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SUMMARY

A two-scale modeling of solute transport in double-porosity media under unsaturated water
flow conditions is presented. The macroscopic model was developed by applying the
asymptotic homogenization method. It is based on theoretical and empirical considerations
dealing with the orders of magnitude of characteristic quantities involved in the process. For
this purpose a physical model which mimics the behaviour of double-porosity medium was
built. The resulting two-equation model relies on a coupling exchange term between micro-
and macro-porosity subdomains associated with local non-equilibrium solute concentrations.
The model was numerically implemented (Comsol Multiphysics®) to simulate the
macroscopic one-dimensional physical process taking place into the porous medium of 3D
periodic microstructure. A series of dispersion experiments of NaCl solution under
unsaturated steady-state flow conditions were performed. The experimental results were used
firstly to calibrate the dispersion coefficient of the model, and secondly to validate it through
two other independent experiments. The excellent agreement between the numerical
simulations and the measurements of the time evolution of the non-symmetrical breakthrough
curves provides a proof of predictive capacity of the developed model.
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INTRODUCTION

In the context of recent intensive development of new engineering fields such as deep storage
of nuclear wastes, CO, sequestration, waste landfills, or extraction of geothermal energy,
large research efforts are directed toward efficient protection of subsurface water resources,
which is of growing concern in public and regulatory agencies. Of special attention, is the
prediction of water flow and solute transport in highly heterogeneous soils and rocks. A class
of such media is modeled as double-porosity media. They are characterized by bi-modal pore
size distribution, with micro- and macro-porosity. The double-porosity (DP) microstructure
can arise as a consequence of different physical, mechanical, thermal or chemical processes.
The typical examples are aggregated soils or fissured rocks. They show non-standard
behaviour like preferential flow and transport that cannot be described by classical
mathematical models.

Several models have been proposed for describing the preferential flow and transport in
unsaturated double-porosity media. Most of them are phenomenological [1, 2, 3] and use the
concept of two overlapping continua initially introduced by [4]. In these models, the DP
medium is represented by two interacting domains, one associated with the soil aggregates or
rock matrix blocks, and another one corresponding to the inter-aggregate pore space, macro-
pores or fracture network. A number of such models exist in the literature and they differ by
the assumptions concerning the mechanism of transport in both domains. Van Genuchten and
Wierenga [5] proposed the mobile-immobile (MIM) model in which transport in the macro-
porosity domain is described by the convection-dispersion equation (CDE), while the
transport in the micro-porosity domain is governed by the diffusion equation. The dual-
porosity model presented in [6], also named the dual-permeability mobile-mobile model
(DPMM), employs the CDE approach in both domains. This model was extended to the
triple-porosity medium to obtain the dual-permeability mobile-immobile (DPMIM) model [7]
by assuming that water content in the matrix is partitioned into mobile and immobile
fractions. Another concept was proposed in the MACRO model [8] which assumes that the
solute transport is described by the CDE equation in the micro-porosity domain, while only
convection is taken into account in the macro-porosity domain. In all these models, the solute
exchange between the two domains is represented by a first-order term which is proportional
to the difference in concentrations. Gerke and van Genuchten [9] discussed different possible
expressions for the first-order solute mass transfer coefficient depending on structural soil
geometry.

A number of experimental studies were carried out, from laboratory scale to field scale, to
provide evidence of preferential flow and transport on one hand, and to verify the
applicability of available models on the other hand. For example, solute short and large
“loops” were observed in tracer in situ tests at the Soultz-Sous-Foréts deep geothermal site in
France [10]. These experiments showed evidence of preferential hydraulic paths due to the
fracture network [11]. By performing tracer displacement experiments in undisturbed soil
column, Schwart ef al. [12] pointed out the difficulty in estimating the parameters of the dual-
porosity model [6] by using an inverse technique, because of the non-linearity of the mass
exchange term. Gerke and Kohne [13] succeeded in the validation of the DPMM model [6]
through experimental observations of bromide transport in a tile-drained agricultural field by
identifying the model parameters by inverse analysis, the geometrical transfer term being
estimated empirically from the soil structure description. The MACRO model [8] was verified
by two series of multiple tracers transport data in undisturbed soil column [14], one for the
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parameter estimation stage and another one for the validation stage. The comparison of the
performance of different DP models: MIM [5], DPMM [6] and DPMIM [7] was assessed in
Kohne et al. [15] by simulating experiments of herbicides transport in unsaturated intact soil
column. The authors concluded that the DPMIM approach was the best way to reproduce the
physical non-equilibrium transport. It must be noted that this model requires the largest
number of parameters to be determined (see comparison of parameter number of different
models in [16]). Although it was shown that the phenomenological DP models were able to
reproduce the preferential transport observed in the experiments, some open questions were
left remaining, especially concerning the origin of the macroscopic behaviour, the domain of
validity of these models and the determination of the parameters. Moreover, the complex
microstructure of natural media used in the experiments and the superposition of various bio-
physico-chemical processes made very difficult the distinction between different effects.

The phenomena of water flow and solute transport in DP media have also been modeled by
using different micro-macro upscaling methods. In these approaches, macroscopic models are
derived from the description of physical processes occurring at the microscopic scale. For
example, a two-equation model [17] describing the solute transport in saturated heterogeneous
medium was developed by employing the volume averaging technique [18]. In [19], this
technique was applied to develop a large-scale dispersion model for the case of
heterogeneous porous medium and the two-phase flow. Results showed that this kind of
modeling is facing several limiting assumption, and the authors concluded that "even with the
simplifying assumptions the large-scale dispersion coefficients exhibit very complex
behaviour".

Alternatively, the asymptotic homogenization method was used to obtain different flow and
transport models in double-porosity media. The homogenized models were reviewed by
Peszynska and Showalter [20] for saturated conditions through a heterogeneous porous
medium. Concerning more specifically the unsaturated DP media, Hornung [21] developed a
macroscopic model of diffusion-convection coupled with a diffusion equation in the micro-
porosity domain. Based on the Richard’s equation [22], this model was associated with the
DP approach describing unsaturated water flow. Using the same model for double-porosity
unsaturated water flow, Mikelic and Rosier [23] proposed a transport model which takes into
account convection and dispersion in the macro-porosity, coupled with adsorption at the
micro-porosity external boundary. However, no solute transport in the micro-porosity was
considered.

The aim of this paper is to present the macroscopic model of solute transport in unsaturated
double-porosity medium obtained by asymptotic homogenization. This model is associated
with the unsaturated water flow model which was previously developed by applying the
homogenization method [27]. The solute transport model was validated through fully
controlled NaCl dispersion experiments on a DP physical model of known microstructure, the
same which was previously used for the validation of the double-porosity unsaturated water
flow model [24, 25, 26]. The paper is structured as follows. Section 2 presents the
assumptions and the formulation of the problem. The macroscopic model is developed in
section 3. Section 4 aims at describing the tracer transport experiments in the physical model
under steady-state unsaturated flow. In section 5, the validation of the theoretical model is
performed by comparing experimental and numerical results. This section also gives the
numerical implementation of the macroscopic model, using the Comsol Multiphysics® FEM
code, for the case of 1D physical process taking place in a medium of 3D microstructure. The
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domain of validity of the approach is discussed in section 6, and the main conclusions are
summarized in section 7.

