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Abstract. 12 

Laboratory evidence shows that the occurrence of solid salt in soil pores causes drastic 13 

changes in the topology of the porous spaces and possibly also in the properties of the 14 

occluded liquid. Observations were made on NaCl precipitation in micrometric cylindrical 15 

capillary tubes, filled with a 5.5 M NaCl aqueous solution and submitted to drying conditions. 16 

Solid plug-shaped NaCl (halite) commonly grows at the two liquid-air interfaces, isolating the 17 

inner liquid column. The initially homogeneous porosity of the capillary tube becomes 18 

heterogeneous because of these two NaCl plugs, apparently closing the micro-system on 19 

itself. After three months, we observed cavitation of a vapor bubble in the liquid behind the 20 

NaCl plugs. This event demonstrates that the occluded liquid underwent a metastable 21 

superheated state, controlled by the capillary state of thin capillary films persisting around the 22 

NaCl precipitates. These observations show, first, that salt precipitation can create a 23 

heterogeneous porous medium in an initially regular network, thus changing the transfer 24 

properties due to isolating significant micro-volumes of liquid. Second, our experiment 25 

illustrates that the secondary salt growth drastically modifies the thermo-chemical properties 26 

of the occluded liquid and thus its reactive behavior. 27 
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1. INTRODUCTION 28 

Large multiphase systems in nature, such as the unsaturated zone of soils (UZ hereafter), or 29 

depleted deep aquifers, offer interesting physical geochemistry problems, directly connected 30 

to reactive mass-transport processes. As such, they are of potential importance in many 31 

environmental issues, including CO2 storage, aquifer recharge management, or combating 32 

soil salinization. UZ hydrodynamics focus on many efforts and present interesting aspects, 33 

but UZ geochemistry attracts less attention since it is usually thought to be quite similar to 34 

water-saturated geochemistry. Actually, though, the chemical reactivity of solids and gases 35 

changes when coming in contact with a capillarized liquid (e.g. [1-11]). However, a remaining 36 

key question is whether it is possible that aqueous solutions in real media acquire a capillary 37 

signature that can affect the reactive transport balance in natural systems. 38 

The peculiarities of the solid-liquid-air equilibrium, i.e. its ―multiphase‖ feature, introduce 39 

capillary physics (and chemistry) into the already complicated framework of liquid flow in 40 

pores. This forces us to consider the heterogeneity of a porous network, since the liquid-air 41 

distribution depends primarily on the pore size (Young-Laplace law) at the precise location of 42 

the interface. Furthermore, such filled channels can be distinguished into flowing and not-43 

flowing (mobile and immobile) ones, since the capillary pressure can counteract gravity or 44 

any head gradient. Depending on the local situation, the hydraulic conductivity inside a 45 

variably-saturated porous medium is close to the saturated value or much smaller. Finally, 46 

the capillary water can be perfectly stable water if it obeys the Young-Laplace equilibrium, or, 47 

if not, will be superheated metastable water prone to nucleating vapor at any time (e.g. [12-48 

19]). 49 

A superheating-apt situation readily occurs in natural materials where the pore network has a 50 

so-called ―ink-bottle‖ configuration (e.g. [20-21]). This ensures a mechanical (Young-Laplace 51 

law) capillary equilibrium at the (narrow) liquid-air interfaces, but not necessarily inside the 52 

capillary volume located in larger pores than those supporting the water-air interfaces. As the 53 
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chemical potential is everywhere the same (Kelvin law), the inner part of the capillary water is 54 

no longer thermodynamically stable, but superheated. The ink-bottle effect is generally 55 

discussed in relation to volume/pressure curves of soil-water and their hysteretic 56 

characteristics. But it also is linked to drainage mechanisms in wet porous media through 57 

cavitation of the superheated pore water (e.g. [15-16,19]). On the hydrodynamic side this 58 

explains liquid displacement according to a non-piston-flow process; on the geochemical 59 

side, however, this implies interaction between the solid matrix and a superheated solution 60 

as long as no cavitation occurs. Moreover, superheated water is known to be an efficient 61 

―green‖ solvent (e.g. [22-23]), an empirical finding confirmed (with nuances) by studying its 62 

thermodynamic properties [1,2,4,7-10]. 63 

Though the ink-bottle effect is a well-known concept, it is often overlooked in reactive 64 

transport modeling at the UZ scale. The present paper aims at demonstrating, through very 65 

simple experiments, that this effect can occur in any material or field setting submitted to 66 

drying conditions, even if the geometry of the host pore network is a priori unable to display 67 

it. The operational objective was to provide new evidence that modification of a channel in-68 

tube configuration (through phase transition) has an impact on the thermodynamic state and 69 

thus on the chemical reactivity of the occluded water with respect to its environment. To this 70 

end, open, micrometric, constant-sized and cylindrical capillary tubes were filled with saline 71 

solutions and submitted to evaporating conditions, to enable salt precipitation and a change 72 

in pore topology. The phase transitions inside the tubes were observed during one year. 73 

