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ABSTRACT. Results from the Heinrich Event INtercOmparison (HEINO) topic of the Ice-Sheet Model
Intercomparison Project (ISMIP) are presented. ISMIP HEINO was designed to explore internal large-
scale ice-sheet instabilities in different contemporary ice-sheet models. These instabilities are of
interest because they are a possible cause of Heinrich events. A simplified geometry experiment
reproduces the main characteristics of the Laurentide ice sheet, including the sedimented region over
Hudson Bay and Hudson Strait. The model experiments include a standard run plus seven variations.
Nine dynamic/thermodynamic ice-sheet models were investigated; one of these models contains a
combination of the shallow-shelf (SSA) and shallow-ice approximation (SIA), while the remaining eight
models are of SIA type only. Seven models, including the SIA–SSA model, exhibit oscillatory surges with a
period of∼1000years for a broad range of parameters, while two models remain in a permanent state of
streaming for most parameter settings. In a number of models, the oscillations disappear for high surface
temperatures, strong snowfall and small sediment sliding parameters. In turn, low surface temperatures
and low snowfall are favourable for the ice-surge cycles. We conclude that further improvement of
ice-sheet models is crucial for adequate, robust simulations of cyclic large-scale instabilities.

1. INTRODUCTION

Heinrich events (HEs), which have been discovered in North
Atlantic sediments as layers of ice-rafted debris (IRD), are
associated with quasi-periodic episodes of massive iceberg
discharge from the Laurentide ice sheet through Hudson
Bay and Hudson Strait into the Atlantic Ocean (Heinrich,
1988; Bond and others, 1992; Broecker, 1994; Andrews,
1998; Clarke and others, 1999). Six major events, labelled
H1–H6, have been identified for the Wisconsinan, with a
recurrence interval of 7–13 ka. HEs appear during the last
glacial cycle, and have also been detected during the other
glacials through massive IRD. Inspecting marine records for
the last five glacial cycles, McManus and others (1999) found
a dramatic increase in IRD when (relative) benthic oxygen
isotopes, which are an indicator for ice volume, exceed a
certain threshold.
HEs are regarded as profound and catastrophic events,

but are still poorly understood. Different glaciological

mechanisms for ice-sheet instability, such as large-scale ice-
stream surging (MacAyeal, 1993), ice-shelf break-up (Hulbe,
1997; Hulbe and others, 2004) and tidewater instability
(Meier and Post, 1987), or a combination of these, have
been considered. Based on a critical discussion of these
possibilities and some computer modelling, Clarke and
others (1999) concluded that episodic surging of a large ice
stream in Hudson Strait is the most plausible mechanism.
In addition to their connection to ice dynamics, HEs also
show a clear connection to past climate change. They tend
to occur at the culmination of a longer-term cooling cycle
(Bond cycle) and are followed by a rapid warming. However,
a number of possible triggers, which can give the ice sheet
the final push when it is ready to discharge, are proposed by
Bond and others (1993) and Alley and others (2006). Such
triggering does not contradict the idea that HEs are essentially
an intrinsic ice-sheet instability. Triggering can also explain
the observed synchrony of IRD allocated to the Laurentide
ice sheet and to other ice sheets. The possibility of such a
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Fig. 1. Model domain of ISMIP HEINO (Calov and Greve, http://
www.pik-potsdam.de/∼calov/heino/he setup 2006 11 02.pdf). The
land area is shown in white, the ocean is shaded grey. The areas
inside the square ABCD (‘Hudson Bay’) and the rectangle EFGH
(‘Hudson Strait’) correspond to soft sediment. The remaining land
area is hard rock.