FORMULATION OF THE PROBLEM

We consider solute transport in a double-porosity medium under unsaturated steady-state
water flow conditions. In the following subsections, the general assumptions concerning the
geometry, the microstructure of the medium and the formulation of the physical problems at
the microscale, are presented. We also recall the main results of homogenization of the
unsaturated water flow problem, published in [27]. Since low level of solute concentration
was considered, the water flow problem can be decoupled from the solute transport problem
in the sense that water flow velocity will be considered as an input parameter in the solute
transport description.

1.1  General assumptions

We consider a rigid porous medium characterized by a period (Q2) and two porous sub-
domains (€, and €),) of contrasted physical properties and separated by a common interface I
(Figure 1). Since the porous medium presents a double structure, three different scales can be
distinguished: the pore scale, the Darcy scale (named microscale or local scale) and the
macroscopic scale, respectively. In this study, the starting point of the upscaling analysis is
the Darcy scale. It is assumed that the porous sub-domain 1 (macro-porosity domain ;) is
continuously connected and much more highly conductive than the porous sub-domain 2
(micro-porosity domain €,). Let us also assume the existence of scale separation expressed by
a small parameter &, defined by the ratio of two characteristic lengths: dimension of the period
at the microscopic scale £ [L] and dimension of the domain at the macroscopic scale L [L].
This condition is formally written as:

g:%<<], (1)

The condition (1) is equivalent to the existence of a representative elementary volume. The
aim of the modelling is to study the asymptotic behaviour as ¢ -~ 0. We denote X=(X,, X3, X5)
[L] the physical spatial variable with X; oriented positively upward. In what follows the
subscripts “1” and “2” denote the macro- and micro-porosity domain, respectively. By
making use of the microscopic and macroscopic characteristic lengths, two dimensionless
space variables are introduced:

X X

y:? and X-=- f’ (2)

where y(»1,¥2,¥3) and X(x;,X,,Xx;) are the microscopic and macroscopic dimensionless
space variables respectively.

1.2 Microscopic models of physical phenomena

We consider the unsaturated water flow due to capillary and gravity forces under steady-state
conditions with constant volumetric water contents in each subdomain, the air pressure being
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assumed constant and equal to the atmospheric pressure during the whole process. It is also
assumed that solute is transported by convection and dispersion/diffusion without reaction,
neither on the solid surface, nor in the fluid phase.

Water flow formulation

The water mass balance equations are written [22] as:
0 x Q& ()0 x (I + X3)]=0in 0, 3)

0 x Ky ()0 x (b2 + X3)]= 0in 0, 4
with the following continuity conditions at the interface:

(K, (h)0 (1 + X,)]ON = [K, ()0 4 (hy+ X)JON on T, (5)
m(81)= y(65) on T, (6)

where A(6) [L] is the water capillary pressure head, 8 [L*L~] is the volumetric water content,
K [LT"] is the unsaturated hydraulic conductivity tensor and N is the unit vector normal to [
and exterior to Q,.

While the main results of homogenization of the problem (3)-(6) will be recalled in section 3,
the focus is put hereafter on the modelling of the transport problem, associated with the
unsaturated water flow.

Solute transport formulation

The solute transport is governed by the mass balance equations [28] as follows:

010,C

(01t 1):DXD(D1(91)DXC1_VIC1) in 04, (7)
i(6,C )

(02t 2)=DXD(D2(92)DXC2'V2C2) in Q,, (8)

together with the continuity conditions of fluxes and concentrations at the interface:

(D@0 5 €= v C)IN=(D,@,)0 5 C; =%, G IN on T, ©)
C;=Cyon [, (10)
where C [ML?] is the solute concentration; D(6) [L*T"'] is the local diffusion/dispersion

tensor; v [LT"'] is the local water flow velocity in the porous medium. The latter is assumed
known and determined independently from the transport problem.

1.3 Dimensionless variables
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In order to perform the homogenization process, we have to normalize the variables appearing
in the transport problem (7)-(10) by introducing the characteristic values denoted by the
subscript “c” [29]. It leads to the definition of a set of dimensionless variables:

Cl*: _,C;: _Cz ,D;k: ﬂ’D;: _Dz ;vik: V_l;v;: v_2;61*: 6_1,9;: 0_2;1‘*: i (11)
Clc CZC ch D2c Vie Vae 0 Ic 0 2c le

By using ¢ as the characteristic length, the local problem (7)-(10) is written for the
dimensionless variables in the following form:

t’29 * *)

lca 9151 :vy%D;‘vycl*_fVIC vikcl*E in le (12)
Dyt. ot Dy,
%, 0l85C; ¢

209V y, D% D, V,Cy- 2 vZC’;E in Q,, (13)
D2ctc ot DZc

Epfuycf-%vfc;‘%m:__

lc

C,.C = Cp,Cyoon I (15)

From Equations (12) to (15) it can be seen that physical processes are governed by five
dimensionless numbers:

- two Péclet numbers Pe describing the transport regime in each sub-domain:

P v, 4P tv,,
er= an €= 5
D D,,

le
- two numbers P related to the characteristic time (time of the observation): H¢=
4 291 t%9 2w
D, t. ~

2¢ ‘¢

(16a)

C

and Pre= (16b)

le ‘¢

- anumber G corresponding to the ratio of the diffusion/dispersion coefficients in each
Dy,

sub-domain: G = (16¢)

lc

In the next section, the orders of magnitude of all the dimensionless numbers (16) will be
evaluated using the powers of & This evaluation is based on experimental observations
available in the litterature and some assumptions to be verified by the laboratory dispersion
experiments using a physical model of double-porosity.

1.4  Estimations of the orders of magnitude of the dimensionless numbers

Let us recall that double-porosity media are characterized by the ratio of the hydraulic
conductivities of the two sub-domains of the order K,/K,= O(¢*) [27]. It directly follows



TWO-SCALE MODELING OF SOLUTE DISPERSION

from the large contrast of the characteristic pore sizes in the macro- and micro-porosity. In the
steady-state flow conditions, the water velocity in the micro-porosity disapears in the
macroscopic flow model, since it was shown that water is trapped by capillary forces [27],
[24, 25]. Further, from several dispersion experiments published in the literature [30, 31, 32]
we can learn that the characteristic time of the phenomenon corresponds to the transport by
convection. Therefore, in this paper we take the characteristic time as equal to the time by
convection through the macro-porosity domain

t. = . (17)

Then, two assumptions are made and that will be verified experimentally (section 6). The first
assumption concerns the Péclet number Pejg which was assumed to be of the order one

ﬁv
- 1lc
lelf -

=0, (18)

le

As a consequence of this assumption we have F¢= O(€). The second assumption deals with
the ratio G assumed to be of the order O(&)

G= 222 0(7) (19)

lc

Consequently, with the assumption of 01 of the order of 0,., we have P;= O(¢7). An

important consequence of these assumptions is that the local transport mechanism in the
macro-porosity is convection and dispersion (D, is the characteristic value of the local
dispersion coefficient) [33], while in the micro-porosity it is diffusion (D, is the characteristic
value of the local diffusion coefficient). Since water is immobile in the micro-porosity, we

have Peyp= 0. Finally, we assume Cj. to be of the same order of magnitude as Cj. at the
interface .

