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Abstract 52 

We report on the bulk chemical composition, petrology, oxygen isotopic composition, trace 53 

element composition of silicates, and degree of self-irradiation damage on zircon grains of the eucrite 54 

Northwest Africa (NWA) 5073, to constrain its formation and post-crystallization thermal history, and 55 

to discuss their implications for the geologic history of its parent body. This unequilibrated and 56 

unbrecciated meteorite is a new member of the rare Stannern-trend eucrites. It is mainly composed of 57 

elongated, zoned pyroxene phenocrysts up to 1.2 cm, plagioclase laths up to 0.3 cm in length, and is 58 

rich in mesostasis. The latter contains zircon grains up to 30 µm in diameter, metal, sulfide, tridymite, 59 

and Ca-phosphates. Textural observations and silicate compositions coupled with the occurrence of 60 

extraordinary Fe-rich olivine veins that are restricted to large pyroxene laths indicate that NWA 5073 61 

underwent a complex thermal history. This is also supported by the annealed state of zircon grains 62 

inferred from µ-Raman spectroscopic measurements along with U and Th data obtained by electron 63 

probe microanalyses. 64 
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Introduction 99 

The so-called HED suite of achondrites (Howardites, Eucrites, and Diogenites) makes up the 100 

largest suite of igneous rocks available from any Solar System body besides the Earth and the Moon 101 

(Mittlefehldt et al., 1998). Eucrites represent basaltic rocks and gabbroic cumulates, whereas 102 

diogenites are ultramafic rocks (orthopyroxenites, olivine-bearing orthopyroxenites, harzburgites, and 103 

dunites), mainly composed of orthopyroxene and olivine (e.g., Mittlefehldt et al., 1998; Beck and 104 

McSween, 2010). Howardites are polymict breccias, consisting of various amounts of eucritic and 105 

diogenitic lithologies. The close relationship between HEDs is convincingly supported by 106 

petrographic, mineralogical, chemical, and isotopic evidences (see McSween et al., 2010 for a review), 107 

and suggest that they derived from the same parent body, possibly the asteroid 4 Vesta (e.g., McCord 108 

et al., 1970; Consolmagno and Drake, 1977; Binzel and Xu, 1993; Drake, 2001). However, a few 109 

eucrites display unusual petrographic features and distinct oxygen isotopic compositions and could, 110 

therefore, have originated from distinct parent bodies (e.g., Yamaguchi et al., 2002; Scott et al., 2009; 111 

Gounelle et al., 2009; Bland et al., 2009). Eucrites are widely thought to represent either surface or 112 

near-surface basaltic liquids (lava flows or shallow intrusions) or crystal accumulations from basaltic 113 

liquids. Most eucrites experienced a complex post-crystallization history, including prolonged thermal 114 

metamorphism that produced recrystallization textures and caused exsolution and inversion of 115 

pyroxenes (e.g., Takeda and Graham, 1991; Metzler et al., 1995, Yamaguchi et al., 1996, 2009; Mayne 116 

et al., 2009), and multiple impact events. Thus, many eucrites are brecciated, and were formed in the 117 

regolith and mega-regolith of their parent body (e.g., Stöffler et al., 1988). They consist of mineral 118 

and/or lithic fragments embedded in a fine-grained, generally fragmented matrix (e.g., Takeda and 119 

Graham, 1991; Metzler et al., 1995; Bischoff et al., 2006; Llorca et al., 2009). From a chemical point 120 

of view, eucrites can be subdivided into basaltic (noncumulate), and cumulate eucrites, both of which 121 

occur also as clasts in polymict eucrites and howardites (e.g., Takeda, 1991). Cumulate eucrites are 122 

coarse-grained rocks with high Mg-numbers [Mg# = molar Mg/(Mg + Fe)], low incompatible trace 123 

element abundances compared to other eucrites, and pronounced positive Eu anomalies - a feature 124 

consistent with plagioclase accumulation. Basaltic eucrites can be subdivided into three compositional 125 

distinct groups on the basis of their Mg# or FeOtotal/MgO wt.% ratio, TiO2 contents, and incompatible 126 

trace element abundances (e.g., Stolper, 1977; Warren and Jerde, 1987; Mittlefehldt et al., 1998; 127 

Yamaguchi et al., 2009): Main Group Nuevo Laredo-trend eucrites, Stannern-trend eucrites and the 128 

residual eucrites. Main Group Nuevo Laredo-trend eucrites are the most common ones. They display 129 

wide variations in Mg# with only moderate variations in incompatible element abundances. They are 130 

believed to represent a fractional crystallization trend (e.g., Stolper, 1977; Warren and Jerde, 1987). 131 

Stannern-trend eucrites are rare. They include three falls (Stannern, Bouvante, and Pomozdino), and 132 

about a dozen finds from Antarctica (e.g., Y-75011) and from the Sahara (e.g., NWA 4523 and NWA 133 

1000). They display the same major element abundances as the less evolved rocks of the Nuevo 134 

Laredo group, but exhibit high Ti and incompatible trace element abundances, and significant negative 135 



Eu, Sr, and Be anomalies. The origin of these eucrites is controversial. It has been proposed that the 136 

Stannern-trend eucrites could have been generated from the same mantle source as Main Group 137 

eucrites but at smaller degrees of partial melting, and possibly at slightly different oxygen fugacities 138 

(Stolper, 1977; Mittlefehldt and Lindstrom, 2003). Alternatively, it has been proposed that the high 139 

incompatible trace element abundances could be explained by an intricate in-situ crystallization 140 

process (Barrat et al., 2000), or by the involvement of highly evolved KREEP-like melts (Warren and 141 

Kallemeyn, 2001). The contamination of Main Group eucritic magmas might be also explained by 142 

melts derived from partial melting of the asteroid’s crust, which would can successfully explain both 143 

the high incompatible trace elements concentrations and the distinctive Eu, Sr, and Be anomalies 144 

shown by the Stannern-trend eucrites (Barrat et al., 2007). Finally, the residual eucrites display major 145 

element abundances consistent with Main Group eucrites, but light REE depletions and positive Eu 146 

anomalies. Partial melting followed by extraction of a few percent of partial melts can satisfactorily 147 

explain these features (Yamaguchi et al., 2009). At present, it is generally thought that the 148 

differentiation history of the eucrite parent body has been triggered by the formation of a global 149 

magma ocean (e.g., Takeda, 1979; Righter and Drake, 1997; Ruzicka et al., 1997; Warren, 1997; 150 

Greenwood et al., 2005). This hypothesis is at first glance consistent with the petrology of the eucrites, 151 

but cannot easily account for the geochemistry of the diogenites (e.g., Mittlefehldt 2000; Barrat et al., 152 

2008, 2010). Thus, the magmatic and thermal histories of the parent body were certainly much more 153 

complicated than generally believed and more detailed studies of HED meteorites are necessary to 154 

further our understanding of the process leading to the formation of HED meteorite genesis. Recently, 155 

we have identified NWA 5073, a eucrite which displays some unique features. This single, 156 

unbrecciated stone is characterized by an unusual texture with cm-sized unequilibrated pyroxenes 157 

crosscut by numerous secondary olivine-rich veins, and mesostasis areas containing large zircon 158 

grains. Here, we report on the bulk chemistry, petrology, and isotopic characteristics of this 159 

exceptional meteorite and discuss its genesis and complex post-crystallization history. Preliminary 160 

data on NWA 5073 have been previously presented by Roszjar et al. (2009a-c) and Roszjar and 161 

Scherer (2010).  162 

 163 

Analytical Methods 164 

The textural and mineralogical investigations of the sample were performed by optical and 165 

electron microscopy on a thin section (PL07217). Modal abundance of major phases and mesostasis 166 

were determined based on multiple point-counting applied on a backscattered electron (BSE) 167 

photomicrograph using an Olympus Analysis software. A JEOL A840 scanning electron microscope 168 

(SEM) equipped with energy dispersive spectrometers (EDS; INCA; Oxford Instrument) at the 169 

Interdisciplinary Center for Electron Microscopy and Microanalysis (ICEM) at the Westfälische 170 

Wilhelms-Universität Münster was used for detailed petrographic investigations. Qualitative analyses 171 

have been carried out using an acceleration voltage of 20 kV, and a beam current of 15 nA. High 172 



contrast, low brightness BSE imaging has been used for systematic identification and localization of 173 

Zr-bearing phases. Quantitative analyses of mineral compositions were obtained using a JEOL JXA 174 

8900 Superprobe electron probe micro analyzer (EPMA) operated at an acceleration voltage and beam 175 

current of 15 kV and 15 nA, respectively. Natural and synthetic standards of well-known compositions 176 

were used as standards. Matrix corrections were made according to the Фρ(z) procedure of Armstrong 177 

(1991).  178 

Prior to micro-Raman spectroscopy, investigations of zircon grains were performed on the 179 

JEOL A840 SEM at conditions described above. BSE imaging allowed selection of 10 appropriate 180 

grains with sufficient diameter ranging from 10-25 µm that were free of cracks and inclusions, and 181 

were representative of the whole zircon population in NWA 5073 in terms of mineral shape and 182 

mineral paragenesis with surrounding phases. The same spots on individual zircon grains investigated 183 

by Raman spectroscopy were subsequently analyzed for major, minor, and trace element 184 

concentrations by wavelength-dispersive analysis using a Cameca SX 100 EPMA at the Institut für 185 