2. PROTOCOL AND EXPERIMENTAL TECHNIQUES 74 

2.1 Capillaries and salt solutions 75 

Capillary tubes were purchased from Polymicro Technologies LLC, which proposes 76 

polyimide-coated fused silica materials, with internal diameters from 5 to 180 µm. We tested 77 

a wide range of diameters, using successively 5, 10, 20, 75, 100 and 180 µm tubes. A 78 

reference experiment was carried out in a Petri dish, to see how salt growth happens under 79 
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the same environmental conditions (temperature, relative humidity, initial chemical 80 

composition), but without any geometrical restriction. 81 

The aqueous solutions were hand-made (NormaPur NaCl powder, Prolabo; milli-Q water) 82 

close to saturation: NaCl concentration was 5.5 mol/kg, slightly undersaturated with respect 83 

to halite (saturation is at 6.2 mol/kg at 25°C and 105 Pa). 84 

2.2 Experimental procedure and in situ observations 85 

Each tube (about 10 cm long) was completely filled by capillarity with the brine before being 86 

put in a dry chamber with controlled relative humidity (RH = 24%) and temperature (20°C). 87 

The RH was kept constant by a LiCl solution put at the bottom of the dry chamber, and was 88 

recorded with a humidity/temperature data logger (EL-USB-2, LASCAR-Easylog). The dry 89 

chamber also contained a Petri dish with the same initial solution as that filling the tubes. 90 

We tested the influence of a saturated atmosphere by putting certain tubes in a dry chamber 91 

whose RH was controlled by a saturated NaCl solution (RH = 75%). After a small retreat of 92 

the meniscus inside the tubes, nothing more occurred and the capillary columns remained 93 

unchanged; obviously, a dry (with respect to the sampled solution) external atmosphere was 94 

required to sustain the in-tube evaporation. Otherwise, external demand was the only driving 95 

force of the subsequent events (salt precipitation, capillarization, cavitation, see below). 96 

The capillary tubes were regularly removed from the dry chamber and observed with an 97 

optical microscope (Leica DM4000B, equipped with a DALSA camera). Different 98 

characteristic distances were measured, such as the length between each inlet of the tube 99 

and the related liquid-air interface, the distance separating the two liquid-air interfaces, the 100 

location of any precipitate inside the tube. This provided a good idea on the dynamics of 101 

meniscus retreat and thus on the symmetry of the phenomena. Unfortunately, the optical 102 

field of our microscope did not cover the total length of the capillary column inside the tubes, 103 

so that the longest distances, especially those between the two liquid-air interfaces (i.e. the 104 

length of the water column), as measured were not really accurate and did not permit a 105 

quantitative comparison among the tubes. 106 
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3. RESULTS AND INTERPRETATION 107 

3.1 Evaporating the solution 108 

The first stage of the experiment was a regular evaporation of water inside the tubes due to 109 

the conditions in the dry chamber atmosphere (RH = 24%). To quantify this part of the 110 

process, we measured the variation in length between the liquid-air meniscus and the tube 111 

inlet over time. This provides the rate of drying, or the derivative of mass content over time. 112 

In a uniform, rigid, constant-sized capillary tube, filled with a volatile liquid, and maintained in 113 

contact with an ―infinite‖ dry atmosphere, this drying rate should be constant. Vapor is 114 

transferred by gas diffusion from the inner liquid-air interface where liquid vaporizes to the 115 

external dry atmosphere. This is a slow evaporation process, for which the thermal change 116 

related to phase transition is negligible, and so water loss over time should obey the Stefan 117 

law (e.g. [24]): 118 
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 119 

where z° is the position of the liquid-air meniscus (0 m) at initial time t° (0 s); z (in meters) is 120 

its location at a given time t (in seconds); Mv is the molar mass of the volatile species (here, 121 

water: 0.018 kg/mol); Pa is the atmospheric pressure (105 Pa); l is the volumetric mass of 122 

the brine (1150 kg/m3); R is the gas constant (8.31 J/mol.K); T is the Kelvin temperature 123 

(293 K); xe is the molar fraction of vapor at the liquid-air interface, taken as the molar fraction 124 

of the water vapor in air (here xe=0.0173, calculated after the 2338 Pa saturation partial 125 

pressure of water vapor at 20 °C (293 K) and 75% RH which is the characteristic RH value of 126 

the NaCl brine saturated with respect to halite); and D is the diffusion coefficient of vapor in 127 

the air from the interface toward the dry atmosphere (in m2/s). 128 

According to this expression, the associated graph should be a linear plot of the retreat 129 

length of the meniscus (z – z°) as a function of the square root of time t (Fig. 1). The 130 

experimental points measured (before NaCl plugging) actually meet this linearity condition. 131 
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 132 

Figure 1. Meniscus retreat of the liquid-air meniscus (z – z°) as a function of time. The linear 133 

relationship observed for all experiments irrespective of tube radius meets the Stefan law, 134 

meaning that the drying dynamics follow a diffusive behavior. 135 

 136 

Therefore, the evaporation rate was essentially constant and controlled by external demand, 137 

and the dynamics of our experiments were dominated by diffusion in the gas phase. The 138 

data show a slight dependency on channel size (increasing slope with decreasing diameter), 139 

which was not expected from equation 1, indicating that the mechanistic process is probably 140 

more complex in detail. However, we can simplify by estimating that the slope is almost 141 

constant across the different tube diameters, in order to calculate the resulting diffusion 142 

coefficient with equation 1: D  6.2(±1.4).10-5 m2/s. This calculated value compares favorably 143 

with the usual diffusion-coefficient value of water vapor in air (DH2O-air = 2.42.10-5 m2/s at 20°C 144 

