.

Figure 3. Flux versus time showing the numerical results
(solid line) and the analytical results of equations (26) and
(27) (dashed line) and equation (28) (dashed-dotted line).
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