1.5 Non-dimensional transport problem at the microscopic scale

By means of the above estimations, the local problem (12) - (15) can be reformulated as
follows :

116, ¢C/ ) P e )
‘ (0;*1):DyD(D1DyC1— 4 Cl) in 94, (20)
10105C5) ( R 5| .
¢ J;Tz)-DyDDZDyCZ in Q,, 21)
* * k% _ 2 % *
(DIDyCl— V| Cl)DN-E (DzﬂyCz)DN on [, (22)
C,=Cyon . (23)
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We can notice the presence of powers of € in front of some terms in Equations (20)-(22)
which comes from the physical considerations. In section 3, the problem (20)-(23) will be
homogenized to derive the macroscopic model by using the asymptotic homogenization
method [34, 35] and [29]. We start by recalling the main results of homogenization of water
flow problem that were given in a previous paper [27]. Some modifications were made in
order to take into account the steady-state case considered in this paper.

HOMOGENIZATION

The homogenization process postulates that all unknowns { can be expressed in the form of
two-scale asymptotic developments, using the small parameter £ [34, 35]:

U eyt )= Qyt)tey VgptH)re? s Dyttt (24)

where all ¢ “(x,y,t") are spatially periodic with respect to the variable y. Due to (2) we
have the relation X = € ¥ that makes the derivation operator be transformed into

Dy‘j Bote D, (25)

The homogenization process is classical and follows the methodology proposed by Auriault
[29].

1.6 Homogenization of the problem of water flow in unsaturated double porosity media

The homogenization of the water flow problem, Equations (3)-(6), was presented in details in
[27]. Note that this problem is highly non linear. The obtained results will be used in the
homogenization of the transport problem.

The solution of the problem (20)-(21) given in [27] provided the macroscopic variable which
is independent of the local variable y

hl(O) = hl(O)(x:t*) = h(O)(xat*) ) (26)

(0)
1

where /4, is the macroscopic capillary pressure head.

The next order problem (24)-(25)-(27) developed in [27] allowed to obtain the solution for
A" in the form of

0= EWD A0+ e)t AP (xt) @7)
where &(p) is the characteristic vectorial function and f_zl(l)(x,t*) is an arbitrary function.

Finally, from (30)-(31) given in [27] and for the steady-state regime established in a DP
medium, the macroscopic equation reads as:

1, 4K (0 [n®+ x)|= 0, (28)
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where
()= (%)= KT < 29)

is the macroscopic water flow velocity [LT"'] and K [LT'] is the effective hydraulic
conductivity tensor of the double-porosity medium, defined by

LJ’ Kl(o)(Vy§+ I)dQ (30)

KT 70y -
@ a7,

where I is the identity matrix.

1.7 Homogenization of the problem of solute transport in unsaturated double-porosity
media

This section presents the homogenization process of the transport problem, Equations (20)-
(23). Introducing the asymptotic developpments (24), taking into account (25), and
regrouping the terms at the same powers of &, lead to:

i(0;c), ,20e7c)
o or
0, [{Df 0,0 - vl(O)Cl(O)] ¢
e oot s 20,00, e e, oo )0, oo

£ bz

. ZHD , [(be yc{” + DT xc{”)— 0, [(vl“’)cl(z) + vy + v1(2>cl<0>)+ 0.0D; (D ycf” +0 xcf(’))— %+
: -0, 1O s v B
in Q,, (31)

i), oalese), alesed],
d¢ dt dt in Q,,
1,403 ,c0)e ' A ) o Ao ) ool e

(32)

D0 - vOc©)oN

te [(D{‘D L0+ Do Y- v - vl(l)Cl(O))DN]+

te 2[(01* 0,62+ D0 ,C”-vC - vV - v cf°>)DN]+ N (D;‘D yC§°>)DN+
on I, (33)

[cOvechse2c®s )z (@ ecse2cP s Jon T (34)

10
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Equating the terms of the same order of £ in (31)-(34) yields successive boundary value
problems to be solved within the period domain. In the following, these problems and their
solutions are addressed.

Macroscopic variable
At the order &, Equations (31) and (33) are written as:
1,000, - vOc®)= 0 0, (35)
(DI*D - va)Cl(O))DN =0 on I, (36)
where Cl(o) is y-periodic. It can be shown that the solution of the problem (35) and (36) is
CO= Cx,t" )= CO(x,1"). (37)

It means that C{” is the macroscopic variable, not depending on the local space variable y

and it is denoted C'* .

Determination of Cl(l) and the local boundary value problem

Let us analyse Equation (31) at the order O(€'). Taking into account the solution (37) we
obtain

0 th_a(m) =0, D’DI*(D LCh CI(O))_ (vl(o) CO 4y C}(o))]_ i [(VI(O) CI(O)) in 0, (8

From the interface condition (33), we get at the order O(e"):
[y o, ¢ b0, - -0 cO|onzoon T (39)

Firstly, we integrate Equation (38) over the domain Q,, and divide it by |Q2|. Then, we perform
three transformations of the first term in the r.h.s. as follows: (i) apply the Gauss-Ostrogradski
theorem to transform the volume integral to the surface integral; (ii) apply the periodicity
condition and the boundary condition (39); (iii) apply once again the Gauss-Ostrogradski
theorem to pass from the surface to the volume integral over the domain Q,. We finally obtain

o(o7 ()
. )O3 (40)
at* 0 X D§<V1 Cl ﬁ
Note that the volume average in (40) is defined by
1
= — UdQ 41

11
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Because of (37) and the fact that 91* is y-independent we can write

a(ef‘ c® O\ (0

Lo () 42
i 0 XEﬁ g : ﬁ @

where ¢, = |Q,|/]2].

From (42), it can be seen that the convective behaviour of C © is obtained at the first order

of approximation.

Now, introducing Equation (42) back into Equation (38) leads to:

0,407, 42 O] 0, 0 040 02 o0 O - Lo if (0}
inQ,, (43)

The problem (43) and (39) defines Cl(l) . Note that it is the same problem as obtained in [36]

for the case of dispersion in a saturated simple-porosity (SP) medium. The solution of this
problem can be put in the form

G = 20, G+ GV (xt), (44)

where the periodic vectorial function % (¥) characterizes the microstructure of the medium

and CV(x,¢") is an arbitrary function.