Mineralogie, Universität Hamburg. Major (Si, Zr, Hf) and minor (Al, Fe, P, Ca, Mn, Y) elements were 186 

analyzed in a first sequence using a beam current of 20 nA, an acceleration voltage of 15 keV, total 187 

counting times of 30 s, and a beam diameter of 1-2 µm. Th and U concentrations were subsequently 188 

determined in a separate cycle with total counting times of 600 s (10 × 60 s) for the U-Mβ and Th-Mα 189 

line, and a beam current and acceleration voltage of 200 nA and 15 kV, respectively, to achieve a 190 

better precision. A small overlap of the Th-Mα on the U-M line was corrected using the method 191 

proposed by Åmli & Griffin (1975). For these conditions the detection limit of U and Th is about 20-192 

30 ppm. 193 

Micro-Raman spectroscopic measurements were performed subsequently, but prior to 194 

compositional analysis by EPMA to preclude any possible irreversible modifications of the radiation-195 

damaged structure as a result of the electron beam impact. Micro-Raman spectroscopic analyses were 196 

carried out on a polished, cleaned thin section of NWA 5073 using a Jobin Yvon HR800 dispersive 197 

Raman spectrometer at the Institut für Anorganische und Analytische Chemie at the Westfälische 198 

Wilhelms-Universität Münster. The 632.187 nm line of a Nd-YAG laser was used as excitation source 199 

with a beam power of ~10 mW at the exit of the laser. The scattered Raman light was collected with a 200 

100 times objective (N.A. =0.9) with charge-coupled device detector (CCD) after being dispersed by a 201 

grating of 1800 grooves mm-1. The spectrometer slit width was set to 150 µm, yielding a spectral 202 

resolution of 1.9 cm-1 near 1000 cm-1 as determined from Ne light bands. The lateral resolution was 203 

about 1-2 µm. A possible spectrometer drift was monitored by measuring the 520.7 cm-1 band of 204 

silicon and the spectral lines of the Ne-lamp immediately before and after the sample analyses. 205 

Information about the structural state of individual zircon grains was obtained by examining the total 206 

spectrum and by monitoring the intensity, full width at half maximum (FWHM), and the frequency of 207 

the internal antisymmetric ν3(SiO4) stretching mode located near 1008 cm-1 in a non-metamict zircon. 208 

This band was monitored because (i) it has been shown that it is most suitable for quantifying 209 



radiation damage (Wopenka et al., 1996; Nasdala et al., 1996; Nasdala et al., 1998; Palenik et al., 210 

2003), since it is the strongest Raman band of zircon and thus easy to measure precisely (Dawson et 211 

al., 1971; Nasdala et al., 1996; Zhang et al., 2000a), and (ii) it is not significantly red-shifted by 212 

impurity-related structural disorder such as caused by variations in the Hf concentration (Hoskin and 213 

Rodgers, 1996). The broad band profile in the frequency region between 900 and 1100 cm-1 results 214 

from an overlap of the 3(SiO4) with the adjacent, internal 1(SiO4) stretching mode (A1g symmetry; 215 

Dawson et al., 1971) at about 975 cm-1 and, in radiation-damaged zircon, from the contribution of a 216 

broad background feature at a lower frequency, which has been assigned to the amorphous component 217 

in metamict zircon (Zhang et al., 2000a). Quantitative band parameters were obtained by 218 

deconvoluting the overall band profile in the frequency region between 800 and 1100 cm-1 with three 219 

Voigt functions and a linear background as shown by Geisler et al. (2001). The reproducibility of the 220 

fitted frequency is better than 0.2 cm-1 and that of the linewidth is in the order of ±0.5 cm-1 at a 221 

linewidth smaller than 20 cm-1 and ±1.0 cm-1 for larger linewidths. The effect of the finite slit width on 222 

the measured linewidth, given as the full width at half maximum (FWHM), was then corrected by the 223 

method of Tanabe and Hiraishi (1980).  224 

From radioactive decay of the 238U, 235U, and 232Th isotopes, the number of α-decay events for 225 

different U and Th concentrations were calculated according to the following equation: 226 

 Dα = 8 N1 [exp(λ1t - 1)] + 7 N2 [exp(λ2t - 1)] + 6 N3 [exp(λ3t - 1)]    (1) 227 

where N1, N2, 
 and N3 are the present concentrations of 238U, 235U, and 232Th in the zircon grains, 228 

respectively, λ1, λ2, and λ3 are the decay constants for 238U, 235U, and 232Th in years -1, respectively, and 229 

t is the age of the zircon. For our calculations we assumed an age of 4.55 Ga.  230 

The bulk chemical composition of NWA 5073 has been determined at the Institut 231 

Universitaire Européen de la Mer (IUEM), Plouzané, using ~100 mg of powdered sample material. 232 

The powdered whole rock fraction, derived from initially ~12 g sample material and devoid of fusion 233 

crust, was precleaned with ethanol and ultra pure MilliQ® water in an ultrasonic bath, before it was 234 

carefully crushed into small pieces in an agate mortar. Subsequently, a representative fraction of 0.48 235 

g was powdered. About 100 mg of the latter were used for bulk rock analyses. Major elements (Ti, Al, 236 

Cr, Fe, Mn, Mg, Ca, Na, K, and P) were determined by ICP-AES (inductively coupled plasma-atomic 237 

emission spectrometry) using the procedure described by Cotten et al. (1995). The accuracy of this 238 

system is better than 5%, and the reproducibility better than 3%. Trace element concentrations were 239 

measured by ICP-MS (inductively coupled plasma-mass spectrometry) using a Thermo Element 2 240 

spectrometer following the procedure described by Barrat et al. (2007). Based on standard 241 

measurements and sample duplicates, trace element concentration reproducibility is generally better 242 

than 5%, except for W, which is generally better than 10%. 243 

Trace element abundances of pyroxenes and plagioclases in NWA 5073 were determined by 244 

laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) at the Institut 245 

Universitaire Européen de la Mer, Plouzané. The analyses were performed under a He atmosphere 246 



using an ArF-Excimer (193 nm wavelength) laser ablation system (Geolas Pro102), connected to a 247 

Finnigan Thermo Element 2 spectrometer. Concentrations were determined on individual spots using a 248 

60 µm-diameter laser beam and a laser repetition rate of 10 Hz. Background and peak were measured 249 

for 40 s and 210 s, respectively. For all data, NIST 612 and BCR-2G glass standards were both used 250 

for external calibration of relative element sensitivities, using values given by Jochum et al. (2005). 251 

Replicate analyses of the USGS basaltic-glass standard BIR-1G run at intervals during the analytical 252 

session, yielded an external reproducibility generally better than 5% (1σ relative standard deviation). 253 

Analytical and data reduction procedures followed those described by Barrat et al. (2009). Results 254 

were normalized to CaO abundances measured by electron microprobe as an internal standard to 255 

account for variable ablation yield. 256 

Oxygen isotope analysis was carried out at the Open University using an infrared laser 257 

fluorination system (Miller et al., 1999). A 2 mg aliquot of NWA 5073, taken from a larger batch of 258 

homogenized powdered sample material (~100 mg), was loaded in the sample chamber, together with 259 

various international and internal oxygen isotope standards. To maximize yields and decrease the risk 260 

of cross contamination, the powdered sample and standards were fused in vacuum to form a glass bead 261 

prior to fluorination. O2 was liberated by heating the glass beads using an infrared CO2 laser (10.6 μm) 262 

in the presence of 210 torr of BrF5. After fluorination, the O2 released was purified by passing it 263 

through two cryogenic nitrogen traps and over a bed of heated KBr. O2 was analyzed using a 264 

Micromass Prism III dual inlet mass spectrometer. Published system precision (1σ) (Miller et al., 265 

1999), based on replicate analyses of international (NBS-28 quartz, UWG-2 garnet) and internal 266 

standards, is approximately ±0.04‰ for δ17O, ±0.08‰ for δ18O, and ±0.02‰ for Δ17O. Oxygen 267 

isotope analyses are reported in standard δ-notation where δ18O has been calculated as:  268 

δ18O = ((δ18O/δ16O)sample/(δ
18O/δ16O)ref ) -1 ) × 1000    (2) 269 

and similarly for δ17O using 17O/16O ratio. Δ17O has been calculated using the linearized format of 270 

Miller (2002): 271 

Δ17O = 1000 ln (1 + (δ17O/1000)) – λ 1000 ln (1 + (δ18O/1000))   (3) 272 

with λ = 0.5247.  273 

 274 

Results 275 

Mineralogy 276 

Northwest Africa 5073 is a desert find with a total mass of 185 g, representing an 277 

unequilibrated, mesostasis-rich basaltic eucrite with the coarsest subophitic to slightly variolitic (fan-278 

spherulitic) texture among the known eucrites. It is an unbrecciated rock that preserved its 279 

crystallization texture. It is mainly composed of elongated, unequilibrated pyroxene crystals up to 1.2 280 

cm and plagioclase laths up to 0.3 cm in length (Fig. 1). Large phenocrysts of pyroxene make up 281 

approximately 25 vol.% of the whole rock (Table 1). In variolitic areas, the plagioclase tends to be 282 

skeletal, i.e., it occurs as partly hollow crystals, which is indicative of rapid cooling. Euhedral 283 



chromite grains, occasionally dendritic, frequently occur with grain sizes up to 0.8 mm. Their 284 

chemical composition (Table 2) is in the range of those for the unequilibrated eucrite Pasamonte 285 

