O. L. Anderson and D. A. Stuart, Calculation of Activation Energy of Ionic Conductivity in Silica Glasses by Classical Methods, Journal of the American Ceramic Society, vol.29, issue.10, pp.37-573, 1954.
DOI : 10.1007/BF01657176

K. Baba, A. D. Chave, R. L. Evans, G. Hirth, and R. Mackie, Mantle dynamics beneath the East Pacific Rise at 17??S: Insights from the Mantle Electromagnetic and Tomography (MELT) experiment, Journal of Geophysical Research: Solid Earth, vol.129, issue.5, p.210110, 1029.
DOI : 10.1029/2004JB003598

H. Bureau and H. Keppler, Orocline and its relation to subduction processes at the South American continental margin Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications, Journal of Geophysical Research Earth and Planetary Science Letters, vol.113, issue.165, pp.187-196, 1999.

S. Chakraborty, Diffusion in silicate melts, Structure, Dynamics and Properties of Silicate Melts, pp.411-503, 1995.

S. Constable, SEO3: A new model of olivine electrical conductivity, Geophysical Journal International, vol.166, issue.1, pp.435-437, 2006.
DOI : 10.1111/j.1365-246X.2006.03041.x

L. Dai and S. Karato, Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere, Proceedings of the Japan Academy, 2009.
DOI : 10.2183/pjab.85.466

L. Dai and S. Karato, Electrical conductivity of pyrope-rich garnet at high temperature and high pressure, Physics of the Earth and Planetary Interiors, vol.176, issue.1-2, pp.83-88, 2009.
DOI : 10.1016/j.pepi.2009.04.002

R. Dasgupta and M. M. Hirschmann, Melting in the Earth's deep upper mantle caused by carbon dioxide, Nature, vol.69, issue.7084, 2006.
DOI : 10.1038/nature04612

R. L. Evans, A. D. Chave, and J. R. Booker, On the importance of offshore data for magnetotelluric studies of ocean-continent subduction systems, Geophysical Research Letters, vol.94, issue.9, pp.1302-1312, 1029.
DOI : 10.1029/2001GL013960

O. Figueroa, B. Déruelle, and D. Demaiffe, Genesis of adakite?like lavas of Licancabur volcano (Chile?Bolivia, Comptes?rendus de Geoscience, pp.310-318, 2009.

D. J. Frost and M. C. , The Redox State of Earth's Mantle, Annual Review of Earth and Planetary Sciences, vol.36, issue.1, pp.389-420, 2008.
DOI : 10.1146/annurev.earth.36.031207.124322

G. A. Gaetani and T. L. Grove, Experimental constraints on melt generation in the mantle wedge, Geophysical Monograph, vol.98, 2003.
DOI : 10.1029/138GM07

F. Gaillard, Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure, Earth and Planetary Science Letters, vol.218, issue.1-2, pp.215-228, 2004.
DOI : 10.1016/S0012-821X(03)00639-3

F. Gaillard and G. I. Marziano, Electrical conductivity of magma in the course of crystallization controlled by their residual liquid composition, Journal of Geophysical Research, vol.108, issue.B3, pp.110-122, 2005.
DOI : 10.1029/2004JB003282

URL : https://hal.archives-ouvertes.fr/hal-00023414

M. S. Ghiorso and R. O. Sack, Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures, Contributions to Mineralogy and Petrology, vol.55, issue.107, pp.119-197, 1995.
DOI : 10.1007/BF00307281

P. W. Glover, M. J. Hole, and J. Pous, A modified Archie???s law for two conducting phases, Earth and Planetary Science Letters, vol.180, issue.3-4, pp.180-369, 2000.
DOI : 10.1016/S0012-821X(00)00168-0

Z. Hashin and S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity, Journal of the Mechanics and Physics of Solids, vol.10, issue.4, pp.335-342, 1962.
DOI : 10.1016/0022-5096(62)90004-2

E. Hinze, G. Will, C. , and L. , Electrical conductivity measurements on synthetic olivines and on olivine, enstatite and diop side from Dreiser Weiher, Eifel (Germany) under defined thermodynamic activities as a function of temperature and pressure, Physics of the Earth and Planetary Interiors, pp.245-254, 1981.

W. B. Holzapfel, Effect of pressure and temperature on the conductivity of ionic dissociation of water up to 100kbar and 1000°C, Journal of Chemical Physics, issue.10, pp.50-4424, 1969.

X. Huang, Y. Xu, and S. Karato, Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite, Nature, vol.248, issue.7034, pp.434-746, 2005.
DOI : 10.1016/S0031-9201(99)00135-1

M. R. Ingham, A magnetotelluric and magnetovariational traverse across the New Zealand subduction zone, Geophysical Journal, vol.92, pp.495-504, 1988.