[25]). 145 

The dynamics associated to our vaporization experiment show a reasonable consistency 146 

between the results and the Stefan law, despite showing underlying complexities. This 147 

consistency allows us to assume that the vapor-pressure profile linearly increases from the 148 

24% RH of air at the outlet of the tube to an almost saturated value (RHSATURATED = 75%) at the 149 

brine-air interface (diffusive profile). 150 
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3.2 The first phase transition: NaCl precipitation 151 

Figure 1 plots the drying stage, before the aqueous solution reaches saturation with respect 152 

to NaCl, leading to salt precipitation and the subsequent occlusion of the tube. This stage 153 

lasted between 40 and 60 hours (Figs. 1-2) and led to isolating a liquid column between two 154 

NaCl-made plugs located at the liquid-air interfaces inside the tube. 155 

As demonstrated by direct observations, the supersaturation required to cause precipitation 156 

was fed by continuous evaporation of the in-tube aqueous solution, driven by the external dry 157 

atmosphere. Following the meniscus retreat distance with time, we calculated the water loss 158 

over time and then the chemical enrichment in the residual solution (Fig. 2). We also 159 

evaluated the size of the precipitate and thus the mass of precipitated solid. This allowed 160 

calculating the ionic activity product (Q) of the reaction: NaCl = Na+ + Cl-, using the Pitzer 161 

model for calculating activity coefficients. Q was then compared to the corresponding 162 

equilibrium constant (K), giving the so-called saturation index (noted SI): SI = logQ/K. A nil 163 

value characterizes the solid-solution equilibrium, while positive values sign a supersaturated 164 

solution with respect to solid, and negative values an undersaturated solution. 165 

 166 

Figure 2. Evolution of the NaCl saturation index through time due to evaporative water loss, 167 

for three different capillary sizes. 168 
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Despite the uncertainty on the basic data (exact value of the meniscus retreat, moles number 170 

of precipitated NaCl), the behavior followed the expected trend: precipitation happens at low 171 

supersaturation, reached at different times depending on the drying kinetics. This first stage 172 

was completely ―normal‖ with respect to what happens under drying conditions: the solution 173 

concentration increases until nucleation starts. Note that precipitation started after 50 to 60 174 

hours, consistent with the duration of the observed linear retreat of the meniscus (Fig. 1), 175 

which is related to a constant rate of evaporation before the precipitation event. 176 

3.3 NaCl precipitates: plugging the tube 177 

The precipitate is always solid and develops at the liquid-air interface (Fig. 3), a finding 178 

consistent with the conclusions of previous experiments (e.g. [26-27]). 179 

  180 

Figure 3. In the upper a and b tubes (a: Ø = 10 µm; b: Ø = 100 µm), liquid water is trapped 181 

between two solid NaCl plugs. In the lower c tube (c: Ø = 180 µm), only one side is closed 182 

and the solution continues evaporating through the opposite end. To the right, a photograph 183 

of an empty tube (Ø = 100 µm). 184 

 185 

Halite precipitates are massive in any situation, and display a cubic shape in the Petri dish 186 

experiment (Fig. 4), which is the idiomorphic habit at low supersaturation (e.g. [28]). No 187 

crystallographic difference was observed between the capillary- and Petri-dish experiments, 188 
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whatever the internal diameters of the tubes. As expected, there was no evidence of any 189 

pore-size effect on the salt precipitation process. 190 

 191 

Figure 4. Shape and size of NaCl crystals growing freely in a Petri dish submitted to 24% RH 192 

and 20 °C. 193 

 194 

In the capillary tubes, we observed (Fig. 3) that precipitation occurs at the liquid-air 195 

interfaces, either at both interfaces when the capillary column is at equal distance from the 196 

two tube inlets, or at one liquid-air interface when the evaporation is faster on one side of the 197 

column. In the latter case, the remaining solution nurtures the initial precipitate until complete 198 

disappearance of the aqueous solution. In other words, the capillary column is continuously 199 

evaporating through the free interface due to the dry external atmosphere, driving the salt 200 

growth that occurs at the pre-existing solid surface (low-cost epitaxial growth). However, 201 

when the plugging is bilateral, the system is closed and no significant variation in the water or 202 

crystal volumes occurs, except negligible (in terms of mass transfer) changes in the size of 203 

the NaCl plugs. This indicates that the system is no longer evaporating and that the solution-204 

crystal phase transitions appear to have halted. 205 

The last significant observation is the systematic location of crystal nucleation and growth at 206 

the air-water interface. This is commonly observed in such experiments (e.g. [26-27]) and 207 

points to the predominant role played by the evaporation front in precipitation: the 208 

concentration of the surficial solution is slightly higher than the bulk one as experimentally 209 

observed and numerically simulated ([29]). A direct consequence of such crystal growth at 210 

the tube inlets is a drastic change in topology of the cylindrical tube: the water-filled volume 211 
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seems isolated from the rest of the system, and appears disconnected from the exterior (see 212 

especially Fig. 3a). This experiment shows that the connectivity of any given porous network 213 

can change when secondary salt grows through time, depending on the filling solution and 214 

local drying conditions. In a real-channel network, such secondary NaCl precipitation should 215 

contribute to increasing the total volume of immobile water. In addition to capillary and 216 

adsorbed water, this type of occluded liquid (with a significant volume) is immobilized 217 

because it is no longer hydrodynamically connected to flowing water. In this respect, our 218 

experimental set-up reproduces the UZ situations, where disseminated capillary water occurs 219 

at different matrix potentials, certainly not all connected to percolation channels. 220 

