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In our paper we studied transport of a passive solute in
the flow through a heterogeneous medium under temporal
fluctuations of the flow boundary conditions. We employed
a stochastic modeling approach for both the spatial medium
heterogeneities and the temporal flow fluctuations. Using
perturbation theory in the spatiotemporal fluctuations of
the flow velocity, we derived explicit expressions for the
effective dispersion coefficients. We concluded that temporal
fluctuations in direction of the mean flow enhance solute
dispersion both in longitudinal and transverse direction.

Recently, we have conducted numerical simulations [1] of
transport in temporally fluctuating flow through heterogeneous
porous media. Contrary to our paper, we have found that
temporal fluctuations in longitudinal direction have only a
subleading effect on both longitudinal and transverse disper-
sion. Therefore, we have revised our previous derivation. We
found that the discrepancy between the analytical results and
the numerical observations can be traced back to the disregard
of certain contributions in the perturbation expansion for the
dispersion coefficients.

These terms are caused by the specific form of the flow field
u(x,t) through a heterogeneous medium. The field u(x,t) can
be decomposed into a term that fluctuates in time only, and
one that fluctuates in space and time (e.g., [2] and this paper),

u(x,t) = u(t) − u′(x,t). (1)

The space-ensemble average, denoted here by an overbar,
of the fluctuation u′(x,t) = 0 is zero. In our paper, we identified
the terms arising from the spatiotemporal fluctuations u′(x,t)
as macroscopic contributions to both the longitudinal and
transverse dispersion coefficients. However, as outlined in the
following, for longitudinal fluctuations [ui(t) = δi1u(t)] cross
contributions between u(t) and u′(x,t) cancel with these terms.
Thus, we find that there is actually no sizable contribution to
the dispersion coefficients for temporal flow fluctuations in the
direction of the mean flow.

Nevertheless, the results of our paper are valid for disper-
sion in a spatiotemporal random flow field of the structure,

u(x,t) = u − u′(x,t), (2)

that is, for a flow field that can be decomposed into the constant
average and fluctuations in space and time with u′(x,t) = 0.
Dispersion in such random velocity fields finds applications
in, for example, plasma turbulence, oceanography, and atmo-
spheric transport [3–6].

*marco.dentz@idaea.csic.es

In the following, we present the derivation of the ex-
pressions for the dispersion coefficients including the terms
omitted in our original paper. We compare the analytical
expressions to numerical random walk particle tracking sim-
ulations of transport in random velocity fields of type (1) and
(2).

The starting point is the Fokker-Planck equation for the
concentration c(x,t),

∂c(x,t)

∂t
+ u(x,t) · ∇c(x,t) − D∇2c(x,t) = 0. (3)

The dispersion coefficient D is constant. As boundary con-
ditions we assume vanishing c(x,t) at infinity. The initial
condition is c(x,t = 0) = δ(x).

The incompressible random flow field u(x,t) through a
heterogeneous porous medium is given by the Darcy equation
u(x,t) = −K(x)∇h(x), in which K(x) is hydraulic conductiv-
ity and h(x) hydraulic head. The log-hydraulic conductivity
f (x) = ln[K(x)] is modeled as a stationary Gaussian random
field. The flow field u(x,t) is approximated by the linearized
solution of the Darcy equation (e.g., this paper). It can be
decomposed into

ui(x,t) = uδi1 − uνi(t) − u′
i(x,t). (4)

The spatiotemporal fluctuations u′
i(x,t) can be further decom-

posed into a term that fluctuates in space only and one that
fluctuates in space and time,

u′
i(x,t) = u′

i1(x) − u′
il(x)νl(t). (5)

We define the u′
il(x) through their Fourier transforms as

ũ′
il(k) = upil(k)f̃ ′(k) with pil(k) ≡ δil − kikl/k2. We sum

over repeated indices. For the definition of the Fourier
transform, see the original paper.

The stationary random field ν(t) quantifies the normalized
fluctuations of the spatial mean hydraulic gradient. Its time
average is zero by definition 〈ν(t)〉 = 0. The ensemble average
over the temporal random process is denoted by the angular
brackets; the average over all realizations of the random
medium is denoted by the overbar.