H. Jödicke, A. Jording, L. Ferrari, J. Arzate, K. Mezger et al., Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: Implications for the generation of volcanism and subduction dynamics, Journal of Geophysical Research, vol.94, issue.10, 2006.
DOI : 10.1029/2005JB003739

A. G. Jones, R. L. Evans, and D. W. Eaton, Velocity???conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin???Shtrikman extremal bounds, Lithos, vol.109, issue.1-2, pp.131-143, 2009.
DOI : 10.1016/j.lithos.2008.10.014

T. Katsura, K. Sato, and E. Ito, Electrical conductivity of silicate perovskite at lower?mantle conditions, Nature, pp.395-493, 1998.

M. L. Nascimento and S. Watanabe, Test of the Anderson???Stuart model and correlation between free volume and the ???universal??? conductivity in potassium silicate glasses, Materials Chemistry and Physics, vol.105, issue.2-3, pp.308-314, 2007.
DOI : 10.1016/j.matchemphys.2007.04.068

J. Nell, B. J. Wood, and T. O. Mason, High?temperature cation distributions in Fe3O4?MgAl2O4?MgFe2O4?FeAl2O4 spinels from thermopower and conductivity measurements, American Mineralogist, issue.3?4, pp.74-339, 1989.

B. E. Nesbitt, Electrical resistivities of crustal fluids, Journal of Geophysical Research: Solid Earth, vol.25, issue.14, pp.4301-4310, 1993.
DOI : 10.1029/92JB02576

R. C. Newton and C. E. Manning, Thermodynamics of SiO2???H2O fluid near the upper critical end point from quartz solubility measurements at 10??kbar, Earth and Planetary Science Letters, vol.274, issue.1-2, pp.241-249, 2008.
DOI : 10.1016/j.epsl.2008.07.028

S. M. Peacock, Fluid Processes in Subduction Zones, Science, vol.248, issue.4953, pp.248-329, 1990.
DOI : 10.1126/science.248.4953.329

B. T. Poe, C. Romano, V. Varchi, V. Misiti, and P. Scarlato, Electrical conductivity of a phonotephrite from Mt. Vesuvius: The importance of chemical composition on the electrical conductivity of silicate melts, Chemical Geology, vol.256, issue.3-4, pp.256-193, 2008.
DOI : 10.1016/j.chemgeo.2008.06.026

B. T. Poe, C. Romano, F. Nestola, and J. R. Smyth, Electrical conductivity anisotropy of dry and hydrous olivine at 8GPa, Physics of the Earth and Planetary Interiors, pp.103-111, 2010.

S. Poli and M. W. Schmidt, O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems, Journal of Geophysical Research: Solid Earth, vol.250, issue.16, pp.299-22314, 1995.
DOI : 10.1029/95JB01570

A. Pommier, F. Gaillard, M. Pichavant, and B. Scaillet, Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure, Journal of Geophysical Research, vol.82, issue.1???4, 2008.
DOI : 10.1029/2007JB005269

A. Pommier, F. Gaillard, and M. Pichavant, Time-dependent changes of the electrical conductivity of basaltic melts with redox state, Geochimica et Cosmochimica Acta, vol.74, issue.5, 2010.
DOI : 10.1016/j.gca.2009.12.005

URL : https://hal.archives-ouvertes.fr/insu-00442614

A. Pommier, F. Gaillard, M. Malki, and M. Pichavant, Methodological re-evaluation of the electrical conductivity of silicate melts, American Mineralogist, vol.95, issue.2-3, pp.95-284, 2010.
DOI : 10.2138/am.2010.3314

URL : https://hal.archives-ouvertes.fr/insu-00460515

A. S. Quist and W. L. Marshall, Electrical conductances of aqueous sodium chloride solutions from 0 to 800C and at pressures to 4000bars, Journal of Physical Chemistry, pp.684-703, 1968.

C. S. Rai and M. H. Manghnani, Electrical conductivity of basalts to 1550°C, in Magma genesis: Bulletin 96, Oregon Department of Geology and Mineral Industries, pp.219-232, 1977.

C. Romano, B. T. Poe, N. Kreidie, and C. A. Mccammon, Electrical conductivities of pyrope?almandine garnets up to 19GPa and 1700°C, American Mineralogist, 2006.

C. Romano, B. T. Poe, J. Tyburczy, and F. Nestola, Electrical conductivity of hydrous wadsleyite, Electrical conductivity of hydrous wadsleyite, pp.615-622, 2009.
DOI : 10.1127/0935-1221/2009/0021-1933

J. Satherley and S. I. Smedley, The electrical conductivity of some hydrous and anhydrous molten silicates as a function of temperature and pressure, Geochimica et Cosmochimica Acta, vol.49, issue.3, pp.769-777, 1985.
DOI : 10.1016/0016-7037(85)90171-1

H. Sato, I. , and Y. , Low?frequency electrical?impedance of partial melt geometry on electrical properties, Tectonophysics, issue.1?2, pp.107-103, 1984.