3.4 The second phase transition: bubble growth 221 

When the capillary tubes are plugged at both ends (bilateral), the water column is completely 222 

isolated from the rest of the system; it might be concluded that the system has reached 223 

thermodynamic equilibrium, with no further driving force for a phase transition. Yet, after 224 

about three months of regular observations, we observed the appearance of a bubble in the 225 

water column (Fig. 5), at varying distance from the NaCl plugs (Fig. 6). This fact requires that 226 

the NaCl plugs did not completely close the system and left tiny ring spaces between the 227 

NaCl and the tube walls, enabling an interaction between the occluded liquid and the in-tube 228 

atmosphere. The persistence of such tiny spaces can be related to the general occurrence of 229 

liquid films at grain-grain contacts, ubiquitous in natural environments (e.g. [30-31]). 230 

Once that fact had been established we had to account for the bubbling. At first sight, this 231 

could correspond to the receding of the air-liquid interface due to a continuous evaporation 232 

process, though slowed down by the reduction of the interface area now formed by an 233 

annular space. 234 
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 235 

 236 

Figure 5. Bubbling after three months in liquid apparently occluded by two NaCl caps located 237 

at the air-water interfaces. 238 

 239 

According to this assumption, slow evaporation along the NaCl plugs may continuously 240 

consume water stock along the plugs. After a sufficient time, the liquid-air interface should 241 

recede inside the large volume behind the NaCl plug, resulting in an apparent bubbling in the 242 

water column. This scenario can account for the bubbling shown in Figure 6e, and possibly 243 

6d, where the bubble appears stuck to a NaCl cap. However, this sketch does not explain 244 

why bubbling can appear in the liquid column itself, at some distance from all possible 245 

interfaces where vaporization happens (see especially Fig. 6a, f). In these cases, the gas 246 

bubble appears to be surrounded by liquid, indicating that the phase transition obeys a 247 

driving force belonging to the aqueous solution itself. Even the bubbles growing in the 248 

capillary tubes of Figs. 6b and 6c are surrounded by liquid. In such a scenario, the bubbles 249 

would continuously grow over time between the plugs, which has not yet been observed. 250 

By eliminating the possibility that the bubbling is connected to mass loss, we had to consider 251 

that this phase transition depends only on the liquid properties themselves. And the only way 252 

to make boiling a liquid without bringing it to the boiling point is to first superheat it. 253 

t0 : after NaCl precipitation, without bubble 

t0+ 3 months : the same capillary, after bubble nucleation 

100 µm 

100 µm 
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 254 

Figure 6. Various locations of bubble nucleation, at varying distances from the two NaCl 255 

plugs, demonstrating that it is a bulk process, and not a liquid-air interface phenomenon. 256 

 257 

This second assumption starts again with the existence of tiny ring spaces around the NaCl 258 

plugs. This time, however, the spaces were filled with an aqueous solution that capillarizes to 259 

reach equilibrium with the in-tube air RH (Kelvin law). Additionally, for the capillary liquid to 260 

be stable, the geometrical Young-Laplace condition needs to be fulfilled with a sufficiently 261 

small space diameter to obey the law (Fig. 7). However, this capillary aqueous solution 262 

extends continuously in the capillary tube behind the plugs, where the required geometrical 263 

conditions obviously cannot be met (Fig. 7). In fact, we had created an ―ink-bottle 264 

configuration‖ as soil scientists call it, a continuous liquid column imbibing a differently sized 265 

pore space. From a chemical point of view, the properties of the liquid were now shifted 266 

according to the capillary chemical potential. For instance, this liquid has a lower saturation 267 

vapor pressure than that predicted by the usual saturation curve (Kelvin law), and so it can 268 

nucleate vapor like water heated beyond 100 °C at atmospheric pressure, which makes this 269 
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into a superheated water. Actually, there is a nucleation barrier —the energy cost to create a 270 

liquid-air interface— but, as predicted by the Classical Nucleation Theory (CNT hereafter), it 271 

is a matter of time before this barrier is trespassed. For this reason we can call it a 272 

metastable superheated liquid. On the whole, a liquid solution disobeying the Young-Laplace 273 

law has a limited lifetime depending primarily on the superheating intensity (e.g. [17,32]). 274 

 275 

Figure 7. Simplified sketch of the cavitation process, highlighting the continuity between the 276 

capillary films around crystal plugs and the superheated liquid volume behind. 277 