(Mittlefehldt et al., 1998). Fine-grained areas (mesostasis) that make up about 8.5 vol.% of the rock, 286 

occur interstitially to the large crystals (Figs. 1 and 3). Terrestrial weathering of the sample is 287 

indicated by the breakdown of about half of the metals and the occurrence of calcite, and Ba-sulfates 288 

in some cracks all over the thin section. According to the scheme proposed for chondrites by Wlotzka 289 

(1993), NWA 5073 is moderately weathered (W2-3).  290 

Large pyroxene crystals are chemically unequilibrated with cores of En51-60Fs34-5Wo2-8 and rims of 291 

En20-34Fs42-63Wo8-34 (Figs. 2 and 3; Table 2). The pyroxene composition depicted in Fig. 2, reflects 292 

magmatic zoning from Mg-rich cores to Fe-rich rims of large pigeonite laths adjacent to surrounding 293 

plagioclase crystals, which is typical of more rapidly cooled basalts containing pyroxene that has not 294 

exsolved on a µm scale, e.g., Y-75011 (Takeda et al., 1994). As emphasized by e.g., Takeda et al. 295 

(1982), chemical zoning in pyroxene primarily depends on the bulk chemistry of the basaltic melt and 296 

on crystal-growth conditions such as the degree of supercooling and nucleation. Re-equilibration of 297 

chemical zoning in pyroxene crystals did not occur in our sample. Thus, NWA 5073 was not formed 298 

in a slow cooling environment, as indicated by the skeletal nature of plagioclases, (see Fig. 3a), and 299 

was not affected by a long-term, high-temperature event, which would have resulted in re-300 

equilibration of pyroxene crystals. The large pyroxene crystals are frequently twinned and fractured 301 

mainly perpendicular to the c-axis. This is in strong contrast to the adjacent plagioclase crystals which 302 

do not show this fracturing. The small pyroxenes interstitial to the large crystals show similar Ca 303 

contents as the rims of large crystals, but contain somewhat more Fe (Fig. 2, open squares, Table 2).  304 

Occasionally, very thin (<1µm) exsolution lamellae of augite in the host pyroxenes can be observed 305 

(e.g., Fig. 3). Pyroxenes in contact with the mesostasis frequently have a corroded appearance. Large 306 

pyroxene grains are crosscut by fractures that are mainly filled by Fe-rich olivine. Originating from 307 

these veins, a distinct Fe-enrichment of the adjacent host pigeonite can be observed, which clearly 308 

parallels the veins (Fig. 3). Pyroxene areas distant to these veins appear as Mg-rich “cores”, 309 

surrounded by Fe-enriched areas. These “cores” seem to have preserved their original composition 310 

from primary crystallization (Fs~34). Additionally, Fe has effectively diffused from the olivine veins 311 

and larger fractures devoid of olivine veins into the host pyroxene crystals along certain 312 

crystallographic orientations, which probably represent cleavage plans (see Figs. 3d and 4a-b). Veins 313 

of Fe-rich olivine (Fa65-71) are clearly restricted to the large pyroxene crystals and always end abruptly 314 

at their boundaries. These veins are very irregular with distinct thickness variations (Fig. 3a-c). The 315 

olivine appears to have grown along preexisting fractures of its host pyroxene, while adjacent large 316 

plagioclase crystals are devoid of it (Fig. 3a-c). Euhedral chromite, and troilite crystals, and sporadic 317 

subrounded apatite grains occur within these veins (Fig. 3d). Similar olivine veins have been described 318 

from a few other eucrites and howardites, namely Macibini, Y-7308, Y-790260, Y-75011, Y-82202, 319 



NWA 049, NWA 1000, and NWA 2061 (Takeda and Yanai, 1982; Takeda et al., 1983; Metzler, 1985; 320 

Warren, 2002; Barrat et al., 2011). 321 

Two primary feldspar generations occur, namely large plagioclase laths (up to 3 mm in length) and 322 

small plagioclase grains located in the mesostasis, both of which are compositionally in the typical 323 

eucrite range (e.g., Mittlefehldt et al., 1998) of An76-92Ab8-22Or0-3 (Fig. 5; Table 2). The plagioclases 324 

found in mesostasis areas tend to be more Ab-rich compared to large plagioclase laths (Fig.5). Many 325 

large plagioclase crystals are clouded by myriads of exsolved tiny pyroxene and SiO2 grains, as 326 

commonly observed in eucrites (e.g., Harlow and Klimentidis, 1980; Metzler et al., 1995). Additional 327 

to the primary plagioclases, we identified another, probably second generation of feldspars that are 328 

typically An97-100 in composition (Fig. 5) and were usually found in association with Fe-rich olivine 329 

veins within large pyroxene laths (Fig. 4). 330 

The mesostasis consists of tridymite laths up to 0.8 mm, Ni-poor metallic Fe (<300 µm), ilmenite (<60 331 

µm), chromite, plagioclase, augite, apatite, merrillite, troilite, zircon, baddeleyite, and very small 332 

amounts of Fe-rich olivine. In addition, sporadic anorthite (An95) was found. In some cases the 333 

mesostasis areas are not well-defined and appear blurred. More than 30 grains of Zr-bearing phases, 334 

such as zircon, baddeleyite, and zirconolite grains, with diameters ranging from 1 to 30 µm were 335 

found in the mesostasis (Fig. 6; Roszjar et al., 2009b). They are typically located interstitial to 336 

ilmenite, pyroxene, plagioclase, and iron metal, and/or occur as inclusions in ilmenite and are 337 

subhedral to anhedral, and rounded in shape. The major element composition is consistent for all 338 

analyzed zircon grains (see Table 2), and within the range of prior published data on eucrite zircon 339 

grains (Saiki et al., 1990; Bukovanská et al., 1991; Ireland and Bukovanská, 1992; Yamaguchi et al., 340 

2001; Yamaguchi and Misawa 2001; Misawa et al., 2005; Barrat et al., 2007; Roszjar et al., 2009c). In 341 

addition to BSE images that were taken for all selected zircon grains, cathodoluminescence images 342 

were exemplarily taken for some of them. Here it was found that the luminescence behavior is distinct 343 

from grain to grain. Nevertheless, some zircon grains are characterized by partial luminescence with a 344 

preferred direction, increasing towards the edges of the grains, also giving evidence for a thermal 345 

reaction front caused by a metamorphic event (Fig. 6). 346 

Shock features 347 

Northwest Africa 5073 as a whole is very weakly shocked, possibly equivalent to a S2 stage as 348 

defined for chondrites (Stöffler et al., 1991; Bischoff and Stöffler, 1992). Evidence for shock is given 349 

by the undulatory extinction of about half of the plagioclases and the occurrence of dislocation lines in 350 

large pyroxene laths.  351 

There is also evidence for an earlier shock event which affected this meteorite prior to annealing 352 

during thermal metamorphism. Minor tiny, euhedral to subhedral troilite (FeS) grains and blebs of 353 

metallic Fe-Ni that are usually <3 µm, occur within the plagioclase crystals and are arranged in 354 

curvilinear trails, frequently aligned in a pearl chain manner, which do not follow the cleavage planes 355 

and are restricted to the interiors of individual silicate crystals. It is known that metal and sulfide are 356 



readily mobilized and re-precipitated in the shape of trails during shock metamorphism (Rubin, 1992). 357 

These inclusions are in principle the cause of the silicate darkening which can be described as impact-358 

generated “shock darkening” (Rubin, 1992; Dodd, 1981). After annealing the metal and sulfide veins 359 

are probably transformed to the tiny blebs described above.  360 

Bulk chemical composition 361 

The major and trace element abundances of NWA 5073 share similarities with other Stannern-362 

trend eucrites, such as Bouvante and Stannern (Table 3). Northwest Africa 5073 has respectively 363 

FeOtotal/MgO ratio (2.31) and Sc concentration (25.8 µg/g) slightly lower, and MgO (8.70 wt%), Cr2O3 364 

(0.59 wt%) concentrations higher to that of typical Main Group eucrites (e.g., Warren et al., 2009). 365 

Similar “high” MgO abundances were previously measured on Pomozdino by Warren et al. (1990), 366 

and led these authors to propose that this meteorite could be a partial cumulate. Moreover, an increase 367 

of MgO can be produced by a slight oversampling of pyroxene in the powdered sample. Because 368 

NWA 5073 is unequilibrated, these two possibilities can be easily discussed. We have calculated the 369 

apparent distribution coefficient between the pigeonite cores (with n = 27) and the whole rock 370 

composition (KD
Fe/Mg = (Fe/Mg)pigeonite core/(Fe/Mg)whole rock). The result, KD

Fe/Mg =0.32± 0.01 (2σ), is in 371 

very good agreement with experimental distribution coefficients obtained for eucritic systems (KD
Fe/Mg 372 