S. Etna, B. Italy-), and H. Schmeling, Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. part II: Electrical conductivity, Physics of the Earth and Planetary Interiors, Journal of Geophysical Research?Solid Earth, vol.109, issue.43, pp.123-136, 1986.

M. W. Schmidt and S. Poli, Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth and Planetary Science Letters, vol.163, issue.1-4, pp.361-379, 1998.
DOI : 10.1016/S0012-821X(98)00142-3

M. C. Sunagua, S. R. Mcnutt, and M. E. Pritchard, Uturuncu volcano, Bolivia: Volcanic unrest due to mid?crustal magma intrusion, American Journal of Science, vol.308, issue.6, 2008.

P. Tarits, S. Hautot, and F. Perrier, Water in the mantle: Results from electrical conductivity beneath the French Alps, Geophysical Research Letters, vol.105, issue.B10, pp.10-1029, 2004.
DOI : 10.1029/2003GL019277

URL : https://hal.archives-ouvertes.fr/insu-01298769

T. Grotenhuis, S. M. Drury, M. R. Spiers, C. J. Peach, and C. J. , Melt distribution in olivine rocks based on electrical conductivity measurements, Journal of Geophysical Research, vol.78, issue.B1, pp.10-1029, 2005.
DOI : 10.1029/2004JB003462

J. A. Tyburczy, Properties of Rocks and Minerals ??? The Electrical Conductivity of Rocks, Minerals, and the Earth, Treatise on Geophysics, 2.21, pp.631-642, 2007.
DOI : 10.1016/B978-044452748-6/00050-X

J. A. Tyburczy and D. K. Fisler, Electrical properties of minerals and melts, Mineral Physics and Crystallography, A Handbook of Physical Constants, 1995.

J. A. Tyburczy and H. S. Waff, Electrical conductivity of molten basalt and andesite to 25 kilobars pressure: Geophysical significance and implications for charge transport and melt structure, Journal of Geophysical Research, vol.1, issue.88, pp.2413-243010, 1983.
DOI : 10.1029/JB088iB03p02413

J. A. Tyburczy and H. S. Waff, High pressure electrical conductivity in naturally occurring silicate liquids, in Point Defects in Minerals, Geophys. Monogr. Ser, vol.31, pp.78-87, 1985.

H. S. Waff, Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry, Journal of Geophysical Research, vol.10, issue.33, pp.4003-4010, 1974.
DOI : 10.1029/JB079i026p04003

H. S. Waff and D. F. Weill, Electrical conductivity of magmatic liquids: effects of temperature, oxygen fugacity and composition, Earth and Planetary Science Letters, vol.28, issue.2, pp.254-260, 1975.
DOI : 10.1016/0012-821X(75)90235-6

B. J. Wanamaker and A. G. Duba, Electrical conductivity of San Carlos Olivine along [100] under oxygen- and pyroxene-buffered conditions and implications for defect equilibria, Journal of Geophysical Research: Solid Earth, vol.31, issue.B1, pp.489-500, 1993.
DOI : 10.1029/92JB01584

D. Wang, M. Mookherjee, Y. Xu, and S. Karato, The effect of water on the electrical conductivity of olivine, Nature, vol.28, issue.7114, 2006.
DOI : 10.1038/nature05256

D. Wang, H. Li, L. Yi, and B. Shi, The electrical conductivity of upper-mantle rocks: water content in the upper mantle, Physics and Chemistry of Minerals, vol.443, issue.3, pp.157-162, 2008.
DOI : 10.1007/s00269-007-0207-1

H. S. Xie, W. G. Zhou, M. X. Zhu, Y. G. Liu, Z. D. Zhao et al., Elastic and electrical properties of serpentinite dehydration at high temperature and high pressure, Journal of Physics: Condensed Matter, vol.14, issue.44, pp.11359-11363, 2002.
DOI : 10.1088/0953-8984/14/44/482

Y. Xu, H. Xie, J. Guo, H. Zheng, Y. Zhang et al., Conductivity of NaCl solution at 0.4???5.0 GPa and 25???500 ??C, Conductivity of NaCl solution at 0.4?5.0GPa and 25?500°C, pp.398-402, 1997.
DOI : 10.1007/BF02877571

Y. Xu, T. J. Shankland, A. G. Duba, and B. T. Poe, Laboratory-based electrical conductivity in the Earth's mantle, Journal of Geophysical Research: Solid Earth, vol.118, issue.46, pp.27865-27872, 2000.
DOI : 10.1029/2000JB900299

T. Yoshino, T. Matsuzaki, S. Yamashita, and T. Katsura, Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere, Nature, vol.108, issue.7114, pp.973-976, 2006.
DOI : 10.1038/nature05223