 278 

As a consequence, we can conclude that the trapped liquid is indeed a metastable 279 

superheated liquid prone to bubble nucleation when its characteristic lifetime (here three 280 

months) is reached. Thus, the bubble appearance is a cavitation1 event, that is to say a 281 

vapor explosion (= high nucleation rate, or rapid phase transition) related to an internal 282 

disequilibrium inside the mother liquid (e.g. [33]). The rate of nucleation of a critical-sized 283 

vapor bubble depends on the distance-to-equilibrium experienced at the time of transition: 284 

the more the mother liquid is superheated, the faster will be the liquid-to-vapor nucleation 285 

that restores equilibrium, and the more powerful is cavitation. 286 

The complete process is a centripetal NaCl growth at low supersaturation (massive shape) 287 

able to pull a residual liquid film just between the growing solid and the wall tube. When the 288 

characteristic distance meets the Young-Laplace condition, depending on the average local 289 

RH (24%<RH<75%, see above), the liquid along the crystal ―capillarizes‖ and stops 290 

                                                 
1
 Another definition of ―cavitation‖ in liquids relates to a subsequent collapse of the newly-created gas cavities 

under certain conditions. This implosion releases a very large amount of energy (typically, 1-10
18

 kW/m
3
) and is 

used to produce physical and chemical transformations. 
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evaporating, thus halting the concentration of the solution. As the chemical potential of the 291 

capillarized solution has changed, the thermodynamic equilibrium of the solution-NaCl 292 

reaction changes as well (e.g. [2,4,7,8,10,17,19]). 293 

4. DISCUSSION 294 

As far as we know, our experiments are the first to record in a direct manner the 295 

metastabilization and subsequent cavitation of a liquid. Interestingly, our record is at the 296 

channel scale, in a porous ink-bottle configuration that commonly occurs in nature. Many 297 

examples are known in the literature (see textbook like [20]) concerning the links between 298 

the hysteresis loop (the desorption transition takes place at lower vapor pressure than in the 299 

adsorption branch), and the superheating state of the trapped liquid (especially under 300 

desorption). This is exactly the so-called ink-bottle effect which is known to affect the 301 

dynamic, as well as the static, properties of the soil. 302 

To go beyond the optical evidence, we now had to evaluate the consequences of our 303 

findings on the physical chemistry of ink-bottle shaped porous systems. The evidence given 304 

above provided firm grounds for stating that capillary traction settles inside the capillary tubes 305 

and remains active for about three months. Therefore, this superheated liquid can modify: 306 

- The geomechanical balance at tube scale. As recently demonstrated through 307 

experiments ([19]), crystal growth in micrometric pores can, under certain conditions, 308 

favor the development of capillary bridges exerting traction on the pore walls. These 309 

experiments even showed evidence that this capillary mechanical constraint may micro-310 

fracture the solid matrix (potentially increasing hydraulic conductivity), while the 311 

associated crystal growth contributes to fill the pore spaces (decreasing conductivity). 312 

- The properties of the capillarized liquid, i.e. the local solids are variably weathered by the 313 

occluded liquid (e.g. [1-3,7-8,10]) while gas solubility always increases (e.g. [5-6,9,11]). 314 

Furthermore, this effect is related to the exact value of capillary pressure. Even the 315 
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weathering kinetics may change with the capillary state whenever the equilibrium 316 

constant of the corresponding reaction is significantly modified. 317 

- The pressure-water content and conductivity-water content relationships (the so-called 318 

―soil characteristic curves‖), or the quantitative correlation between soil structure and its 319 

wetting and transport properties. These curves can be decomposed into a capillary term 320 

and an adsorbed water term (e.g. [34]), and primarily depend on the three-dimensional 321 

topology of the pores. We introduce here the possibility that the porosity may change 322 

through time while immobilizing significant volumes of water inside unconnected 323 

channels. A quantitative understanding of these soil curves should benefit from a 324 

renewed view of the role of the above mechanisms in the three-dimensional networks, 325 

depending upon the degree of heterogeneity and the local capillary conditions (dryness, 326 

porosity size). 327 

However, this list of possible consequences is interesting only if the capillary pressure and 328 

traction generated inside the tubes between the two salt plugs is sufficiently high to promote 329 

significant changes in the soil mechanics, hydrodynamics or geochemistry. To verify such 330 

qualitative statements, we assessed (see below) the capillary pressure that may exist in our 331 

capillary tubes, and the consequent changes in weathering ability of such superheated water 332 

on its environment. In particular, we focused on the stability of the NaCl plugs (would they be 333 

re-dissolved or enhanced by this capillarization?), and on the role that cavitation might play 334 

on the transport functions. 335 

4.1 Quantifying the capillary state inside the tube 336 

According to the Young-Laplace and Kelvin capillarity laws, the capillary parameters (pore 337 

radius, water pressure) can be calculated at nil contact angle and with the liquid-air surface 338 

tension of the saturated NaCl solution (NaCl-air = 83.5 mJ/m2 for a plane interface [35]) 339 

corrected for capillary curvature with Tolman’s formula [36]. However, the size of the capillary 340 

films along the NaCl plugs (i.e. between the plugs and the tube wall) is not known and so the 341 

calculation cannot be done this way. In addition, the water pressure decreases to maintain 342 
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the equality of the liquid-vapor chemical potential (Kelvin law, physicochemical condition of 343 

equilibrium), meaning that the water pressure could be calculated with the value of the inner 344 

air RH. Unfortunately, the experimental conditions inherently cause the system to evolve with 345 

a (probably diffusive) vapor profile from interface to tube ends, and so only the range of RH 346 

is known. Indeed, the mean air RH within the tube is necessarily greater than the external air 347 

value (24%) and lower than the saturation value (75%). The corresponding water pressure 348 

and Young-Laplace pore radius thus vary between PWATER = -1480x105 Pa and rPORE = 0.8 nm 349 

for an interfacial air RH of 24%, to PWATER = 105 Pa and rPORE =  for an interfacial air RH of 350 