=0.30; Stolper, 1977). A lower value would have been obtained if the powder contained a pyroxene 373 

excess. Thus, the pigeonite cores formed from a parental melt displaying the same Fe/Mg as the 374 

analyzed powder. We conclude that the whole rock composition is probably close to its parental melt. 375 

However, we suspect that the rather high Cr2O3 abundance is an artifact produced by a very small 376 

excess of chromite in the powder. 377 

Weathered meteorite finds from the Sahara generally exhibit marked Ba and Sr enrichments that are 378 

sensitive indicators for the development of secondary phases (e.g., Stelzner et al., 1999; Barrat et al., 379 

2003; Crozaz et al., 2003). NWA 5073 is no exception, and displays high Ba and Sr concentrations 380 

(177 µg/g and 2131 µg/g, respectively). It should be noted that its Th/U ratio (=3.38) and Pb 381 

abundances (= 0.24 µg/g), which are other possible indicators of weathering, do not show perturbed 382 

values. 383 

Although NWA 5073 is characterized by a low FeO/MgO ratio (Fig. 7, Table 3), it displays high 384 

levels of concentrations for incompatible elements, as exemplified by the REEs (Fig. 8). This suggests 385 

that NWA 5073 is a new member of the Stannern-trend eucrites, transitional between the Main Group 386 

and the REE-rich eucrites such as Stannern or Bouvante. Indeed, NWA 5073 exhibits a much more 387 

pronounced negative Eu anomaly (Eu/Eu*=0.68) and a higher Gd/Lu ratio than a regular Main Group 388 

or Nuevo Laredo eucrite, and its REE-pattern is parallel to those of the Stannern-trend eucrites (e.g., 389 

Bouvante and Stannern). These similarities extend to other incompatible trace element abundances, 390 

and, interestingly, NWA 5073 displays a marked negative Be anomaly (Fig. 9) which is a distinctive 391 

feature of the Stannern-trend eucrites (Barrat et al., 2007). Thus, we can deduce that NWA 5073 is 392 

clearly a new member of this rare group of eucrites. 393 



Mineral chemical composition 394 

In addition to bulk rock trace elements, REE concentrations of pyroxenes and plagioclases 395 

have been determined with LA-ICP-MS. Results are shown in Table 4. CI normalized REE patterns 396 

for pyroxenes and plagioclases are presented in Fig. 10. In eucrites, pyroxene is one of the dominant 397 

phases next to plagioclase, and a sensitive indicator of intrinsic variables such as oxygen fugacity and 398 

temperature that may affect their crystallization sequence. Therefore, major, minor, and trace elements 399 

have been investigated in order to decipher the evolution of the NWA 5073 meteorite. Rare earth 400 

element abundances of selected pyroxene cores in NWA 5073 are in the range of 0.02× (La) to 2.2× 401 

(Lu) CI chondritic abundances, relative to the values given in Evensen et al. (1978), which is within 402 

the range presented by Pun and Papike (1996). All analyzed pigeonite cores in NWA 5073 exhibit 403 

variable REE abundances that correlate with Ca concentrations, and are generally HREE-enriched 404 

with a pronounced negative Eu anomaly (Eu/Eu*=0.68). A total of 7 plagioclase grains have been 405 

analyzed for their REE abundances. The latter exhibit a pronounced positive Eu anomaly with Eu/Eu* 406 

= 61, thus are in agreement with the data range for eucrites previously reported in literature (e.g., Hsu 407 

and Crozaz, 1996; Floss et al., 2000). The REE patterns of single plagioclases are slightly fractionated 408 

with LREE being enriched. The total abundance of REE ranges from 2× (La) to 0.1 (Er) × CI 409 

(Evensen et al., 1978), except for Eu (Table 4).  410 

Oxygen isotope composition 411 

The oxygen isotope composition of NWA 5073 obtained in this study (δ17O = 1.89 ‰, δ18O = 412 

4.05 ‰, Δ17O = -0.24 ‰) is plotted in Fig. 11 along with the data for other HED samples obtained by 413 

Greenwood et al. (2005). The Δ17O value for NWA 5073 is close to the average HED value  of  -0.239 414 

± 0.007 (1σ) obtained by Greenwood et al. (2005) and indicates that the meteorite is a normal member 415 

of the HED suite (Roszjar et al., 2009a). NWA 5073 was not acid leached prior to oxygen isotope 416 

analysis and has a slightly elevated δ18O value compared to the eucrites analyzed by Greenwood et al. 417 

(2005), which may reflect a small degree of terrestrial weathering. However, the δ18O composition of 418 

NWA 5073 is within the range obtained by Wiechert et al. (2004), which extends to δ18O values of 419 

 4.5‰.  420 

Structural state of zircon grains as obtained by Raman spectroscopy 421 

It has been demonstrated that micro-Raman spectroscopy is a powerful tool to quantify the 422 

degree of self-irradiation damage in single zircon grains caused by the radioactive decay of 423 

incorporated U and Th (metamictization) as well as the structural recovery by thermal annealing 424 

(Nasdala et al., 1995, 1998, 2001; Wopenka et al., 1996; Zhang et al., 2000a- c; Geisler et al., 2001; 425 

Geisler, 2002; Palenik et al., 2003). As already mentioned, the 3(SiO4) band, reflecting antisymmetric 426 

Si-O stretching motions of the SiO4 tetrahedra, is particularly sensitive to structural changes associated 427 

with self-irradiation. Raman measurements of zircon grains in sample NWA 5073 reveal a decreased 428 

frequency and an increased broadening of the 3(SiO4) band with increasing radiation dose (D; Fig. 429 

12) as calculated from the U and Th concentration measured by EPMA and an inferred age of 4.55 Ga 430 



(Table 5). The frequency shift is attributed to an increase in interatomic distances, i.e., to a slight 431 

expansion of the lattice of the crystalline domains, whereas the increase in linewidths is attributed to 432 

the fact that the distribution of bond lengths and bond angles within and between SiO4 tetrahedra 433 

becomes increasingly irregular (Wopenka et al., 1996).  434 

In the diagram linewidth (given as FWHM) vs. frequency of the 3(SiO4) band all measurements plot  435 

along the radiation damage trend (RDT; Fig. 13a) that is mainly defined by measurements from 436 

variably self-irradiation-damaged, alluvial zircons from Sri Lanka (Geisler et al., 2001). Dry annealing 437 

experiments with self-irradiation-damaged zircon revealed that episodically annealed samples plot 438 

above the RDT (arrows in Fig. 13a). A comparison of Raman data from natural zircons with 439 

experimental annealing trends thus allows recognizing episodically annealed zircons, provided that 440 

post-annealing radiation damage did not completely obscure the annealing effect, i.e., did not push the 441 

data points back to the RDT in the frequency versus linewidth diagram shown in Fig. 13a. This means 442 

that most likely only relatively recent episodic annealing events are recognizable in this diagram. 443 

However, the observed congruency with the RDT does not imply that the NWA 5073 zircons were not 444 

annealed during their history. In fact, from the diagram linewidth of the 3(SiO4) band vs. α-decay 445 

dose (D; Fig.13b) it can be observed that all analyzed zircon grains from the NWA 5073 eucrite plot 446 

consistently below the so-called damage accumulation curve, defined by Palenik et al. (2003). 447 

Samples that have been neither episodically nor continuously annealed during their geological history 448 

(i.e., that have accumulated the entire damage over their geologic history) should plot, within errors, 449 

onto this accumulation trend. The observation that most of the measurements from zircon grains of 450 

sample NWA 5073 plot significantly below this curve is unambiguous evidence that they were 451 

thermally annealed (Palenik et al., 2003), either continuously for a prolonged period of time or 452 

episodically as a result of a short time heating event. In the latter case, however, the heating event 453 

must have occurred very early in their history.  454 

 455 

Discussion 456 

Most HED meteorites show textural and chemical evidence for extensive thermal annealing 457 

after crystallization such as: Fe-Mg equilibration in pyroxenes, exsolution of Ca-pyroxenes within host 458 

pigeonites, plagioclase and pyroxene clouding, and recrystallization of lithic clasts and clastic matrices 459 

(e.g., Duke and Silver, 1967; Mason et al., 1979; Takeda and Graham, 1991; Metzler et al., 1995; 460 

Yamaguchi et al., 1996; Bogard and Garrison, 2003; Llorca et al., 2009). Moreover, many eucrites 461 

were brecciated and reheated by impacts (e.g., Metzler et al., 1995; Bogard and Garrison, 2003). In the 462 

case of NWA 5073, the thermal history seems to be very complex. In the following, we discuss 463 

possible scenarios to explain both chemical and textural characteristics of this sample. 464 

 465 

Formation of primary phases in a magma chamber and excavation  466 



Since NWA 5073 is a coarse-grained basaltic sample containing large, elongated pyroxene 467 

crystals that preserved their igneous Mg-Fe zoning, we can infer that this sample derived from a 468 

relatively fast cooling magma source. However, due to the texture and the composition of the crystals 469 