The correlation functions are 〈νl(t) νm(t ′)〉= σ 2
ννC

νν
lm(t − t ′)

and f ′(x) f ′(x′) = σ 2
ffC

ff(x − x′), with σ 2
νν and σ 2

ff the re-
spective variances. They are characterized by the correlation
time τ and the correlation length l, respectively. The (spatial)
correlation of the velocity fluctuations in Fourier space can be
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FIG. 1. Longitudinal and transverse effec-
tive dispersion coefficients for d = 2 dimen-
sions in the velocity field (4) obtained from
(solid) numerical random walk particle tracking
simulations for σ 2

ff = 10−2 and σ 2
νν = 10−1 and

(dashed) the perturbation theory expression (30)
for Deff

11 (t). The transverse coefficient is essen-
tially given by the local dispersion coefficient.

written as ũ′
i(k,t )̃u′

j (k′,t) = σ 2
ffC̃

uu
ij (k,t,t ′)C̃ff(k)(2π )dδ(k +

k′), where we defined

C̃uu
ij (k,t,t ′) = [C̃i1j1(k) + C̃iljm(k)νl(t)νm(t ′)

− C̃i1jm(k)νm(t ′) − C̃ilj1(k)νl(t)], (6)

with C̃iljm(k) = u2pil(k)pjm(k).
Characteristic time scales are the correlation time τ of

the fluctuations of ν(t), the advection scale τu = l/u, and
the dispersion scale τD = l2/D. The ratio between advection
scale and dispersion scales defines the inverse Péclet number
ε = τu/τD . The Kubo number κ = τ/τu compares correlation
and advection scales.

Solute dispersion is measured by the effective dispersion
coefficients (e.g., this paper),

Deff
ij (t) = −1

2

d

dt

∂2

∂ki∂kj

〈ln[̃c(k,t)]〉|k=0, (7)

and the ensemble dispersion coefficients (e.g., this paper),

Dens
ij (t) = −1

2

d

dt

∂2

∂ki∂kj

〈ln[̃c(k,t)]〉|k=0. (8)

The difference between the two quantities measures the
evolution of the sample-to-sample fluctuations of the center-
of-mass position, Dcm

ij (t) = Dens
ij (t) − Deff

ij (t).
Using the decomposition (4) of u(x,t) in (3) and perform-

ing the Fourier transform we derive the equivalent integral
equation,

c̃(k,t) = c̃0(k,t |0)

−
∫

k′

∫ t

0
dt ′̃c0(k,t |t ′)ik · ũ′(k′,t ′ )̃c(k − k′,t ′). (9)

We use the short-hand notation
∫
k

= ∫
ddk/(2π )d with d the

dimensionality of space. The propagator c̃0(k,t |t ′) is given by

c̃0(k,t |t ′) = g̃0(k,t − t ′) exp

[
−iuk ·

∫ t

t ′
dyν(y)

]
, (10)

with g̃0(k,t) = exp(−Dk2t + ik1ut) the propagator of the
homogeneous transport equation, that is, for ui(x,t) =
uδi1 in (3). Iteration of (9) gives a perturbation series
in ũ′(k,t).

We insert the expansion of (9) in (7) and (8) and expand
the logarithms up to second order in ũ′(k,t). The resulting
expressions then are averaged and only contributions up to
order σ 2

ffσ
2
νν are retained. Thus, we obtain

Dens
ij (t) = Dij + σ 2

ff

∫
k′

C̃ff(k′)F+
ij (k′,t), (11)

Dcm
ij (t) = σ 2

ff

∫
k′

exp(−2k′Dk′t)C̃ff(k′)F−
ij (k′,t), (12)

where we defined the auxiliary functions,

F±
ij (k′,t) = I

(1)
ij (k′,t) + σ 2

νν

d∑
l,m=1

[
I

(2)
ij lm(k,t)

− I
(3)
ij lm(k′,t) − 2I

(4)
ij lm(k,t)

]
, (13)

together with

I
(1)
ij (k′,t) =

∫ t

0
dt ′C̃i1j1(k′)̃g0(∓k′,±t ′), (14)

I
(2)
ij lm(k′,t) =

∫ t

0
dt ′C̃iljm(k′)Cνν

lm(t ′)̃g0(∓k′,±t ′), (15)

I
(3)
ij lm(k′,t) =

∫ t

0
dt ′C̃i1j1(k′ )̃g0(∓k′,±t ′)u2k′

lFlm(t ′)k′
m,

(16)

I
(4)
ij lm(k′,t) =

∫ t

0
dt ′C̃i1jm(k′)̃g0(∓k′,±t ′) × iuk′

lGlm(t ′).