In order to obtain the local boundary value problem allowing to calculate x(¥), we replace
(44) in (43), and we analyze the terms in the L.h.s. Beginning by the first term, we obtain

1,000 ,cV+ Do @)= 0, dD(0 2+ 1|0 .. (45)
The second term can be written
1, dvOc® + vPc®)= ¢ @+ @0 ¢4 O, O+ v O (46)

Since we have U ® = 0 (Equation (28) in [27]) and C” does not depend on y (Equation
(37) in the present paper), Equation (46) becomes

1, dv@c® 4 vz w00 dyn, @)+ 00, . @7)
The third term in (43) is
1, 1v@c®)= @0, m® + v O (48)

Finally, using Equations (45)-(48), Equation (43) is written in the following form

12
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1,000, x+ 1)0, |- v@0 dy0, c©)- O, B0+ 0 )
1 ( (0) (0) (0) (0)) (0) (0) in { 1
-—\GO By )t (v UG v 0 L C
g\ D< 1 > < 1 > 1 1 1
(49)
The third term in the Lh.s. of Equation (49) vanishes because of Equation (32) in [27] in the

steady-state condition, and the first term in the brackets in the r.h.s. vanishes because of (28).
Hence, Equation (49) is written as follows:

0, [{Df(u Sxt 1)1, cf‘))] -0, [(XD N cl<°>)= Evf‘” - ¢i<v§0>>ED .cO (50)
1

Imposing succesively the unit macroscopic gradient XCI(O) in Equation (50) for the directions

1, 2 and 3, we obtain the local problem for x(y)
x 1
()} - 40 _ (0)
Dyle(Dyx+ I)] vio0, x= v E<VI > (51)

Taking into account Equations (25) and (33) in [27] for the conditions of steady-state water
flow, as well as the solution obtained for Cl(l) (Equation (44)), Equation (39) is re-written

D{(V, z+ 1]oNz00on T, (52)

where X in Equation (51) — (52) is y-periodic with the following additional condition:

1
<I>:mJ‘Q]de=o_ (53)

The local boundary value problem (51) — (53) defines the characteristic function X . This local
boundary value problem possesses the same form as that obtained by Auriault and Adler [37],
and Auriault and Lewandowska [36] for dispersion in saturated conditions in a SP medium.

Here, D;k is the local dispersion tensor which depends on the local velocity.

1.8 Macroscopic model

The macroscopic model is obtained by analyzing the problem (31) and (33) at the order O(&)

st 0 D[D*(D CP+ 10 c“))] +0,0
0t* Ty 1\ y ™1 x 1 X

0, et 0 o] o _dvco)- o dinco)
in Q1, (54)

pilo, e+ o, )0, dvOc®)-

DV, C2+ D}V, C0 - v® ¢ - 0 ¢V - v ) v = (D5 ¥, CO)IN on T .

13



TWO-SCALE MODELING OF SOLUTE DISPERSION

(55)
Concerning the transport problem in the micro-porosity domain, from Equation (32) we
obtain at successive orders the following equations:

* (0)

00266 in 0, (56)
ot

285 CS) . .

%:DyD(Dﬂ]yCéo)) in Q5. (57)

Now, let us postulate that Equation (23) is replaced by the following condition for the
concentration on the interface [

1 s % * *
ijldQ =C, or <C; >, =C,on T (58)
11Ja, '

which means
(< Cl¥>g +e< V> +e2<CP > +...): (c§°> reCP+e?CP 4 on 'l (59
and thus

< CI(O) >q,* Céo) and < CV >o = M on T . (60)

From (56), it can be concluded that Céo) is time-independent, but can depend on (x, y). This

conclusion is in contradiction with the solution for CI(O) as time-dependent, Equation (37).
Therefore, it would require the introduction of a boundary layer in order to match the
interface condition. On the contrary, CS) , the solution of (57), is time-dependent and gives

rise to the mass exchange between the micro- and macro-porosity. In this paper, the
verification of the global interface condition (58) will be postulated only.

In order to get the macroscopic description, Equation (54) is integrated over the domain Q;,
and divided by | Q |. Then, several transformations are performed to get

a<01*C1(1)> : DXD<D1*(D g xcl(o))>_ . xD<v1(0)Cl(1)>_ 0 xD<V1(1)C1(0)>- 0 <8§C§1)> |

it it
(61)
By substituting (44) into (61), we obtain
: <9 1* Cl(l)> * (0) O\ =D M\ ~(0) : <9 ; C;_l)> (62)
" Jegodpion.cC )-D D< >c -0 D< >C S Ve 4
0t* X disp- x “q X ﬁ 14) 1 ﬁ X ﬁ Y1 1 ﬁ 0t*
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where

D}, <D;“[(vyl+ I)- vf‘))x] - |Ql—| J (9,24 1) - vOy] a0 63)

is the dispersion tensor of the DP medium. Note that its definition is the same as in the case of
saturated SP medium ([37] and [36]).

Then, Equation (40) and Equation (Erreur : source de la référence non trouvée) multiplied by
¢, are added leading to

s(orc(”) ooy )
0t 0t

10O 0, OG- 00, -

N(MeS)

0 BN e

- =¢l 0Dy

1sp

In the following, we make use of the expressions: o
)= (50 e (0 )
(€)= () e (C)+ 2 0,00+ 9,6 OO and (C3)= (C)+ 6 (CI)+ .. (66)
where

()= ], @ ana (S5)e g, ()

It allows us to put together the three convective terms in the r.h.s. of Equation (Erreur : source
de la référence non trouvée) in the form of

¢ Dx[(<vl(0)(_71(”>)+ ¢ Dxu(<vf”cf°>>)+ i XD(<vf°>>cf°>): q)iu xD(<vf jitel >)+ OE?). (68

1

Taking into account (68), we can write the Equation (Erreur : source de la référence non
trouvée) in the form

0,

Lo oz |- Ledviyer)- 52 o
1

a<e;‘c1°>+ g a<91*c11>

ot ot 0,
Finally, by considering that 8, and 0, are y-independent, and taking into account (66) and

(56), Equation (69) can be written for the average <C1* > o With the precision 0(&) as:
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olg <>
! ; Ql): ¢V, [
ot

D;ispvx< Cl* >Ql) B VxD(<V1*>< C1*>Ql)_ EM+ O %)

ot

0,

(70)
From Equation (70), it can be seen that convection is dominant at the macroscopic scale.
Dispersion as well as the mass exchange term, which is reponsible for tailing (non Fickian
behaviour), appear as correction at the order &.

