R. Buick, When did oxygenic photosynthesis evolve?, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.362, issue.6423, pp.2731-2743, 2008.
DOI : 10.1038/362834a0

I. H. Campbell and C. M. Allen, Formation of supercontinents linked to increases in atmospheric oxygen, Nature Geoscience, vol.119, issue.8, pp.554-558, 2008.
DOI : 10.1038/ngeo259

J. F. Kasting, D. H. Eggler, and S. P. Raeburn, Mantle Redox Evolution and the Oxidation State of the Archean Atmosphere, The Journal of Geology, vol.101, issue.2, pp.245-257, 1993.
DOI : 10.1086/648219

H. D. Holland, Volcanic gases, black smokers, and the great oxidation event, Geochimica et Cosmochimica Acta, vol.66, issue.21, pp.3811-3826, 2002.
DOI : 10.1016/S0016-7037(02)00950-X

D. Canil, Vanadium in peridotites, mantle redox and tectonic environments: Archean to present, Earth and Planetary Science Letters, vol.195, issue.1-2, pp.75-90, 2002.
DOI : 10.1016/S0012-821X(01)00582-9

Z. X. Li and C. T. Lee, The constancy of upper mantle fO 2 through time inferred from V/Sc ratios in basalts, Earth Planet. Sci. Lett, vol.228, pp.483-493, 2004.

J. Farquhar, Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry, Nature, vol.106, issue.7163, pp.706-709, 2007.
DOI : 10.1038/nature06202

D. E. Canfield, K. S. Habicht, and B. Thamdrup, The Archean sulphur cycle and the early history of atmospheric oxygen, Nature, vol.288, pp.658-661, 2000.

J. Farquhar, H. Bao, and M. Thiemans, Atmospheric Influence of Earth's Earliest Sulfur Cycle, Science, vol.289, issue.5480, pp.756-758, 2000.
DOI : 10.1126/science.289.5480.756

K. J. Zahnle, M. W. Claire, and D. C. Catling, The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane, Geobiology, vol.91, issue.4, pp.271-283, 2006.
DOI : 10.1016/0301-9268(85)90031-2

I. Halevy, D. T. Johnston, and D. P. Schrag, Explaining the Structure of the Archean Mass-Independent Sulfur Isotope Record, Science, vol.329, issue.5988, pp.204-207, 2010.
DOI : 10.1126/science.1190298

L. R. Kump and M. E. Barley, Increased subaerial volcanism and the rise of atmospheric oxygen 2.5???billion years ago, Nature, vol.3, issue.7157, pp.1033-1036, 2007.
DOI : 10.1038/nature06058

D. A. Butterfield, Seafloor eruptions and evolution of hydrothermal fluid chemistry
DOI : 10.1017/cbo9780511600050.008

L. R. Kump and W. Seyfried, Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers, Earth and Planetary Science Letters, vol.235, issue.3-4, pp.654-662, 2005.
DOI : 10.1016/j.epsl.2005.04.040

I. S. Carmichael, The redox states of basic and silicic magmas: a reflection of their source regions?, Contributions to Mineralogy and Petrology, vol.248, issue.2, pp.129-141, 1991.
DOI : 10.1007/BF00306429

F. Gaillard and B. Scaillet, The sulfur content of volcanic gases on Mars, Earth and Planetary Science Letters, vol.279, issue.1-2
DOI : 10.1016/j.epsl.2008.12.028

URL : https://hal.archives-ouvertes.fr/insu-00361741

C. Oppenheimer, B. Scaillet, and R. S. Martin, Sulfur Degassing From Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts, Reviews in Mineralogy and Geochemistry, vol.73, issue.1, pp.363-421, 2011.
DOI : 10.2138/rmg.2011.73.13

URL : https://hal.archives-ouvertes.fr/insu-00614926

A. Aiuppa, H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes, Geochimica et Cosmochimica Acta, vol.69, issue.7, pp.1861-1871, 2005.
DOI : 10.1016/j.gca.2004.09.018

M. J. Bickle, Heat loss from the earth: A constraint on Archaean tectonics from the relation between geothermal gradients and the rate of plate production, Earth and Planetary Science Letters, vol.40, issue.3, pp.301-315, 1978.
DOI : 10.1016/0012-821X(78)90155-3