75%. However, we have to outline that the capillary parameters required for a direct 351 

application of the capillarity laws cannot be directly measured. 352 

A first rough estimate can be performed by assuming a constant compressibility of trapped 353 

liquid, which allows us to write: 354 

1

Ttotal

V

V P


 
   

 
 (2) 355 

Where  is the isothermal compressibility (assumed constant, equal to its 20°C, 1 bar value: 356 

 = 4.61 Pa-1), Vtotal is the volume (in m3) of the liquid column before cavitation, the V is the 357 

volume (inm3) of the gas bubble after cavitation, so that the P (in Pa) is the negative 358 

pressure needed to stretch the liquid to fill the pre-cavitation volume. This simple calculation 359 

can be made on our tubes series (Fig. 6), but requires to be aware that the measurements of 360 

the lengths of the liquid columns are variably uncertain, due to the small optical field of our 361 

set-up (previously evoked). Choosing the two tubes less affected by this uncertainty, we get -362 

680x105 Pa with the tube figured in 6a, and -790x105 Pa with the 6d tube. These values plot 363 

inside the expected range, and are reasonably consistent, but the associated uncertainty 364 

remains large and is rather unknown actually. 365 

For a second, and completely different, estimate of the inner capillary pressure, we propose 366 

using the lifetime of the trapped liquid, which was experimentally demonstrated ([32]) to be 367 

consistently related to the value of the liquid pressure. El Mekki et al. [32] measured the 368 

lifetime of superheated water as a function of liquid pressure, using the micro-thermometry 369 
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technique on synthetic fluid inclusions (e.g. [37]). A data series recorded on pure water 370 

trapped in a 50 x 20 µm inclusion in quartz [32] is plotted on Figure 8. We decided to fit these 371 

published data, acquired at high liquid tractions along short lifetimes, with the help of the 372 

CNT expressions [38] adapted to a heterogeneous nucleation process, which is the most 373 

probable nucleation process in real materials. Once fitted, the relationship was extrapolated 374 

to determine the possible pressure of a superheated aqueous solution lasting three months. 375 

 376 

Figure 8. Estimate of the pressure before cavitation using the lifetime of the capillary liquid (3 377 

months) compared to a lifetime deduced by extrapolating the measurements from [32] 378 

according to the Classic Nucleation Theory (see text). 379 

 380 

To model these data, we calculated the theoretical (according to CNT) mean lifetime of a 381 

liquid superheated at a given pressure, taken as the reciprocal of the nucleation rate at 382 

constant volume (e.g. [39]): 383 

 = 1/J (3) 384 

where  is the lifetime and J the nucleation rate. 385 

The nucleation rate was calculated considering a heterogeneous nucleation on a smooth 386 

rigid surface (equation 44 in [38]): 387 
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 (4) 388 

where N, with its exponent, expresses the number density of the liquid molecules at the 389 

liquid-solid contact (molecules/m2 of interface), assuming a molecular surface for H2O 390 

amounting to 15 Å²/molecule (e.g., [40]); WATER-AIR is the water-air surface tension (N.m-1); and 391 

m is the mass of one water molecule (kg/molecule). B, F, and S are calculated according to: 392 

B  1 – 1/[3.(1 - PWATER/PAIR)], amounting to 2/3 when PWATER is smaller than PAIR (the common 393 

case in cavitation); F  (2 – 3µ + µ3)/4; and S   (1 – µ)/2, where µ = -cos, with  the contact 394 

angle of the growing bubble with the nucleating surface. 395 

Using a contact angle of 96°, a high value characterizing a hydrophobic surface (a correct 396 

assumption with a high-temperature pure quartz), the measurements perfectly fit with no 397 

more adjustment (Fig. 8). Extrapolating the fitted curve up to a lifetime of three months gives 398 

us a -690 x 105 Pa liquid pressure, roughly half the maximum possible value in the capillaries 399 

(-1480 x 105 Pa, see above). This would correspond to a pore radius of the capillary films 400 

around the NaCl plug of about 2 nm, obviously invisible with an optical microscope. 401 

Our water pressure calculation is only a rough estimate of the actual value, since many 402 

characteristics differ between the NaCl solution trapped in fused-silica capillaries (this 403 

experiment) and the reference water fluid inclusions in pure quartz [32]. However, the 404 

calculated value is quite consistent with the experimental conditions and falls within the 405 

expected range. This illustrates that the superheating intensity could reach very high levels, 406 

acting on quite large liquid volumes, justifying its inclusion in the geochemical reasoning. 407 