(e.g., Al content), the cooling rate must have been slower than 1 °C/hour (Walker et al., 1978; Powell 470 

et al., 1980). Large pyroxene laths might represent an early crystallized phase from a magma that 471 

experienced fast excavation during volcanic eruption. The process of fast excavation is affiliated to 472 

thermal and pressure relief that caused mechanical stress in preexisting pyroxene crystals, probably 473 

leading to fracturing and bending of the crystals. A fast excavation of the magma onto the surface of 474 

the parent body results in quenching of the melt. Thus, this explains the observed skeletal, and 475 

seemingly cotectic crystallisation of silicates (pyroxenes and plagioclases) and other minor phases, 476 

while leaving the large previously crystallized pyroxene crystals relatively unaffected.  477 

 478 

Episode of secondary annealing and rapid cooling 479 

Several mineralogical and chemical observations clearly indicate an episode of thermal 480 

annealing that caused disturbance of the NWA 5073 sample: (1) disturbance of the Lu-Hf system, as 481 

demonstrated by Roszjar and Scherer (2010), (2) Fe-diffusion along cracks and cleavage planes within 482 

the zoned pyroxene crystals (Fig. 3b-d), and (3) recovery of the crystal structure of zircon grains (Fig. 483 

13b). Based on these observations, it is possible to constrain the time-temperature conditions of the 484 

reheating event which is discussed in the following. 485 

The observation of Roszjar and Scherer (2010) that about half of the mineral fractions, mainly 486 

pyroxene-rich fractions and the whole rock, form an isochron of 4.68 ± 0.14 (2σ) Ga, whereas the 487 

other half, e.g., chromite, metal, plagioclase-rich fractions, define a secondary isochron of 4.31 ± 0.14 488 

(2σ) Ga, is clear evidence that the Lu-Hf system in some minerals was disturbed. Since the time gap 489 

between the primary crystallisation of the eucrite and the event that disturbed the Lu-Hf system is at 490 

least ~370 Ma, thermal metamorphism, driven by internal heat on the parent body, can be ruled out as 491 

the cause for the isotope resetting. On the contrary, it is rather likely that the thermal event was short 492 

and intensive. This is supported be the observations that (i) the primary pyroxenes preserved their 493 

initial magmatic Mg-Fe-Ca zoning, (ii) the exsolution lamellae of augite in the host pyroxene grains 494 

are very thin (<1µm), (iii) and the mesostasis shows a fine-grained subophitic texture. A short, but 495 

intense heating event more than 300 Ma after the primary crystallization of the eucrite is only 496 

conceivable by a shock-triggered process, e.g., by a superheated impact melt produced by a large 497 

impact. The impact melt could have been injected into neighbouring target rock lithologies, causing a 498 

short thermal pulse followed by fast cooling. Fast cooling is indicated by the absence of 499 

recrystallization textures, which have neither been observed in the coarse mineral grains nor in the 500 

fine-grained mesostasis. As discussed by Yamaguchi and Mikouchi (2005) small fractions of melt can 501 

be formed when a eucrite is heated to a temperature slightly above its solidus of about 1100°C 502 

(Stolper, 1977) for a short period of time. However, a temperature above the solidus would have 503 



caused re-melting of mesostasis components, and a depletion of light rare earth elements (LREE) of 504 

the whole rock, which has not been observed (Fig. 8). This suggests that the NWA 5073 sample was in 505 

fact reheated to a certain degree for a short period of time, but most likely not re-melted. The absence 506 

of any evidence for partial re-melting constrains the maximum annealing temperature to about 507 

1100°C.  508 

Assuming a maximum reheating temperature of 1100°C and that the reheating process possibly also 509 

triggered Fe-diffusion along cracks and cleavage planes in large pyroxenes (Fig. 3d), the duration of 510 

the heating event can now be estimated from the relation 2
D

L Dt , where LD is the diffusion length, 511 

D the diffusion coefficient for Fe-diffusion in pyroxene, and t the diffusion time. From BSE images 512 

(e.g., Fig. 3d), we measured an average diffusion path length, LD, of about 25 µm for Fe-diffusion 513 

between the Fe-rich olivine veins into the pyroxene. Using published diffusion coefficients for Fe-Mg 514 

diffusion in pyroxene (Freer, 1981; Cherniak and Dimanov, 2010; Ganguly and Tazzoli, 1994), we 515 

estimated that the heating to a temperature of about ~1100°C could have only lasted for some hours (5 516 

hours at most). This order of magnitude for the duration of the reheating event obtained from this 517 

back-of-the-envelope calculation is also consistent with the observation that the pigeonite pyroxenes 518 

still show chemical zoning, i.e., were not re-equilibrated. It is noted that the order of magnitude of 519 

hours would also hold for slightly longer diffusion lengths and slightly lower temperatures. 520 

Probably the most convincing evidence for a secondary heating event is given by the Raman 521 

measurements of ten zircon grains. In the plot of the linewidth of the ν3(SiO4) stretching band near 522 

1008 cm-1, expressed as the full width at half maximum (FWHM), versus the calculated radiation dose 523 

of a single zircon grain (D), most analyzed points plot below the radiation damage accumulation curve 524 

(Fig. 13b). We recall that samples that have neither been episodically nor continuously annealed 525 

during their geological history and accumulated the entire structural damage should plot on this curve. 526 

Laboratory dry annealing experiments with radiation-damaged zircon revealed that the temperature 527 

and duration of a thermal event determines the degree of structural recovery that occurs after a certain 528 

degree of structural damage has been accumulated, i.e., during an episodic annealing event (Geisler et 529 

al., 2001; Geisler, 2002). Considering the low U and Th concentrations measured today, the zircons 530 

accumulated only a limited amount of radiation damage during the first 370 Ma after their 531 

crystallisation in the eucrite melt. Experimental work has shown that significant structural recovery of 532 

less self-irradiation-damaged samples within time scales of a few hours only occurs at temperature in 533 

excess of about 900°C (Geisler et al., 2001; Zhang et al., 2000b; Geisler, 2002). It is thus likely that 534 

the actual temperature of the event affecting the NWA 5073 eucrite was between 900 and 1100°C.  535 

 536 

Formation of olivine-rich veins 537 

The occurrence of veins composed of Fe-rich olivine, secondary plagioclase, and small troilite 538 

and chromite grains inside these veins within large pyroxene phenocrysts (Fig. 3) requires careful 539 

consideration, especially as recent papers have suggested that minerals in these veins might have 540 



crystallized from fluids or gases during a metasomatic reaction (Barrat et al., 2011). At this point we 541 

would like to make very clear that the authors have rather different views concerning the formation of 542 

the olivine-rich veins within the cores of pyroxene. Thus, we try to unravel the origin of the olivine-543 

rich veins in NWA 5073, suggesting two valid possible mechanisms of formation that will be 544 

discussed separately in the following paragraphs: 545 

 546 

(a) Formation of the olivine-rich veins in NWA 5073 by metasomatism  547 

Based on distinct mineralogical features in eucrites, Barrat et al. (2011) defined a three-type 548 

classification scheme for secondary alteration. The first type is characterized by Fe-enrichment along 549 

cracks that cross cut large pyroxene crystals, and by occasional occurrence of Fe-rich olivine in some 550 

fractures (e.g., Pasamonte). The second type reveals involves deposits of Fe-rich olivine (Fa64-86) and 551 

minor amounts of troilite inside the cracks as well as the sporadic occurrence of secondary Ca-rich 552 

plagioclase (An97-98) associated with Fe-rich olivine (NWA 2061, Y-75011, and Y-82202). The third 553 

type is identifiable by a more frequent occurrence of Ca-rich secondary plagioclase, partial fillings of 554 

cracks or rims of primary plagioclases with small crystals of secondary plagioclase, and Fe-enrichment 555 

of pyroxenes accompanied by significantly decreased Al contents (NWA 049; Barrat et al., 2011). 556 

According to this scheme, NWA 5073 belongs to the second type, as it contains secondary plagioclase 557 

(An97-100) associated with Fe-rich olivine veins, typically located at the grain boundaries between 558 

larger primary plagioclase and large pyroxene laths. Based on these observations, Barrat et al. (2011) 559 

proposed that Fe-rich olivine veins may be secondary precipitation products formed by the interaction 560 

between pyroxene crystals and Fe-rich gas or fluid phases that invaded the pyroxene crystals along 561 

fractures and offset planes. The chemical composition of the metasomatic agent is at present not well 562 

constrained but could have been aqueous (Barrat et al., 2011).  563 

 564 

(b) Formation of the olivine-rich veins in NWA 5073 by incongruent melting 565 

The large pyroxene crystals contain olivine-rich veins that abruptly end at their margins (Fig. 566 

