A. Amokrane, C. Comel, and J. Véron, Landfill leachates pretreatment by coagulation-flocculation, Water Research, vol.31, issue.11, p.2775, 1997.
DOI : 10.1016/S0043-1354(97)00147-4

H. World and . Organization, Guidelines for drinking-water quality, third edition incorporating the first and second addenda, 2008.

O. Abollino, M. Aceto, M. Malandrino, C. Sarzanini, and E. Mentasti, Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances, Water Research, vol.37, issue.7, p.1619, 2003.
DOI : 10.1016/S0043-1354(02)00524-9

X. Gu and L. J. Evans, Modelling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto Fithian illite, Journal of Colloid and Interface Science, vol.307, issue.2, p.317, 2007.
DOI : 10.1016/j.jcis.2006.11.022

L. Huang, H. Hu, X. Li, and L. Y. Li, Influences of low molar mass organic acids on the adsorption of Cd2+ and Pb2+ by goethite and montmorillonite, Applied Clay Science, vol.49, issue.3, p.281, 2010.
DOI : 10.1016/j.clay.2010.06.005

G. I. Gaines and H. C. Thomas, Adsorption Studies on Clay Minerals. II. A Formulation of the Thermodynamics of Exchange Adsorption, The Journal of Chemical Physics, vol.21, issue.4, p.714, 1953.
DOI : 10.1063/1.1698996

H. Van-olphen, An Introduction to Clay Colloid Chemistry, Soil Science, vol.126, issue.1, 1963.
DOI : 10.1097/00010694-197807000-00013

G. H. Bolt, Thermodynamics of cation exchange, Soil chemistry B

G. Sposito, The surface chemistry of soils, 1984.

K. Danzer, Analytical chemistry, Theoretical and metrological fundamentals, 2007.

E. Tertre, S. Castet, G. Berger, M. Loubet, and E. Giffaut, Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60??C: Experimental and modeling study, Geochimica et Cosmochimica Acta, vol.70, issue.18, p.4579, 2006.
DOI : 10.1016/j.gca.2006.07.017

URL : https://hal.archives-ouvertes.fr/hal-00318633

D. L. Parkhurst and C. A. Appelo, User's guide to PHREEQC (Version 2) -A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water Resources Investigations, 1999.

M. H. Bradbury and B. Baeyens, Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation, Geochimica et Cosmochimica Acta, vol.66, issue.13, p.2325, 2002.
DOI : 10.1016/S0016-7037(02)00841-4

E. Alvarez-ayuso and A. Garcia-sanchez, Removal of Heavy Metals from Waste Waters by Natural and Na-exchanged Bentonites, Clays and Clay Minerals, vol.51, issue.5, p.475, 2003.
DOI : 10.1346/CCMN.2003.0510501

. Zn-sorption-onto-na-swy2, Baeyens model [23] with the fixed parameters (log K c (Zn-Na) = 0.59, log S K int (Zn) = 1.6 and log W K int (Zn) = -2.7), and by adding the potential formation of Zn acetate (log K c (Zn -acetate) = -6.5) Dotted line: cation exchange (CE-Zn); fine-dotted line: complexation in the strong sites (?S S OZn + ); dash dotted line: complexation in the weak sites (?S W OZn + ). (b) Zn sorption isotherm onto Ca-SWy2. ?: experimental data. The continuous line is calculated using the Bradbury and Baeyens model [31] with the fixed parameters (log K c (Zn-Ca) = 0, log S K int (Zn) = 1.2 and log W K int (Zn) = -2.9), and by adding the potential formation of Zn acetate (log K c (Zn -acetate) = -6.5). Dotted line: cation exchange