4.2 Capillary “weathering” geochemistry 408 

According to thermodynamics, the chemical reaction between the NaCl cap and the 409 

surrounding aqueous solution evolves in order to minimize the chemical potential of the 410 

system. Therefore, a modification of the chemical potential due to capillarization inside the 411 

solution necessarily modifies the equilibrium constant of the corresponding reaction. In the 412 
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vocabulary of capillary geochemistry, this corresponds to anisobaric equilibrium, since only 413 

the solution undergoes the capillary state, which is written as: 414 

anisobaric

P

P
ClNacapR

K

K
RTdPVVGd

ref


 



 ln)(
1.0

 (4) 415 

where R is the ideal gas constant (in J.mol-1.K-1); T the temperature (in K); dRGcap (in 416 

J.mol-1) the change of the Gibbs free energy due to capillarization inside the system; Vi (in 417 

m3.mol-1) the molar volume of the ith aqueous species; P (in Pa) the liquid phase pressure; 418 

and Kanisobaric (also noted KP in the graph) and K° the equilibrium constants of the halite 419 

dissolution reaction at P and 105 Pa, respectively. This configuration is called anisobaric 420 

[2,7,8,10] (Kanisobaric), since the cubic solid and the capillary solution do not experience the 421 

same pressure. 422 

The corresponding phase diagram is drawn on Figure 9 using the THERMO-ZNS computer 423 

code, built for thermodynamic calculations in capillary contexts (e.g. [10]). It shows that the 424 

corresponding Kanisobaric increases with decreasing P, i.e. the halite is more soluble in capillary 425 

solution than in a free solution. In other words, a bulk solution at equilibrium with halite tends 426 

to become dissolving when it is capillarized. 427 

Such calculations with the equilibrium constants relate to the standard thermodynamic 428 

properties of the chemical compounds of interest, and show how the activities of the 429 

dissolved species evolve with capillary pressure (Fig. 9, left y-axis). The conversion from 430 

activity to concentrations of the dissolved species normally requires calculation of the activity 431 

coefficients with a suitable model. However, at saturation with respect to halite (or close to), 432 

the Na+ and Cl- activity coefficients are known to be close to 1. This renders the conversion 433 

to aqueous concentrations straightforward and enables organizing the data along the right y-434 

axis on Fig. 9. This, in turn, directly gives the concentration of ionic species in an aqueous 435 

solution (under variably capillary state) at equilibrium with halite. 436 
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 437 

Figure 9. KP/K° ratio and NaCl molality at equilibrium (see text) for the NaCl reaction with a 438 

solution under variable capillary state (thermodynamic properties from the Thermoddem 439 

database, available at http://thermoddem.brgm.fr/). 440 

 441 

Capillarization of the solution thus appears to be a weathering agent as long as the liquid 442 

pressure is modified. Figure 9 shows that the geochemical effect requires a relatively high 443 

capillary tension to become significant in terms of mass balance. Pettenati et al. [17] 444 

evaluated at -200 x 105 Pa the pressure threshold to obtain a geochemical effect. But the 445 

potential impact of such capillary weathering is also related to the area of the solid-liquid 446 

interaction, and to the associated liquid volume that can be transferred at the profile scale 447 

with its ―capillarized salinity‖. The tube wall is entirely in contact with a 5-10 cm long liquid 448 

column that all around interacts with its capillary properties. A second point worth to be noted 449 

is that the solutes mass can be transferred outside the channel, once cavitation has freed the 450 

liquid volume from the retention by capillary forces. 451 

4.3 Cavitation and transport function in UZ 452 

The potential role of cavitation on the desaturation and drying of porous materials/media was 453 

earlier described [14-16]. Actually, as soon as cavitation occurs, the liquid column becomes 454 
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normal free water, unable to resist gravity. In real situations, the liquid occluded and held 455 

immobile in the pores by capillary forces, can, after cavitation, flow downward and exit the 456 

channel through the tiny spaces along the NaCl plugs. Or and Tuller [16] outlined that this is 457 

a potential mechanism for liquid drainage in wet porous media, enabling liquid displacement 458 

even in the absence of a continuous gaseous phase. Additionally, McManus and Davis [15] 459 

stressed that such drainage implies strong changes in soil strength. 460 

This non piston-flow drainage related to liquid cavitation can occur at any water pressure. 461 

Actually, depending on local conditions, the probability of water cavitation depends first on 462 

thermal fluctuations (homogeneous nucleation), but also on many others factors generally 463 

enhancing nucleation probability (impurities, surface states, etc): this is the heterogeneous 464 

nucleation (real) world. Shmulovich et al. [37] illustrated how extreme tensile strength 465 

(cavitation as a spontaneous nucleation process) is a varying limit, even in the same sample 466 

from one fluid inclusion to another. In other words, each situation (a water volume in a given 467 

material under certain environmental conditions) has its own extreme tensile strength with a 468 

nil lifetime. When the studied water volume is differently superheated (due to variation in the 469 

local environment), its lifetime varies between zero at extreme tension and infinite when the 470 

internal water pressure is again at saturation value. Between the two, the lifetime of a more 471 

or less superheated liquid can vary from some seconds to, potentially, millions of years. 472 