synchronization has been demonstrated by Calov and others
(2002).
MacAyeal (1993) proposed a ‘binge/purge’ free oscillatory

mechanism, which explains HEs as transitions between two
modes of operation of ice sheets: slow movement of ice over
a frozen base vs a fast sliding mode when the ice bed is
molten. In subsequent studies by Payne (1995), Greve and
MacAyeal (1996) and Hindmarsh and Le Meur (2001), multi-
millennial internal oscillations of ice sheets were simulated
with two-dimensional (one vertical and one horizontal
direction) models. Marshall and Clarke (1997a,b) developed
a three-dimensional (3-D) model in order to investigate the
role of ice streams in Hudson Strait in Heinrich-type events.
However, they found only small-scale instabilities, restricted
to the area of the mouth of Hudson Strait.
Calov and others (2002) demonstrated that large-scale

instabilities of the Laurentide ice sheet resembling HEs in
periodicity, amplitude, spatial extent and discharge rate can
be simulated with a 3-D dynamic/thermodynamic ice-sheet
model (SICOPOLIS). In their simulations, a full Heinrich
cycle is characterized by four distinct phases. During the
recovery phase after a previous surge, the temperature at the
ice bed in Hudson Bay is well below the pressure-melting
point, and the ice flows by slow deformation movement.
After the ice sheet over Hudson Bay has become sufficiently
thick, the temperate basal area expands rapidly from the
mouth of Hudson Strait towards Hudson Bay (‘activation
wave’; Fowler and Schiavi, 1998). Consequently, fast basal
sliding sets in, and the ice sheet enters the surge phase,
during which it thins rapidly and its slope towards Hudson
Strait decreases. Eventually, melting conditions at the ice
base can no longer be sustained, the temperate basal area
retreats downstream (‘deactivation wave’) and the surge dies
out, thus terminating the Heinrich cycle.
Later, Papa and others (2005) used a simplified version

of the model by Marshall and Clarke (1997a,b) with a
parameterization of the basal sliding similar to Calov and
others (2002), and also succeeded in simulating millennial-
scale oscillations of the Laurentide ice sheet under steady

external forcing. These advances in modelling have further
supported the plausibility of the internal oscillation theory.
This study joins a series of ice-sheet model intercomparison

exercises within the European Ice-Sheet Modelling
Initiative (EISMINT) (Huybrechts and others, 1996;
Payne and others, 2000; Huybrechts, http://homepages.
vub.ac.be/∼phuybrec/eismint/antarctica.html; Ritz, http://
homepages.vub.ac.be/∼phuybrec/eismint/greenland.html)
and the Ice-Sheet Model Intercomparison Project (ISMIP)
(Pattyn and others, 2008; further ongoing topics). It is referred
to as ISMIP HEINO (Heinrich Event INtercOmparison). The
model domain resembles that of the EISMINT Phase 2
Simplified Geometry Experiments (Payne and others,
2000). However, based loosely on Payne (1995), the
geometry and boundary conditions have been modified
such that they are more similar to the Laurentide ice sheet
during the last glacial period, and soft-sediment areas
have been introduced which allow rapid basal sliding.
The dependence of large-scale ice-sheet instabilities on
different atmospheric and basal conditions is investigated.
Greve and others (2006) carried out the ISMIP HEINO
exercise with SICOPOLIS, and found strong internal
oscillations for the standard run and all seven variations
specified in the ISMIP HEINO description (http://www.pik-
potsdam.de/∼calov/heino/he setup 2006 11 02.pdf). The
objectives of ISMIP HEINO are to demonstrate how far the
contemporary large-scale ice-sheet models can reproduce
such internal oscillations, to find out under which boundary
conditions they appear and to compare the strength and
frequency of the oscillations in the different models.

2. ISMIP HEINO SET-UP
For the ISMIP HEINO experiments, a simplified geometry
is employed (Calov and Greve, http://www.pik-potsdam.
de/∼calov/heino/he setup 2006 11 02.pdf). It consists of a
horizontal square with a 4000 km side length, in which a
circle of 2000 km radius defines the land area prone to
glaciation. A soft-sediment area has been chosen to resemble
Hudson Bay and Hudson Strait, and is surrounded by hard
rock (Fig. 1). The basal topography is flat and rigid (no
isostasy).
Since our intercomparison is of internal ice-sheet dynam-

ics, a steady (temporally constant) glacial climate is assumed.
The surface mass balance over the land area increases
linearly with distance, d , from the centre of the model
domain, i.e. from the centre value, bmin, over the domain
radius, R, to the margin value, bmax. This yields

b = bmin +
bmax − bmin

R
× d . (1)

Ablation (surface melting) is not considered, because it
is only important for the southern margin of the glacial
Laurentide ice sheet, while at the mouth of Hudson Strait
calving is the dominant mass-loss process. Calving is
modelled implicitly by assuming that the coastward ice mass
flux is discharged into the surrounding ocean, where the
ice thickness is set to zero. The surface temperature, Ts, is
assumed to increase with the third power of distance, d :