The equation governing the transport in the micro-porosity domain is obtained by adding
Equations (56) and (57) multiplied by &. This leads to

262G b x|
aztf = ¢ vyu(pzvycz) in 0,. (71)

Finally, the macroscopic model in the dimensional form can be written as follows:

ols._C.
M 910w Cu) (thCM) = Vy [(DdiSp Vy CM)_ VeV ey)- %’ (72
where
0
M: LI Mdg , (73)
ot Q))o 01

where the notations “M” and “m” denote the macro- and micro-porosity domain respectively .
Cy in Equation (72) is the average solute concentration in the liquid phase in the macro-

porosity domain with respect to the volume of the macro-porosity. <C, > is the average local

solute concentration in the liquid phase in the micro-porosity domain, with respect to the total
volume of the period. V is the Darcy unsaturated water flow velocity.

Equation (72) is coupled with the solute transport equation in the micro-porosity domain

0
%:VXD(DvaCm) in Qp, 7

and the condition at the interface
Cy=C,onl. (75)

The model (72)-(75) is the double-porosity convection-dispersion model (DP-DC). It consists
of two equations for two concentration fields, which are coupled by an exchange term. This
model describes the solute transport in the local non equilibrium conditions.

Note that the effective parameter of the model is an anisotropic dispersion tensor Dy, . It can
be calculated from the solution of the local boundary problem (51)-(53) using the local
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dispersion tensor D; which is locally velocity-dependent. The experimental validation of this
model is presented in sections 4 and 5.

DISPERSION EXPERIMENTS IN THE DOUBLE-POROSITY MEDIUM
1.9  Materials and experimental set-up

1.9.1 Double-porosity physical model

The DP physical model was used to perform dispersion experiments in fully controlled
laboratory conditions. The same model was previously used to study the unsaturated water
flow model [24, 25, 26]. It is built from two porous materials: the Hostun sand HN 38 and the
solidified clayey spheres (radius, R = 3.2x10” m). The sand was considered as the macro-
porosity domain, whereas the clayey spheres are the micro-porosity domain. The laser
granulometry of the sand showed a uniform grain size distribution with the mean grain size of
162 pum. Its composition was mainly quartz (Si0, > 97.5%). The sand was mechanically
compacted and its porosity was kept constant and equal to ny = 0.400 in all experiments. The
mercury porosimetry test gave an average porosity of the solidified clay 7, = 0.348 (against
0.343 measured by gamma rays attenuation technique [38]) and the mean pore size of 0.7 um.
The scanning electronic microscopy of the clay indicated that it contains Si, Al, Ca and traces
of some other metals (K, Fe, Mg and Ti). The contrast between average pores sizes of the two
components of the double-porosity medium was about 1:200. It was shown that such contrast
is sufficient to observe the double porosity effects [27].

For dispersion experiments a Plexiglas column (total height, L = 0.6 m and inner diameter, d
= 0.06 m) was used. The soil column was filled up alternatively with sand and spheres, layer
by layer to obtain the medium length L = 0.5 m, (about 110 layers) (Figure 2). The volumetric
fractions of the two materials were almost the same. We controlled the mass and the
mechanical energy of compaction. Such rigorous protocol allowed us to obtain columns
containing three-dimensional periodic (cubic centered) microstructure £ = 12.96 x 10° m
(Figure 2). It can be noted that the ratio of the characteristic lengths (microscopic /
macroscopic) was about 1/50.

1.9.2  Experimental set-up

The soil column was fixed in the mobile rig, equipped with a gamma ray (**' Am) attenuation
device [38], (Figure 3). The latter allows measuring local porosity or water content changes
along the vertical axis of the column during the experiment. As a supply system for steady-
state unsaturated water flow and tracer displacement, two volumetric pumps of the range 0-
500 cm’/h (Amersham Bioscience Pump P-500), were used. These pumps also were employed
together with a pressure sensor Rosemount (0-3.5 bar) to determine the hydraulic conductivity
at saturation. We obtained the following values of K;: 2.87 x 10° m/s and 1.96 x 10®* m/s for
the Hostun sand and the solidified clay respectively (Figure 4). Solution of NaCl was used as
the passive tracer. The salt was dissolved in the water which was purified by means of a
degassing/stirring machine. The NaCl concentration in the effluent was calculated from the
density measurements (densimeter Anton Paar®, mP 200). This apparatus measures
simultaneously the temperature and the fluid density, with a precision of 1/100 and 5/100000,
respectively.
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1.10 Dispersion tests: experimental procedure and program

The column dispersion tests were carried out in two steps. During the first step the permanent
unsaturated water flow was established. The constant flow was imposed from the bottom of
the column until the steady-state regime was reached. The cumulative outflow flux was
measured by a balance and the recorded data were transferred to a computer via datalogger
(Campbell Scientific Ltd CR 10X). At this stage, the water content was measured by gamma
rays attenuation technique. Thus, the unsaturated permanent condition was obtained when two
criteria were verified: 8 < 6 (6: water content at saturation) and Fiye = Fouer (cumulative flux
at inlet and outlet of the column). The second step consisted in tracer transport. The fluid
displacement was started by switching the four-lines valve in order to connect the NaCl
solution pump (5 g/l) and to close the water pump. Two different ways (pulse and stepwise)
of tracer injection were used in the experiment, so that the valve was switched again or not
according to pulse or stepwise condition. The time evolution of the NaCl concentration in the
effluent (Breakthrough Curve, BTC) was recorded every 300 s by the densimeter connected to
the computer to store all data. The dispersion test was considered ended when densimeter
signal was stable, and the water content profile was measured again and compared with the
initial one.

A series of such NaCl dispersion experiments were conducted in both DP medium (Hostun
sand and clayey spheres) and SP medium (Hostun sand alone). This allowed us to compare
the dispersive behavior between them and also to identify independently the required
parameters of the sand as a constituent of the DP medium. Table 1 presents the main
characteristics of the experiments and the experimental program. Note that the same Darcy
velocity value was used in all experiments.

In this paper three dispersion tests in the double-porosity medium and two tests in the sand are
presented.

1.11 Results

Figure 5 presents for Test 1, 4 and 5, the measured water content profiles corresponding to the
unsaturated permanent water flow. Unfortunately, we could not measure the water content
profiles of Test 2 and 3 because of the dysfunction of the mobile part of the gamma rays
device. It can be observed that the distribution of the water content was not uniform and was
more scattered in the DP medium (Test 1). The average value of all water content
measurements in the sand were € = 0.355 and <> = 0.313 in the DP medium. In the
numerical simulations (section 5), uniform water content and constant average values were
used.

In order to obtain the NaCl concentration history at the outlet of the column, we calculated the
relative concentration Cw/Cy (¢) (C, is the reference concentration) from the measured density
variations with time. It can be noted that the relation between density and concentration
revealed to be linear in our experimental conditions. The breakthrough curves (BTC) were
obtained after filtering the data and they are shown in Figure 6a, for the stepwise-type
boundary condition (single- and double-porosity medium) and in Figure 6b, for the pulse-type
(double-porosity medium only).