In the real world, superheating is affected by the range of variation in air humidity (Kelvin 473 

law), which leads to changing the chemical potential of the contacting liquid, as well as by the 474 

topology of the local space network obeying or not the Young-Laplace relationship, not to 475 

speak of the numerous factors decreasing the nucleation barrier. The simplicity of these two 476 

laws coupled to the immense diversity of the local situations make the resulting scenarios 477 

almost infinite. 478 

Moreover, cavitation has been correctly called a large-scale drainage process [16]. In fact, 479 

the cavitation process is associated with acoustic emissions ranging from audible to 480 

ultrasonic frequencies, which make the process recordable in a non-invasive way (e.g. [41]). 481 

These acoustic emissions are induced by the shock waves resulting from sudden tension 482 
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release in the channel as the stretched liquid is replaced by a biphasic vapor-liquid 483 

assemblage at saturation pressure (e.g. [42]). The shock waves and subsequent sound 484 

waves travelling inside the host media contribute to drastically decreasing the nucleation 485 

energy barrier, which may provoke the cavitation of any metastable volume trapped at some 486 

distance from the one that cavitated first. Cavitation in a given capillary volume can thus 487 

provoke the boiling of any (not too distant) superheated volume through a sort of chain 488 

reaction. 489 

Another aspect is the geochemical aspect of the superheating. The volume trapped between 490 

the two NaCl plugs is quite significant and has two interesting features: 1) It is immobile as 491 

long as it does not cavitate and thus can interact with local solids; 2) It has the specific 492 

properties of a superheated liquid with its own equilibrium constants of reaction (e.g. [1,2,4,7-493 

10]; also, see the previous section). Once the cavitation occurs, the liquid column turns to be 494 

mobile, and moves with its chemical signature gained during its metastable period. 495 

5. CONCLUSIONS AND PERSPECTIVES 496 

We present simple and direct experiments illustrating the ability of superheating of a liquid 497 

volume trapped in cylindrical micrometric capillary tubes. The key feature is the possibility for 498 

(Young-Laplace) capillary bridges to occur somewhere in the host capillary system under 499 

drying conditions. The precipitation of solids from a concentrated filling solution results in the 500 

almost complete plugging of the capillary space. Only a tiny (invisible under optical 501 

microscopy) annular space must remain open between the capillary tube and the grown solid 502 

plug, enabling capillary bridging. The existence of capillary films around the NaCl plugs is 503 

deduced from evidence that the trapped liquid is superheated, which is only possible through 504 

applying the Kelvin law (lower vapor pressure at a liquid-air interface than the saturation 505 

vapor pressure). This requires an ink-bottle configuration, which is exactly that allowed by a 506 

micrometric capillary tube plugged by NaCl plugs just nanometrically narrower than the host 507 

tube. The resulting situation is familiar to natural scientists: this is the same arrangement as 508 
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that experienced by tree sap in 10-400 µm xylems loaded by regularly located 5-300 nm 509 

vessel-to-vessel pit membranes (e.g. [8,43]). 510 

Hydraulically, the NaCl plugs deeply modify liquid mobility as a whole, by isolating part of the 511 

total volume. This should contribute to increasing the complexity of the hysteresis 512 

relationship between drainage and wetting regimes in a porous media, as earlier concluded 513 

[16]. Cavitation of superheated water was earlier studied by tree physiologists, because it 514 

causes embolism of the xylems and thus constitutes a serious vital problem (e.g. [44]). The 515 

problem is less crucial for a soil network, but shows that cavitation can play an important role 516 

with respect to the water budget. 517 

The real novelty of our results, however, concerns the geochemical aspects of the question. 518 

First, we noted the ability of any drying process to dramatically increase the heterogeneity of 519 

an initially simple system, as salt precipitation changes the inner topology of the pore space. 520 

Second, we again demonstrated the ability of narrow spaces for capillarity to take place; 521 

Bouzid et al. [19] found this process in pore membranes of micrometric thickness, but here 522 

we show its existence in decimeter-long open capillaries. Despite the fact that air humidity in 523 

the tube is necessarily higher than the external RH, capillarization occurs and appears able 524 

to expose the system to significant levels of superheating. 525 

An important fact is the potentially large amount of liquid that may be capillarized in the UZ. 526 

According to the Young-Laplace law, high capillary traction seems to apply to only very tiny 527 

volumes of liquid. The ink-bottle effect, however, enables sustaining very large volumes of 528 

stretched water because of the narrow liquid-air interfaces where the supporting capillary 529 

bridges occur. This result opens new perspectives in the UZ geochemistry field, since it 530 

paves the way for renewing the writing of the equilibrium constants of geochemical reactions. 531 

Generally speaking, when capillary solutions interact with pre-existing solids, they are better 532 

solvents than the bulk solutions, a conclusion that was earlier inferred from phase transitions 533 

in pores [19], or from industrial chemistry processes (e.g. [22-23]). This directly affects mass 534 

balance in the UZ, which should now be re-discussed through integrating the superheating 535 

domain of thermodynamic properties of the resident solutions. 536 
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