(17)
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FIG. 2. Longitudinal and transverse effec-
tive dispersion coefficients for d = 3 in the
velocity field (4). The setup is the same as for
Fig. 1.
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FIG. 3. Longitudinal and transverse effec-
tive dispersion coefficients for d = 2 dimensions
in the velocity field (34) obtained from (solid)
numerical random walk particle tracking simula-
tions for σ 2

ff = 10−1 and σ 2
νν = 1 and (dashed) the

corresponding perturbation theory expressions
from our paper.

We furthermore defined

Flm(t ′) =
∫ t ′

0
dy

∫ y

0
dy ′Cνν

lm(y ′), (18)

Glm(t ′) =
∫ t ′

0
dyCνν

lm(y). (19)

Note that the contributions due to (16) and (17) were not taken
into account in our paper. These contributions originate from
the expansion of the exponential on the right side of (10). For
a velocity field of type (2) this term is not present and the only
contributions to the dispersion coefficients are given by (14)
and (15).

For fluctuations in one direction only, (13) reads as

F±
ij (k′,t) = I

(1)
ij (k′,t) + σ 2

νν

[
I

(2)
ij11(k′,t)

− I
(3)
ij11(k′,t) − 2I

(4)
ij11(k′,t)

]
. (20)

Expanding the contributions I
(3)
ij11(k,t) and I

(4)
ij11(k,t) by inte-

gration by parts, we derive

F±
ij (k′,t) =

∫ t

0
dt ′C̃i1j1(k′ )̃g0(∓k′,±t ′) − σ 2

νν

4∑
n=1

A±
n (k′,t),

(21)

where the first contribution on the right side is identical to the
one for steady flow (e.g., [7]). The remaining contributions are
given by

A±
1 (k′,t) = −C̃i1j1(k′ )̃g0(∓k′,±t)

u2k′
1

2

±k′Dk′ + iuk′
1

F11(t),

(22)

A±
2 (k′,t) =

∫ t

0
dt ′C̃i1j1(k′ )̃g0(∓k′,±t ′)

× ±iuk′
1Dk′2

±Dk′2 + iuk′
1

G11(t ′), (23)

A±
3 (k′,t) = −C̃i1j1(k′)̃g0(∓k′,±t)

iuk′
1

±Dk′2 + iuk′
1

F11(t),

(24)

A±
4 (k′,t) = −

∫ t

0
dt ′C̃i1j1(k′ )̃g0(∓k′,±t ′)

× ±Dk′2

±Dk′2 + iuk′
1

Cνν
11 (t ′). (25)

We consider now the leading-order behavior for small
inverse Péclet number ε � 1 and times large compared to
the advection scale, t 	 τu. The contributions due to (23) and
(25) are of the order of the inverse Péclet number and thus
subleading. The contributions to the dispersion coefficients
due to (22) and (24) are given by

δ(l)D±
ij = σ 2

ffσ
2
νν

∫
k′

C̃ff(k′)A±
l (k′,t) (26)

for l = 1, 3. In order to evaluate these contributions,
we specify the Gaussian correlation functions C̃ff(k) =
(2π )d exp(−k2l2/2) and Cνν

11 (t) = exp[−t2/(2τ 2)].
In the limit ε � 1, we obtain for δ(1)D±

ij (t),

δ(1)D±
ij (t) = −σ 2

ffσ
2
ννF11(t)(2π )d/2ld

∫
k′

exp(−ik′
1lt/τu)

× exp(−k′2a±l2/2)iuk′
1C̃i1j1(k′) + · · ·, (27)

where the dots denote subleading contributions of order ε.
Note that a+

n = 1 and a−
n = 1 + 4t/τD . We rescale ki =

k′
i l1(t/τu) and take the limit t/τu → ∞ under the integral. This

gives

δ(1)D±
ij (t) = −F11(t)(t/τu)−d−1σ 2

ffσ
2
νν(2π )d/2l−1

×
∫

k

iuk1C̃i1j1(k) exp(−ik1) + · · · . (28)
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FIG. 4. Longitudinal and transverse effec-
tive dispersion coefficients for d = 3 dimensions
in the velocity field (34). The setup is the same
as for Fig. 3.
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The remaining integral is finite. Furthermore, as F11(t) scales
as tτ at times t 	 τ , we obtain that δ(1)D±

ij (t) scales as
(t/τu)−d . Thus, it is subleading for t 	 τu.