N. H. Sleep and B. Windley, Archean Plate Tectonics: Constraints and Inferences, The Journal of Geology, vol.90, issue.4, pp.363-379, 1982.
DOI : 10.1086/628691

J. F. Kasting and N. G. Holm, What determines the volume of the oceans?, Earth and Planetary Science Letters, vol.109, issue.3-4, pp.507-515, 1992.
DOI : 10.1016/0012-821X(92)90110-H

C. Bounama, S. Franck, and W. Von-bloh, The fate of Earth???s ocean, Hydrology and Earth System Sciences, vol.5, issue.4, pp.569-575, 2001.
DOI : 10.5194/hess-5-569-2001

N. T. Arndt, Why was flood volcanism on submerged continental platforms so common in the Precambrian?, Precambrian Research, vol.97, issue.3-4, pp.155-164, 1998.
DOI : 10.1016/S0301-9268(99)00030-3

N. Flament, N. Coltice, and P. F. Rey, A case for late-Archaean continental emergence from thermal evolution models and hypsometry, Earth and Planetary Science Letters, vol.275, issue.3-4, pp.326-336, 2008.
DOI : 10.1016/j.epsl.2008.08.029

URL : https://hal.archives-ouvertes.fr/hal-00337517

S. R. Taylor and S. M. Mclennan, Composition and evolution of the continental crust, pp.1-312, 1985.
DOI : 10.1017/CBO9780511575358.014

K. S. Habicht, M. Gade, B. Thamdrup, P. Berg, and D. E. Canfield, Calibration of Sulfate Levels in the Archean Ocean, Science, vol.298, issue.5602, pp.2372-2374, 2002.
DOI : 10.1126/science.1078265

T. W. Lyons and B. C. Gill, Ancient Sulfur Cycling and Oxygenation of the Early Biosphere, Elements, vol.6, issue.2, pp.93-99, 2010.
DOI : 10.2113/gselements.6.2.93

C. T. Scott, Late Archean euxinic conditions before the rise of atmospheric oxygen, Geology, vol.39, issue.2, pp.119-122, 2011.
DOI : 10.1130/G31571.1

M. W. Claire, D. C. Catling, and K. J. Zahnle, Biogeochemical modelling of the rise in atmospheric oxygen, Geobiology, vol.91, issue.4, pp.239-269, 2006.
DOI : 10.1016/S0037-0738(01)00076-8

P. F. Shi and S. K. Saxena, Thermodynamic modelling of the C-H-O-S fluid system, Am. Mineral, vol.77, pp.1038-1049, 1992.

Y. Morizet, M. Paris, F. Gaillard, and B. Scaillet, C???O???H fluid solubility in haplobasalt under reducing conditions: An experimental study, Chemical Geology, vol.279, issue.1-2, pp.1-16, 2010.
DOI : 10.1016/j.chemgeo.2010.09.011

URL : https://hal.archives-ouvertes.fr/insu-00524494

O. Neill, H. S. Mavrogenes, and J. , The Sulfide Capacity and the Sulfur Content at Sulfide Saturation of Silicate Melts at 1400degreesC and 1 bar, Journal of Petrology, vol.43, issue.6, pp.1049-1087, 2002.
DOI : 10.1093/petrology/43.6.1049

F. Gaillard, B. C. Schmidt, S. Mackwell, and C. Mccammon, Rate of hydrogen???iron redox exchange in silicate melts and glasses, Geochimica et Cosmochimica Acta, vol.67, issue.13, pp.2427-2441, 2003.
DOI : 10.1016/S0016-7037(02)01407-2

V. C. Kress and I. S. Carmichael, The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states, Contributions to Mineralogy and Petrology, vol.85, issue.1-2, pp.82-92, 1991.
DOI : 10.1007/BF00307328

A. Burgisser and B. Scaillet, Redox evolution of a degassing magma rising to the surface, Nature, vol.80, issue.7124, pp.194-197, 2007.
DOI : 10.1007/BF00306429

URL : https://hal.archives-ouvertes.fr/hal-00125264

A. Pommier, F. Gaillard, and M. Pichavant, Time-dependent changes of the electrical conductivity of basaltic melts with redox state, Geochimica et Cosmochimica Acta, vol.74, issue.5, pp.1653-1671, 2010.
DOI : 10.1016/j.gca.2009.12.005

URL : https://hal.archives-ouvertes.fr/insu-00442614