3a-c). The Fe-rich olivine within these veins is accompanied by An-rich plagioclase, and small Cr-rich 567 

oxides (chromites) and troilites. As shown in Fig. 3, all other adjacent silicate phases (small pyroxenes 568 

and large plagioclases) are devoid of these veins. We believe that the chromites may be of genetic 569 

significance, as it is known that the solubility of Cr3+ in silicate melts is rather high and Cr3+ is 570 

immobile in hydrous fluids (e.g., Roeder and Reynolds, 1991). Thus, mobilization and precipitation of 571 

small chromite grains in the olivine-rich veins found in NWA 5073 seems to indicate a magmatic 572 

albeit secondary origin. As an alternative to the arguments presented in the previous paragraph, it may 573 

have been that veins of olivine, anorthite, and Cr-rich oxides were formed by incongruent in-situ 574 

melting of pyroxene (Fs34Wo2) at a temperature slightly above the temperature of formation of 575 

primary, Mg-rich pigeonites, i.e. at about 1150°C (Stolper, 1977). This is suggested to have taken 576 

place during a short period of a small temperature excursion in the magma chamber. The process of 577 



incongruent melting must have taken place after formation of primary pyroxenes in the magma 578 

chamber, but prior to excavation of the sample. During this peritectic reaction, olivine forms and the 579 

remaining melt crystallizes minor, extremely Ca-rich plagioclase. A similar process of incongruent 580 

melting of pigeonites producing olivine (Fo35-55) plus silica was experimentally shown by e.g., 581 

Huebner et al. (1973) and Huebner and Turnock (1980). It should be noted that the experimental data 582 

confirm that the olivines in the veins (Fa65-71) are in equilibrium with the outer rims of large pyroxene 583 

grains and the small pyroxenes (~Fs62-68; Table 2). Since the pyroxene, which melts incongruently, 584 

does not contain significant Na, the crystallizing plagioclase has to be low in Na and, consequently, 585 

extremely rich in Ca (An97-100). Cr- and S-rich oxides that are found within the olivine-rich veins are 586 

sometimes also located within the primary pyroxenes. The incongruent melting of pigeonite requires 587 

only a few tens of degrees above the peritectic temperature, so that if we employ the aforementioned 588 

experimental data we estimate some 1150°C for the formation of the olivine veins in this scenario.  589 

 590 

In summary, it seems that both interpretations for the formation of olivine-rich veins in large 591 

pyroxenes, as discussed above, have some inconsistencies which cannot be resolved at this point. The 592 

metasomatism model cannot fully explain the occurrence of Fe-rich olivine veins in large pyroxene 593 

phenocrysts, while the adjacent silicate phases (small pyroxenes and large plagioclases) are devoid of 594 

them. Furthermore, the occurrence of chromite within these veins is hardly explained by metasomatic 595 

fluids. On the other hand, the model which involves incongruent melting cannot readily explain certain 596 

textural observations, such as the only minor occurrence of olivine-rich veins in contact with 597 

plagioclase. To unravel the process which leads to the formation of such Fe-rich olivine veins in large 598 

pyroxenes, one would need further oxygen isotope data of these veins. Furthermore, more realistic 599 

melting experiments on bulk eucrite samples and pyroxenes would be helpful.  600 

 601 

Pairing or launch-pairing of some Stannern-trend eucrites?  602 

According to sample textures, grain sizes, including the occurrence of Fe-rich olivine veins in 603 

large pyroxenes and secondary plagioclases, NWA 5073 resembles some other Stannern-trend eucrite 604 

finds from the Sahara, namely NWA 1000 and NWA 2061. Since the occurrence of Fe-rich olivine 605 

veins in large pyroxene crystals is not restricted to the NWA 5073 sample, but was also found to occur 606 

in other eucrites and howardites, namely Y-7308, Y-790260, Y-75011, and NWA 1000, Macibini, and 607 

NWA 2061 (Takeda and Yanai, 1982; Takeda et al., 1983; Metzler, 1985; Warren, 2002; Barrat et al., 608 

2007; and Barrat, unpublished data), one can argue that these findings give some evidence for a large-609 

scale but certainly not global parent body process. However, NWA 1000 is severely shocked (S4), as 610 

documented by the transformation of half of the plagioclase into maskelynite (Warren, 2002). Thus, 611 

NWA 5073 and NWA 1000 are certainly not fall-paired. Since NWA 2061 is as REE-rich as Stannern 612 

and thus distinct to NWA 5073, a pairing between those eucrites and NWA 5073 seems unlikely. 613 

However a certain pairing, especially for the Stannern-trend eucrite finds with the NWA 5073 sample, 614 



can only be unequivocally proven by obtaining noble gas exposure ages. However, some of these 615 

samples may be launch-paired. 616 

 617 

Summary and Conclusions 618 

In summary, our results are: (i) Northwest Africa 5073 is a coarse-grained basaltic, 619 

unequilibrated, and non-brecciated eucrite with a subophitic to slightly variolitic (fan-spherulitic) 620 

texture, mainly composed of small equilibrated pyroxenes (~40 vol.%), elongated, unequilibrated 621 

pyroxene phenocrysts up to 1.2 cm (~ 25 vol.%), plagioclase laths up to 0.3 cm in apparent length 622 

(~26 vol. %), and about 8.5 vol.% mesostasis. (ii) This sample is very weakly shocked and moderately 623 

weathered (W2-3). (iii) Based on its oxygen isotope composition (δ17O = 1.88 ‰, δ18O = 4.05 ‰, 624 

Δ17O = -0.239 ‰), we can deduce that NWA 5073 is a normal member of the HED suite of 625 

achondrites. (iv) The large unequilibrated pyroxenes preserved their initial magmatic Mg-Fe-Ca 626 

zoning and are crosscut by olivine-rich veins (Fa65-71) which are restricted to them. These veins also 627 

contain minor chromite, troilite, and very Ca-rich plagioclase. (v) Three different plagioclase 628 

generations occur: (a) large primary plagioclases crystals (An76-92Ab8-22Or0-3), (b) small primary 629 

plagioclase grains of similar composition as the large ones that are concentrated in mesostasis areas 630 

and, (c) a secondary generation of small plagioclases (An97-100), typically 5-20 µm in diameter, always 631 

found in association with Fe-rich olivine veins. (vi) Due to the occurrence of these olivine-rich veins 632 

in large pyroxene crystals and the sporadic occurrence of secondary plagioclase associated with the 633 

former, NWA 5073 belongs to stage 2-type eucrites, according to the classification scheme for 634 

secondary alteration as proposed by Barrat et al. (2011). Other members of this group include NWA 635 

2061, Y-75001, Y-82202, and probably NWA 1000 (Barrat et al., 2011). (vii) Based on its bulk 636 

chemical composition (e.g., high Ti with TiO2 = 0.77 wt.%, La = 4.18 µg/g, negative Be anomaly), 637 

NWA 5073 displays a distinctive Stannern-trend signature. (viii) The REE pattern of NWA 5073 bulk 638 

rock, which is characterized by flat LREE and a slight HREE-depletion (Lan/Ybn=1.38) with a 639 

pronounced negative Eu anomaly (Eu/Eu*=0.68), resembles those of other Stannern-trend eucrites. 640 

(ix) Northwest Africa 5073 contains zircon grains up to 30 µm in size that were invariably found in 641 

the mesostasis. These zircon grains are metamict and were annealed, indicating a short high-642 

temperature event (probably induced by shock) occurring after primary crystallization of main sample 643 

constituents. (x) A short but intense heating event that caused disturbance of the sample is also 644 

indicated by the disturbance of the Lu-Hf system, and Fe-diffusion along cracks and cleavage planes 645 

within unequilibrated pyroxene crystals. (xi) According to sample textures, grain sizes, and the degree 646 

of alteration, including the occurrence of olivine-rich veins in large pyroxenes, as well as secondary 647 

plagioclases, NWA 5073 resembles some other Stannern-trend eucrite finds from the Sahara, namely 648 

NWA 1000, NWA 2061 and NWA 4523. However, these four samples are unlikely fall-paired as 649 

discussed above. 650 

 651 
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Table 1. Modal abundance of major phases 
and mesostasis in NWA 5073 (vol.%). 

Pyroxene phenocrysts 24.8
Primary feldspars (plagioclases) 26.4
Small pyroxenes 39.9
Mesostasis 8.5

Metal  0.4



Table 2. Chemical composition of mineral phases in NWA 5073. Results in wt.%.

 SiO2 TiO2 Al2O3 Cr2O3 FeO* MnO MgO CaO Na2O K2O P2O5 HfO2 ZrO2 Y2O3 Total 
Endmembers 

average 
Endmembers 
min. – max. 