For the contribution δ
(3)
A D±

ij (t), the reasoning is similar. We
obtain

δ(3)D±
ij (t) = G11(t)(t/τu)−dσ 2

ffσ
2
νν(2π )d/2

×
∫

k′
C̃i1j1(k′) exp(−ik′

1) + · · · . (29)

The function G11(t) is constant for t 	 τu. Thus, the contribu-
tion due to A±

3 (k′,t) scales as (t/τu)−d and thus is subleading
for t 	 τu.

In summary, the leading-order terms of the dispersion
coefficients are given by the steady-state contributions. For
the longitudinal effective dispersion coefficient one obtains
for ε � 1 and t 	 τu [7],

Deff
11 (t) =

√
π

2
σ 2

fful[1 − (1 + 4t/τD)−
d−1

2 ]. (30)

The longitudinal ensemble dispersion coefficient in this limit
is Dens

11 = √
π
2 σ 2

fful. The transverse effective coefficients are of
the order of the local dispersion coefficient D. The transverse
ensemble coefficients behave as (t/τu)1−d .

We performed numerical random walk particle tracking
simulations, which are based on the equivalence of the Fokker-
Planck (3) and the Langevin equation,

dx(t)

dt
= u[x(t),t] +

√
2Dξ (t), (31)

with ξ a Gaussian white noise with zero mean and unit vari-
ance. The random fields u′

il(x) in (4) are generated as (e.g., [8])

u′
i1(x) =

√
2σ 2

ff

N

N∑
i=1

pi1(ki) cos(ki · x + φi), (32)

where the ki are independent Gaussian distributed random
vectors with zero mean and variance 1/l2. The φi are
independent and uniformly distributed in [0,2π ]. The temporal
random process ν(t) is generated as

ν ′
1(t) =

√
2σ 2

νν

N

N∑
i=1

cos(ωit + ϕi), (33)

where the ωi are independent Gaussian distributed random
variables with zero mean and variance 1/τ 2. The ϕi are
independent and uniformly distributed in [0,2π ]. The fields
are generated with N = 64. The random velocity field u(x,t)
is constructed according to (4) for νi(t) = δi1ν1(t). The
simulations are performed using 104 realizations of the random
velocity and 102 noise realizations per disorder realization. The
Langevin equation is solved using an extended Runge-Kutta
method (e.g., [9]) with t = 10−1. The inverse Péclet number
is ε = 10−2; the Kubo number is κ = 1.

The perturbation results derived in our paper are valid
for a flow field of type (2). Thus, we performed numerical
simulations also for transport in the velocity field given
by

ui(x,t) = uδi1 + u′
i1(x)ν1(t), (34)

in order to demonstrate the validity of the analytical results
obtained in our paper. The simulations use the same parameter
values as above.

Figures 1 and 2 show the results of the numerical simula-
tions and perturbation theory for the flow field (4) in d = 2
and d = 3 dimensions. The perturbation theory predictions are
in good agreement with the numerical data. The behavior of
the effective dispersion coefficients is essentially the same as
the one found for dispersion in steady flow through a random
medium.

Figures 3 and 4 compare the perturbation theory expres-
sions (40) in our paper for longitudinal temporal fluctuations
to simulations of dispersion in the flow field (34) in d = 2 and
d = 3 dimensions. The numerical data are quite noisy, but it
can be clearly seen that the perturbation theory expressions
are in good agreement with the simulated effective dispersion
coefficients.

In summary, we have presented corrections to the per-
turbation theory expressions for the effective and ensemble
dispersion coefficients for transport in a temporally fluctuating
flow field through a heterogeneous medium. We compared
the corrected expressions to numerical random walk particle
tracking simulations and found good agreement. We showed
that the expressions for the dispersion coefficients given in our
paper are consistent for flow fields that can be decomposed
into a constant mean and a fluctuation whose space ensemble
average is zero.
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