The tracer mass balance was verified and reported in Table 2. Note that the mass balance was
computed using the curves of the density in the effluent. The difference between the in/out
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salt mass and the mass present in the column was of the order of 3% (except 9.6% for Test 1).
We checked that no reactive phenomena occurred in the column due to the composition of the
two materials. Therefore, it is believed that the differences in the masses in the mass balance
may come either from the fact that the materials were not perfectly washed between
successive dispersion tests, or/and from the precision of the water content measurement by
gamma rays technique.

Figure 6 shows the effect of the double structure, like early breakthrough and tailing
indicating a non- Fickian behaviour. More detailed qualitative analysis of the obtained BTCs
was presented in [39, 40]. In section 5 these results are used to validate the double-porosity
theoretical model developed by homogenization, Equations (72)-(75).

EXPERIMENTAL VALIDATION OF THE MODEL

The dispersion experiment data were used to validate the theoretical model obtained by
homogenization. In order to be able to perform the numerical calculations, the theoretical
model was implemented for the case of the experiment, namely 1D physical problem taking
place in the DP medium presenting a 3D microstructure (Figure 2). This implementation was
done using the Comsol Multiphysics® finite element code which is well suited for solving the
coupled problems (flow and transport, micro- and macro- porosity domains). The validation
process was carried out in two stages: calibration and validation. During the calibration stage
the effective parameter of the model (dispersion coefficient) and some other parameters were
determined. In the validation stage, the parameters were kept unchanged to simulate two
independent dispersion experiments.

1.12 Numerical implementation of the double-porosity dispersion model

1.12.1 Formulation of the problem

The macroscopic dispersion model (72)-(75) corresponding to the 1D experimental conditions
(Figure 2 and Figure 3), is written as follows:

0(6mCul) . 9.1,
oy s LD, S ()6 - 0(Cu), 76)

08, Cn) - Ezc gacmH

0t irz o dr (77)

Cy = C,, on the interface, (78)

where z and r [L] are the vertical and radial coordinate respectively. The source term, QO
[ML’T™], expresses the solute exchange between the two sub-domains and is defined by:

L p G
OCos )2 o Do (79)

The initial and boundary conditions are as follows:
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1) Initial condition: 1 <0,Cy, = C,, = 0; (80)
i1) Boundary condition for Equation (76):

* For stepwise test (Test 1 and 2):
_ 0Cy
22 0,¢> 0:(v)Cy = Dy (0 1) P (v)Cy, (81)
z

Z:L,t> O:Ddispaa&:() (82)
z

where C, is the applied concentration.

* For pulsewise test (Test 3):

22 0,0< 1 1y :(v)Cyy - Ddisp(eM)"’aLZM: WG, (83)

1

1C
z=0,t> ¢, :<v>CM- Ddisp(GM)a—ZM: <v>C-, (84)

where C; = 0 (water used for tracer displacement).

z= L, t> O:Ddispaaﬂzo (85)
z

where #, [T] is a pulse duration of the tracer solution injected in the medium.

ii1) Boundary condition for Equation (77):

at the interface

r=0,1>0:Cy(2)= C,(r), (86)
at the center of the sphere

1C, _

F=R, (>0:D “Smog. (87)

dr

1.12.2 Strategy of the numerical implementation

The numerical implementation concerned the macroscopic one dimensional equation (76)
coupled with a series of one dimensional problems (77), together with initial (80) and
boundary conditions (81)-(85) and (86)-(87). The implementation was performed using the
commercial Comsol Multiphysics® code. The strategy required the domain transformations
as follows [41]:
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- Equation (76) is to be solved in the 1D domain of the homogenized medium. The
dimension of the domain corresponds to the hight of the column,

- A series of 1D problems in the micro-porosity domains (Equations (77)) were
transformed into an anisotropic diffusion problem in the 2D rectangular domain. This
new domain has the dimensions of the hight of the column and the radius of the
spheres. Diffusion was allowed in the radius direction only.

- The coupling was obtained by imposing the concentration equality condition (78) and
by defining that the source term in Equation (76) is equal to the average flux along the
micro-macro interface, Equation (79).

The schematic illustration of the numerical implementation is presented in Figure 7. The
macroscopic domain was uniformly discretized into 100 elements (Az = 5x10° m, 101 nodes).
There was initially 19 elements (Ar = 0.17x107 m, 20 nodes) for the direction . Because the
size of the domain in r direction is short (» = 3.2x10m) in comparison with the dimension of
the macroscopic domain, L = 0.5 m, the microscopic domain was finely re-meshed by using
the re-scaling factor L/r. In this manner, the number of elements (1483 triangular elements)
was increased. The mesh was finer close to the interface. It was checked that the results were
mesh independent. The time step varied in the range 0.001 s — 0.1 s.

1.13 Comparison between numerical simulations and experimental measurements

In order to validate the theoretical model, we carried out the numerical simulations of the
experiments and we compared the results with the observations. This process consists of two
stages: calibration and validation. Test 1 (stepwise-type) for the calibration stage and Test 2
(stepwise-type) and Test 3 (pulsewise-type) for the validation stage were used.

1.13.1 Model calibration

The model (76)-(78) was calibrated by fitting the dispersion coefficient Dgi,(6v) to the
experimental breakthrough curve of the Test 1. The other model parameters were either
known or estimated via an independent analysis. Concerning the water contents 6y and 8, it
was assumed that 8y, in the macro-porosity domain was the same as in pure sand tests (Test 4
and 5) because both SP and DP experiments were performed at the same unsaturated flow
conditions. Therefore, we have 6y =0.355. On the other hand, because the experiment was
performed in the conditions close to saturation, we considered that 8, in the micro-porosity
domain is equal to 8,s (= 0.343). Taking into account these two values, the average water
content in the double-porosity medium was calculated as < 8> = @1 Gu + @ G =0.348.
Note that this value is higher than the one measured by gamma rays technique (< 0 >, =
0.313) with 10% difference (which corresponds to the precision of mass balance for Test 1,
see Table 2). This may be explained by the fact that the saturation of the DP medium slightly
increased with long duration of the experiment. The diffusion coefficient Dy (68,) in the micro-
porosity domain (solidified clay) was taken from the literature for brick material at saturation
Alh [42], (D = 7.345x10"" m?/s). Fitting of the dispersion coefficient of the DP medium
Daisp(6v) was achieved by taking the dispersion coefficient in pure sand tests (Test 4 and 5) as
the initial value. The latter value, equal to Dy = 1.50x10° m?/s, was obtained by inverse
analysis of the experiments in sand, using the CXTFIT code [43]. The calibrated dispersion
coefficient in the DP medium was found Dy, = 2.374x10* m?/s.
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Figure 8 shows a very satisfying agreement between the simulated and measured values of
concentration time evolution at the outlet of the column for Test 1. Note that some
measurement points were removed from the BTC for the sake of better visualization.
Statistics given in Table 3 confirm the accuracy of the fit. Finally, it has to be pointed out that
the dispersion coefficient of the DP medium was found to be greater than the one of the SP
medium (sand) for the same Darcy velocity condition. That confirms the exprimental results
published in the literature for highly heterogeneous soils

1.13.2 Model validation

Since all experiments were performed in the same flow condition, the model parameters
obtained from Test 1 can be employed to simulate two other independent experiments with
different boundary conditions: Test 2 (stepwise-type) and Test 3 (pulsewise-type with pulse
duration #, = 4,620 s). Figures 9 and 10 give the calculated and measured concentration
evolution with time at the outlet of the column are presented. Excellent agreement are
observed and confirmed by the statistics in Table 3 for Test 2 and 3. It can be concluded that
the developed model was successfully validated by a very good description of all the features
of the BTCs observed in the experiments, particularly their early advance and tailing.