Major phases                  
Pyroxene  
cores (n=27) 52.4 0.11 1.11 1.01 18.0 0.62 24.3 1.85 0.02 <0.01 n.d. n.d. n.d. n.d. 99.41 En55.1Wo4.2Fs40.7  En51.0-60.0Wo1.7-7.6Fs34.0-45.0   

Pyroxene  
rims (n=27) 49.6 0.34 1.11 0.57 25.9 1.04 12.9 8.2 0.03 <0.01 n.d. n.d. n.d. n.d. 99.68 En27.5Wo17.4Fs55.1 En19.8-34.1Wo8.2-33.8Fs42.2-62.4 

Small pyroxenes  
(n=11) 49.5 0.24 1.07 0.63 29.4 1.17 12.5 5.5 0.02 <0.01 n.d. n.d. n.d. n.d. 100.01 En26.4Wo11.6Fs62.0 En22.8-35.8Wo5.9-18.8Fs58.3-68.8 

Pyroxenes  
mesostasis (n=5) 49.8 0.42 0.73 0.23 19.2 0.68 9.3 19.7 0.04 0.02 n.d. n.d. n.d. n.d. 100.15 En27.1Wo41.4Fs31.5 En25.7-27.9Wo33.7-44.8Fs27.7-40.7 

Large Plagioclases 
(n=47) 47.4 0.02 32.3 <0.01 0.39 <0.01 0.10 16.9 1.65 0.16 n.d. n.d. n.d. n.d. 99.00 An84.2Ab14.9Or0.9 An77.0-88.9Ab11.0-20.1Or0.1-2.9 

Plagioclases  
mesostasis (n=5) 51.0 0.03 30.1 0.02 0.65 <0.01 0.04 14.6 2.49 0.44 n.d. n.d. n.d. n.d. 99.42 An74.4Ab23.0Or2.6 An77.7-76.8Ab20.4-24.9Or2.0-3.5 

Secondary 
Plagioclase (n=17) 43.0 n.d. 35.7 n.d. 1.38 n.d. 0.12 19.7 0.12 <0.01 n.d. n.d. n.d. n.d. 100.00 An98.6Ab1.3Or0.1 An97.2-100Ab0-2.8Or0-0.3 

Minor phases                  

Chromite (n=5)§ <0.1 3.2 12.6 47.9 33.9 0.76 0.84 <0.1 n.d. n.d. n.d. n.d. n.d. n.d. 99.78   

Ilmenite (n=13)§ <0.1 53.7 n.d. <0.1 44.1 1.17 0.53 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 99.81   

Apatite (n=19) <0.01 n.d. n.d. n.d. 0.72 n.d. <0.01 54.1 <0.01 n.d. 41.8 n.d. n.d. 0.11 99.23   

Zircon (n=10) 32.4 n.d. n.d. n.d. 1.58 0.02 n.d. 0.06 n.d. n.d. 0.14 1.31 66.2 0.16 101.83   

Tridymite (n=7) 98.9 0.07 0.23 0.03 0.36 <0.01 <0.01 0.13 <0.01 0.02 n.d. n.d. n.d. n.d. 99.20   

Fe-rich olivine 
veins (n=16) 31.9 <0.01 0.06 0.19 53.1 1.46 14.4 0.05 <0.01 <0.01 n.d. n.d. n.d. n.d. 101.13 Fo32.5Fa67.5 Fo29-35Fa65-71 

 Fe Ni Co Cu Cr Zn Ca Si Mg Mn Na K S     
Metal cores (n=13) 99.08 <0.01 0.16 <0.02 <0.02 <0.01 0.05 0.03 <0.01 <0.01 <0.01 <0.02 <0.02  99.33   
Data were obtained by EPMA; n.d. = not detected; *all Fe as FeO; zircon: Al was always below detection limit, high Fe content probably caused by contamination from surrounding phases such as ilmenite 
and Fe-metal; apatites: Cl and F average values are 0.3 and 4.0 wt.%, respectively; § Data obtained by SEM; chromite: V2O3 = 0.61 wt.%, ilmenite: V2O3 = 0.3 wt.%; for ilmenite and chromite: Ni was always 
below detection limit. 

 



Table 3. Major and trace element composition of NWA 5073, compared to Stannern, 
Bouvante, and Nuevo Laredo. Oxides in wt.%, trace elements in µg/g. Eu/Eu* and 
Lan/Ybn* are calculated relative to CI average given by Evensen et al. (1978).

  
Mass (g) 

NWA 5073 
0.098 

Stannern 
1.0 

Bouvante 
 1.47 

Nuevo Laredo 
1.0 g 

     

TiO2 0.77 1.08 1.06 0.94 
Al2O3 10.38 12.26 11.60 12.36 
Cr2O3 0.587 0.33 0.33 0.30 
FeO 20.13 18.58 20.07 20.91 
MnO 0.58 0.55 0.50 0.63 
MgO 8.70 6.98 6.26 5.70 
CaO 9.46 10.99 10.40 10.90 
Na2O 0.52 0.56 0.56 0.48 
K2O 0.09 0.09 0.10 0.06 
P2O5 0.097 0.10 0.14 0.09 
     

Li 11.06 12.39 13.51 11.68 
Be 0.32 0.44 0.42 0.37 
Sc 25.8 30.2 30.8 35.8 
V 78.51 56.90 55.20 60.10 
Co 8.04 3.83 7.00 2.87 
Ni 1.32 1.1 0.33 3.70 
Cu 2.43 5.07 0.88 0.25 
Zn 0.98 2.80 1.42 1.17 
Ga 1.14 1.51 1.6 1.69 
Rb 0.34 0.58 0.61 0.37 
Sr 2131 92.7 93.7 84.4 
Y 22.17 32.13 33.00 26.22 
Zr 70.1 101 99.6 70.0 
Nb 6.85 8.20 7.74 5.38 
Cs 0.008 0.016 0.023 0.017 
Ba 176 52.65 56.17 39.03 
La 4.18 5.58 5.65 3.85 
Ce 10.59 14.4 14.37 10.10 
Pr 1.57 2.15 2.18 1.52 
Nd 7.79 10.76 10.79 7.64 
Sm 2.42 3.48 3.46 2.57 
Eu 0.617 0.840 0.786 0.768 
Gd 3.18 4.44 4.47 3.44 
Tb 0.561 0.787 0.793 0.614 
Dy 3.62 5.24 5.37 4.13 
Ho 0.78 1.15 1.15 0.920 
Er 2.22 3.26 3.26 2.67 
Yb 2.04 3.06 2.87 2.56 
Lu 0.291 0.434 0.421 0.366 
Hf 1.77 2.51 2.52 1.83 
Ta 0.365 0.441 0.413 0.292 
W 0.193 0.174 0.165 0.105 
Pb 0.24 (1.59) 0.32 0.26 
Th 0.548 0.700 0.699 0.488 
U 0.162 0.177 0.182 0.116 
Eu/Eu* 0.68 0.65 0.61 0.79 
Lan/Ybn* 1.38 1.23 1.33 1.02 

    
 



Table 4. LA-ICP-MS data of silicates in NWA 5073. Results in µg/g. 
Pyroxene cores 1 2 3 4 5 6 7 8 single Px* average (n=8) 

La 0.010 0.025 0.005 0.005 0.013 0.007 0.021 0.008 0.366 0.012 
Ce 0.032 0.058 0.027 0.016 0.047 0.024 0.050 0.028 1.302 0.035 
Pr 0.009 0.013 0.004 0.004 0.010 0.004 0.010 0.008 0.276 0.008 
Nd 0.066 0.081 0.027 0.029 0.068 0.032 0.063 0.064 1.726 0.054 
Sm 0.068 0.054 0.020 0.037 0.059 0.020 0.048 0.050 0.883 0.044 
Eu 0.011 0.008 0.004 0.007 0.008 0.005 0.009 0.008 0.054 0.007 
Gd 0.127 0.143 0.038 0.062 0.098 0.055 0.095 0.117 1.486 0.092 
Dy 0.244 0.240 0.067 0.131 0.169 0.096 0.171 0.228 2.297 0.168 
Er 0.235 0.219 0.060 0.118 0.148 0.099 0.154 0.208 1.597 0.155 
Yb 0.295 0.290 0.072 0.151 0.184 0.149 0.221 0.270 1.865 0.204 
Lu 0.055 0.051 0.013 0.025 0.031 0.023 0.038 0.045 0.281 0.035 

Plagioclase 1 2 3 4 5 6 7 average (n=7)     

La 0.243 0.350 0.522 0.308 0.328 0.286 0.194 0.319   
Ce 0.523 0.834 1.029 0.602 0.692 0.702 0.397 0.683   
Pr 0.064 0.101 0.124 0.076 0.087 0.088 0.053 0.085   
Nd 0.295 0.463 0.584 0.323 0.388 0.400 0.254 0.387   
Sm 0.099 0.133 0.164 0.095 0.089 0.126 0.081 0.112   
Eu 2.006 2.100 2.528 1.950 1.980 2.074 1.930 2.081   
Gd 0.067 0.124 0.154 0.082 0.083 0.101 0.064 0.096   
Dy 0.052 0.120 0.157 0.078 0.069 0.123 0.047 0.092   

Er 0.022 0.054 0.071 0.046 0.040 0.062 0.028 0.046     

* single small, Fe-rich  pyroxene, found in close association to a mesostasis area; not used for average pyroxene calculation. 
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Table 5. U and Th concentrations, calculated α-decay dose, and frequencies and linewidths (FWHM) of 
the 3(SiO4). Raman band of analyzed zircon grains from the NWA 5073 eucrite. 
Zircon 

no. U (ppm) ± 2σ Th (ppm) ± 2σ
Dose (1016 α-
events/mg)* ± 2σ *1 

Frequency 
 (cm-1)*2 

FWHM 
  (cm-1)*2 

         
Z1 <23 - <20 - <0.067  1000.5 9.9 

Z3 <30 - <20 - <0.086  1001.2 8.5 

Z4 <29 - 24 21 <0.093  1003.2 7.6 

Z5 71 29 42 21 0.243 0.091 996.8 17.2 

Z6 123 29 71 21 0.421 0.092 996.6 21.6 

Z8 78 30 <21 - 0.255 0.096 999.3 12.1 

Z9 105 29 86 21 0.372 0.092 998.2 18.8 

Z10 75 30 <21 - 0.246 0.096 997.9 17.9 

Z11 104 29 <21 - 0.334 0.092 997.2 25.8 

Z13 160 29 120 21 0.559 0.092 991.7 25.3 
*The dose was calculated for an inferred age of 4555 Ma; *1Errors do not include the error of the inferred age;  1018 
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Figure Captions: 1034 
 1035 
Fig. 1: (a) Sawn surface of a section from the 185 g main mass of NWA 5073. (b) Thin section of 1036 
NWA 5073; transmitted light, crossed polarizers. 1037 
 1038 
Fig. 2: Ternary phase diagram for pyroxenes (Px) analyzed in NWA 5073. Large pyroxenes preserved 1039 
their initial magmatic signature, as seen by Mg-enriched pigeonite cores. The chemical composition of 1040 
small pyroxenes is in the range of the rims of large pyroxene phenocrysts or even more Fe-enriched. 1041 
Pyroxenes found in the mesostasis are clearly distinct as they are significantly enriched in Ca. For 1042 
comparison, composition of pristine and metasomatized pyroxenes from NWA 2061 (dark gray, solid-1043 
lined areas) and Y-75011 (light gray, dashed-lined areas) are shown, as these two eucrites also contain 1044 
secondary Ca-rich plagioclase. The latter data are taken from Barrat et al. (2011). 1045 
 1046 
Fig. 3: BSE images of the bulk texture of NWA 5073 (a) and textural details of its Fe-rich olivine 1047 
veins (b-d). (a) Mosaic of BSE images from a NWA 5073. (b-d) Detailed images illustrating 1048 
prominent Fe-rich olivine veins that crosscut large pyroxene laths, while adjacent silikate grains are 1049 
devoid of them. (b) Typical zoned pyroxene lath with En57Wo5 in the crystals core and En28Wo17 at the 1050 
rim is crosscut by Fe-rich olivine veins that end abruptly towards adjacent plagioclases (Plg) and 1051 
smaller pyroxenes (Px). (c) Pyroxene-plagioclase border that shows a clear restriction of Fe-rich 1052 
olivine veins to large pyroxene crystals. (d) Enlarged Mg-rich core region of a large pyroxene lath that 1053 
is crosscut by Fe-rich olivine veins (Fa67) and Fe-diffusion pathways along cleavage planes. Olivine 1054 
veins are often occupied by small chromite, and troilite (FeS) grains, and Sr-sulfate inclusions, with 1055 
the latter being a weathering product. Fe-rich areas that are aligned parallel to the olivine veinlets are 1056 
probably formed by solid-state Fe-diffusion. 1057 
 1058 
Fig. 4: BSE images of secondary phases in NWA 5073. (a) and (b): Fe-rich olivine veins (Ol) in large 1059 
pyroxene (Px) and Fe-diffusion paths into their pyroxene host along cleavage planes: Cc = calcite 1060 
(terrestrial weathering). (c) and (d): Secondary, Ca-rich plagioclase typically 5-20 µm in diameter that 1061 
were usually found in close association with Fe-rich olivine veins (Ol), are highlighted in ellipses. 1062 
They are chemically distinct to adjacent large plagioclase (Plg). 1063 
 1064 
Fig. 5: Ternary feldspar diagram illustrating three distinct plagioclase (Plg) types. Small plagioclase 1065 
grains, located in the mesostasis, are slightly more Ab-rich (An72-77) compared to larger plagioclase 1066 
laths, which scatter to slightly higher An values (An72-89). Secondary plagioclase is extremely enriched 1067 
in Ca with An97-100.  1068 
 1069 
Fig. 6: BSE images (a) and (c) of representative zircon grains (Zr), selected for µ-Raman spectroscopy 1070 
and EPMA analyses. Zircon grains typically occur in association with ilmenite (Ilm), plagioclase 1071 
(Plg), Ca-pyroxene (Ca-Px), and silica (SiO2). Corresponding cathodoluminescence images are given 1072 
in (b) and (d). Zircon positions are highlighted as dashed areas. 1073 
 1074 
Fig. 7: Diagram for bulk rock TiO2 vs. FeOtotal/MgO of basaltic, including residual, eucrite samples. 1075 
The field of the basaltic eucrites has been drawn from a compilation of more than 170 analyses mainly 1076 
from Warren et al. (2009), references listed in Barrat et al. (2007), and the residual eucrites from 1077 
Yamaguchi et al. (2009). Residual eucrites cannot be distinguished from the basaltic eucrites in this 1078 
diagram. 1079 
 1080 
Fig. 8: Rare Earth Element (REE) abundances relative to CI chondritic abundance (Evensen et al., 1081 
1978), given for NWA 5073 bulk rock in comparison to Stannern, NWA4523, Juvinas, and Nuevo 1082 
Laredo. 1083 
 1084 
Fig. 9: Trace element pattern for NWA 5073 bulk rock compared to the Stannern-trend eucrites, 1085 
including Stannern and NWA 4523, and Nuevo Laredo and Juvinas eucrites. All data are given 1086 
relative to the Juvinas eucrite. Sr and Ba values of NWA 5073 whole rock are high (2131 and 176 1087 
ppm, respectively), probably due to terrestrial weathering (Stelzner et al., 1999) and thus are excluded 1088 
from this diagram. 1089 



 1090 
Fig. 10: REE pattern for plagioclase and pyroxene grains analyzed in NWA 5073. Average 1091 
plagioclase (n=7) is shown by black squares, minimum and maximum values of all analyzed 1092 
plagioclase grains are reported within the data range highlighted in light gray. The average of 1093 
pigeonite cores (n=8) is given by white triangles. Data range for all analyzed pigeonite cores is 1094 
highlighted in dark gray. One single small, Fe-rich pyroxene (light gray circles), closely associated 1095 
with a mesostasis area, is extremely enriched in REE (Lu 10×CI). This analysis has not been used for 1096 
average pyroxene core calculation. 1097 
 1098 
Fig. 11: Oxygen isotope data for NWA 5073 compared to other eucrites (monomict, polymict, and 1099 
cumulate eucrites), howardites, diogenites, and angrites. Δ17O values are linearized (Miller, 2002). In 1100 
this Δ17O versus δ18O diagram, samples formed from a homogeneous reservoir that subsequently 1101 
fractionated by mass-dependent processes, plot along horizontal lines. Silicate minerals on Earth have 1102 
isotopic compositions consistent with mass-dependent fractionation from a single reservoir, and define 1103 
the terrestrial fractionation line (TFL). Angrites define a second horizontal line, the angrite 1104 
fractionation line (AFL), with a mean Δ17O value of -0.072 ± 0.007 (1σ). If polymict breccias are 1105 
excluded, remaining HED samples also show limited Δ17O variation and define a single eucrite 1106 
fractionation line (EFL) with a mean Δ17O value of -0.239 ± 0.007 (1σ). Diagram modified after 1107 
Greenwood et al. (2005).  1108 
 1109 
Fig. 12: Representative Raman spectra of five single zircon grains in sample NWA 5073 reveal a 1110 
decreased frequency and an increased broadening of the ν3(SiO4) stretching band near ~1008 cm-1 1111 
(dashed line) with increasing radiation dose (D). The calculated α–dose, given within 2σ uncertainties, 1112 
and expressed per 1016 × α-decay events/mg sample, is shown close to the spectra for each zircon 1113 
crystal Single zircon analyses are presented relative to a pure, synthetic, crystalline zircon (gray), 1114 
taken from the RRUFF Raman data base. 1115 
 1116 
Fig. 13: (a) Diagram of the frequency of the 3(SiO4) band analyzed in ten zircon crystals in NWA 1117 
5073 plotted against the measured linewidth of this band (given as full width at half maximum, 1118 
FWHM). The radiation damage trend (RDT, gray field) is defined by variably, self-irradiation-1119 
damaged, terrestrial zircons (Saxonian rhyolites and Sri Lanka zircons data from Nasdala et al., 1998; 1120 
2004; Zhang et al., 2001a, b; own unpubl. data). A synthetic, non-metamict zircon is also plotted . 1121 
Recent episodic annealing of heavily metamict zircon would shift the data points to the upper right in 1122 
this diagram (highlighted by arrows), as indicated by dry heating experiments (Geisler et al., 2001; 1123 
Geisler, 2002). (b) Plot of the linewidth (FWHM) of the 3(SiO4) band vs. the α-decay dose 1124 
(calculated accumulated radiation dose) for all analyzed zircon grains in NWA 5073. Uncertainties are 1125 
in the range of 2σ. All data points plot below the radiation damage accumulation curve defined by 1126 
Palenik et al. (2003), unambiguously indicating post-crystallization thermal annealing. Note that 1127 
annealing of the NWA 5073 zircons is also obvious when compared with the Saxonian rhyolite 1128 
zircons, which have neither episodically nor continuously been annealed (Nasdala et al., 1998) and 1129 
were used to determine the damage accumulation curve. For more details of how the damage 1130 
accumulation curve was defined see Palenik et al. (2003). 1131 
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