DISCUSSION

The results of the dispersion experiment were used to analyze some assumptions defining the
domain of validity of the model.

Firstly, let us verify the condition defining the double porosity medium which is

K oey, (88)

1

where the small parameter is € = ¢/L = 2.6x10?. For the experimental condition close to
saturation, the coefficients K can reasonably be considered as the saturated hydraulic
conductivity. Hence, we have

K, 1.96x1078

-3
= 6.9% 10 (89)
Ky 286x107°

meaning that the assumption is verified since:

17.6x107° << %: O(¢ 2)<< 2.6x1072 ) (90)
1

Three assumptions concerning the homogenization of the transport problem have to be
verified:

1) First, we assumed that the characteristic time of the process is the time of convection
through the macro-porosity domain. From Figure 6 we can see that this time is of the order
O(10° s) which corresponds to the time of the transport by convection in the macro-porosity
domain at the scale L
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. o L8 . 051x0355

© Ve 3.44x107/0.49
i1) Second condition concerns the ratio of the diffusion/dispersion coefficients:

= 25789 g, (91)

_ Dy - 2
G-D oE") (92)

lc

with Dy, = 7.345x10™"" m%s and D,. = 2.374x10"®* m*/s / 0.490 (estimated value). These lead to:

D,,  7345x107!

- = 1.5x1073 (93)
Dy, 2.374x107°/0.490

So, we can see that the condition is satisfied

6.7% 10" << %: 0 2)<< 2.6x1072 (94)

le

ii1) Finally, the Péclet number calculated as:

vy 12.96x 102 % 3.44x 107 /0.49 _

Peyp = 1.8 (95)
Dy, 2.374x 107 /0.49

falls within the domain of validity since

2.6x1072<< Pe,p= O *) << 62.5. (96)

for the experiments which were carried out.

Following this analysis, it can be concluded that the domain of validity of the model applied
to the experimental dataset was respected and was based on physically justified assumptions.

CONCLUSIONS

Using the asymptotic homogenization method, we derived a double-porosity dispersion-
convection model, consisting of two coupled equations at macro- and microscopic scale. The
existence of two concentration fields provides evidence of the local non equilibrium condition
during the transient phase of the process, and resulting in early breakthrough and tailing
curves, reported in the literature as preferential transport. The derivation was based on
physical arguments and estimates of the non dimensional parameters, which was confirmed
by dispersion experiments on a physical model of double-porosity. It is interesting to notice
that we obtain a double-porosity dispersion model for the case of a large contrast of water
hydraulic conductivities at saturation for the macro- and micro-porosity domains (of the order
&%), while the ratio of the diffusion coefficients at saturation in the two domains is of the order
&” (1:14). It means that the contrast of diffusion coefficients is not needed to observe the
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double-porosity effects in the solute transport. Such situation seems to correspond to the
physical reality of a wide class of geomaterials.

The theoretical model has one effective parameter: the dispersion tensor. It depends on the
local transport characteristics in the macro-porosity domain and the microstructure of the
medium. The homogenization approach allows us to better understand the relation between
the microstructure and the macroscopic dispersive properties. It has to be pointed out that
dispersion tensor is strongly velocity dependent. It can be determined experimentally from the
steady-state dispersion experiments.

The model was numerically implemented by using the finite element code Comsol
Multiphysics®. A particular strategy of the implementation was proposed to enable the two-
scale coupled computations, in the case of one dimensional physical process taking place in a
porous medium presenting three dimensional (cubic centered) microstructure.

The obtained double-porosity model was experimentally validated. The experiments were
carried out in a physical model, consisting of periodic assemblage of clayey spheres and fine
sand carefully packed in a vertical soil column. The experiments were carried out in
unsaturated conditions close to saturation. It was shown that the model reproduced with an
excellent accuracy a series of dispersion experiments of NaCl tracer in controlled laboratory
conditions. Of particular interest are the results showing the effect of local non-equilibrium
prevailing in a double-porosity medium on the early advance and tailing of the breakthrough
curves as compared to what it expected by considering single homogeneous porous material.

As for all models developed by upscaling approaches, the model implies the existence of scale
separation. Moreover, the domain of validity of the dispersion model, defined by means of
non dimensional parameters, has to be verified.

It is believed that the proposed modeling approach can be extended for the case of reactive
solute transport. Other physical phenomena conducting to hydro-chemico-mechanical
couplings can also be foreseen.
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Table 1. Main characteristics of the experiments. L is the medium length; @M and @m are the
volumetric fractions of the macro- and micro-porosity domains, respectively; nM and nm are
the porosities of the macro- and micro-porosity domains measured by gravity and
gammametry, respectively; <0> is the average volumetric water content of the double-
porosity domain measured by gamma attenuation technique; <v> is the imposed Darcy
velocity; CO is the tracer concentration applied at the entry of the column; DP and SP stand
for double-porosity and single-porosity (pure sand), respectively.

Table 2. Solute mass balance measured in the five tests. M1 and M2 are the input and ouput
salt masses; MO is the salt mass present in the medium; DP and SP stand for double- and
single-porosities, respectively.

Table 3. Statistics of the model efficiency for Test 1 (calibration), Test 2 and Test 3
(validation). SSQ is the objective fonction; R is the correlation coefficient; RMSE is the root
mean square error (see defintions in [41]).
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L "y @, Ry P <6> <y> Tvpe Co

e I 5 N B M & [m/s] P [¢/1]
Test1 (DP) 0.510 0.490 0.510 0378 0.343 0.313 3.44x10°¢ Step 5
Test2 (DP) 0.469 0.483 0.517 0386 0.343 3.44x10¢ Step 5
Test3 (DP) 0.469 0.483 0.517 0.386 3.44x10° Pulse 5
Test4 (SP)  0.503 0.404 0.354  3.44x10° Step 5
Test 5 (SP)  0.502 0.400 0.355  3.44x10° Step 5

Table 1. Main characteristics of the experiments. L is the medium length; @, and @, are the
volumetric fractions of the macro- and micro-porosity domains, respectively; ny,and n,, are the
porosities of the macro- and micro-porosity domains measured by gravity and gammametry,
respectively; <@> is the average volumetric water content of the double-porosity domain
measured by gamma attenuation technique; <v> is the imposed Darcy velocity; Cy is the
tracer concentration applied at the entry of the column; DP and SP stand for double-porosity
and single-porosity (pure sand), respectively.
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Mi[g] M;[g] M -M;[g] Mi[g] AM[%]
Test1 (DP) 6.038 3.518 2.520 2277 9.631
Test2 (DP) 5.177 2910 2.267 2057 4263
Test3 (DP) 0225 0.226 0.400
Test4 (SP)  4.054  1.496 2.596 2530 1.492
Test5(SP)  4.185  1.630 2.556 2459 3.779

Table 2. Solute mass balance measured in the five tests. M; and M, are the input and ouput
salt masses; M, is the salt mass present in the medium; DP and SP stand for double- and
single-porosities, respectively.
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SSO R RMSE

Test 1 0.028 0.9981 3.5x10%*
Test2  0.002 0.9999 2.4 x10°
Test3  0.016 0.9820 3.5x10°

Table 3. Statistics of the model efficiency for Test 1 (calibration), Test 2 and Test 3
(validation). SSQ is the objective fonction; R is the correlation coefficient; RMSE is the root

mean square error (see defintions in [41]).
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Figure 1: Macro- and microscopic scales in the double-porosity periodic medium.

Figure 2: Microstructure (periodic) of the double-porosity medium used in the experiments
(units in mm) (The small figure reprinted from Proceedings of the Fourth Biot Conference on
Poromechanics IV, 2009. Lancaster, PA: DEStech Publications, Inc. with permission).
Figure 3: Scheme of the set-up used for the dispersion experiments in the unsaturated double-
porosity medium. Gamma rays attenuation device (radioactive 241 Am source, scintillator,
photomultiplicator mounted on a mobile platform); pumps (Amersham Bioscience P-500);
NaCl tracer dissolved in the water purified by inverse osmosis (Milli-ro 3 Plus); Densimeter
(Anton Paar, mP 200) measuring the density of tracer in the effluent from the porous medium
Figure 4: Measured hydraulic conductivity at saturation Ks of sand, double-porosity medium
(DP) and solidified clay deduced from the slope of the relation between Darcy flux q and
pressure gradient AP/L.

Figure 5: Measured volumetric water content profiles by gamma rays attenuation technique in
the double-porosity (Test 1) and in the simple-porosity (Test 4 and 5) media.

Figure 6: Measured breakthrough curves: a) stepwise-type for the double-porosity medium
(Test 1 and 2) and for the simple-porosity medium (Test 4 and 5); b) pulsewise-type for the
double-porosity medium (Test 3).

Figure 7: a) Scheme of homogenized double-porosity medium; b) General principle of the
numerical implementation of the double-porosity model (scheme not to scale).

Figure 8: Calculated (bold line) and measured (symbols) breakthrough curves for Test 1:
calibration stage (stepwise-type boundary) (This figure reprinted from Proceedings of the
Fourth Biot Conference on Poromechanics IV, 2009. Lancaster, PA: DEStech Publications,
Inc. with permission).

Figure 9: Simulated (bold line) and measured (symbols) breakthrough curves for Test 2:
validation stage (stepwise-type boundary) (This figure reprinted from Proceedings of the
Fourth Biot Conference on Poromechanics IV, 2009. Lancaster, PA: DEStech Publications,
Inc. with permission).

Figure 10: Simulated (bold line) and measured (symbols) breakthrough curves for Test 3:
validation stage (pulsewise-type boundary) (This figure reprinted from Proceedings of the
Fourth Biot Conference on Poromechanics IV, 2009. Lancaster, PA: DEStech Publications,
Inc. with permission).
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Figure 1: Macro- and microscopic scales in the double-porosity periodic medium.
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Figure 2: Microstructure (periodic) of the double-porosity medium used in the experiments
(units in mm) (The small figure reprinted from Proceedings of the Fourth Biot Conference on
Poromechanics IV, 2009. Lancaster, PA: DEStech Publications, Inc. with permission).
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Figure 3: Scheme of the set-up used for the dispersion experiments in the unsaturated double-
porosity medium. Gamma rays attenuation device (radioactive **' Am source, scintillator,
photomultiplicator mounted on a mobile platform); pumps (Amersham Bioscience P-500);
NaCl tracer dissolved in the water purified by inverse osmosis (Milli-ro 3 Plus); Densimeter
(Anton Paar, mP 200) measuring the density of tracer in the effluent from the porous medium
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Figure 4: Measured hydraulic conductivity at saturation K, of sand, double-porosity medium
(DP) and solidified clay deduced from the slope of the relation between Darcy flux q and

pressure gradient AP/L.
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Figure 5: Measured volumetric water content profiles by gamma rays attenuation technique in
the double-porosity (Test 1) and in the simple-porosity (Test 4 and 5) media.
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Figure 6: Measured breakthrough curves: a) stepwise-type for the double-porosity medium
(Test 1 and 2) and for the simple-porosity medium (Test 4 and 5); b) pulsewise-type for the
double-porosity medium (Test 3).
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Figure 7: a) Scheme of homogenized double-porosity medium; b) General principle of the
numerical implementation of the double-porosity model (scheme not to scale).
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Figure 8: Calculated (bold line) and measured (symbols) breakthrough curves for Test 1:

calibration stage (stepwise-type boundary) (This figure reprinted from Proceedings of the
Fourth Biot Conference on Poromechanics IV, 2009. Lancaster, PA: DEStech Publications,

Inc. with permission).
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Figure 9: Simulated (bold line) and measured (symbols) breakthrough curves for Test 2:

validation stage (stepwise-type boundary) (This figure reprinted from Proceedings of the
Fourth Biot Conference on Poromechanics IV, 2009. Lancaster, PA: DEStech Publications,

Inc. with permission).
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Figure 10: Simulated (bold line) and measured (symbols) breakthrough curves for Test 3:
validation stage (pulsewise-type boundary) (This figure reprinted from Proceedings of the
Fourth Biot Conference on Poromechanics IV, 2009. Lancaster, PA: DEStech Publications,

Inc. with permission).

43



	1.1 General assumptions
	1.2 Microscopic models of physical phenomena
	1.3 Dimensionless variables
	1.4 Estimations of the orders of magnitude of the dimensionless numbers
	1.5 Non-dimensional transport problem at the microscopic scale
	1.6 Homogenization of the problem of  water flow in unsaturated double porosity media
	1.7 Homogenization of the problem of  solute transport in unsaturated double-porosity media
	Macroscopic variable
	Determination of  and the local boundary value problem
	1.8 Macroscopic model
	1.9 Materials and experimental set-up
	1.9.1 Double-porosity physical model
	1.9.2 Experimental set-up

	1.10 Dispersion tests: experimental procedure and program
	1.11 Results
	1.12 Numerical implementation of the double-porosity dispersion model
	1.12.1 Formulation of the problem
	1.12.2 Strategy of the numerical implementation

	1.13 Comparison between numerical simulations and experimental measurements
	1.13.1 Model calibration 
	1.13.2 Model validation