Ts = Tmin + ST d
3, (2)

with Tmin the minimum temperature and ST the horizontal
gradient.
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The geothermal heat flux entering the ice body from below
is assumed to be spatially and temporally constant. All
parameters and their values are listed in Table 1 (standard
set-up ‘ST’).
For the flow law of ice, the usual power law for

incompressible, polycrystalline, isotropic ice (Glen’s flow
law) in the form given by Greve and Blatter (2009, section
4.3.1) is used. The flow enhancement factor, E , the power
exponent, n, and the rate factor, A(T ′), are listed in Table 1.
The temperature, T ′, relative to pressure melting is given by

T ′ = T + βp, (3)

where T is the absolute temperature and β the Clausius–
Clapeyron constant (Table 1). Rapid basal sliding is assumed
for the sediment area (‘Hudson Bay’ and ‘Hudson Strait’) if
the basal temperature reaches the pressure-melting point.
The sliding velocity, vb, is then computed using the linear
sliding law:

vb = −CS
ρg

τ b, for T ′b = T0 and soft sediment, (4)

which relates vb to the basal drag, τ b (both quantities
are vectors). Here ρ is the density of ice, g is the gravity
acceleration and CS is the sediment sliding parameter
(Table 1). By contrast, slow hard-bed sliding is assumed for
the rock area, given by the Weertman-type sliding law

vb = −CR
ρg

|τ b|2
N2b

τ b, for T ′b = T0 and hard rock, (5)

where CR is the rock sliding parameter (Table 1) and Nb the
basal normal stress. For both cases, no-slip conditions are
assumed when the basal temperature is below the pressure-
melting point,

vb = 0, for T ′b < T0. (6)

Since in the given model set-up the ice-sheet bed is flat, in
Equations (4) and (5) we have simply τ b = −(tbxz , tbyz , 0) and
Nb = −tbzz , where tbxz , tbyz and tbzz denote components of the
stress tensor, T, at the base.
In those models using the shallow-ice approximation (SIA)

(Hutter, 1983; Morland, 1984), τ b is equal to the negative
of the basal value of the classical driving stress, so τ b =
ρgH grad h (where H is the ice thickness and h the free
surface elevation; here H = h due to the flat and rigid base).
In other force balances, namely full-Stokes flow, higher-order
ice-sheet approximations (e.g. Hindmarsh, 2004; Greve and
Blatter, 2009) and the shallow-shelf approximation with
basal drag (SSA) (MacAyeal, 1989; Weis and others, 1999),
the basal shear stress also depends on the flow field, which
provides a physically more adequate model of basal sliding
than the SIA with purely geometrically controlled basal drag.
Since basal heat production is given by |vb · τ b|, this also
affects the thermal conditions at the ice base.
A justification of the sediment sliding law (Equation (4))

in terms of shear deformation of a linear-viscous sediment
layer is given by Greve and others (2006). The hard-rock
sliding law (Equation (5)) and the standard value of CR
are those of Greve and others (1998). Note also that, even
though the numerical value of CS is smaller than that of CR,
sediment sliding is much stronger than hard rock sliding. This
is because the additional factor |τb|2/N2b in Equation (5) is
∼10−6, so the sliding velocities resulting from Equation (4)
are typically three orders of magnitude larger than those
resulting from Equation (5) (Greve and others, 2006).

Table 1. Physical parameters of the standard ISMIP HEINO set-up
‘ST’ (Calov and Greve, http://www.pik-potsdam.de/∼calov/heino/
he setup 2006 11 02.pdf)

Quantity Value

Gravity acceleration, g 9.81 m s−2
Density of ice, ρ 910 kgm−3
Power law exponent, n 3
Flow enhancement factor, E 3
Rate factor, A(T ′) A0 e−Q/(RT ′ )

Pre-exponential constant, A0 3.61×10−13 s−1 Pa−3
(T ′ ≤ 263.15K)

1.73×103 s−1 Pa−3
(T ′ ≥ 263.15K)

Activation energy, Q 60 kJmol−1
(T ′ ≤ 263.15K)
139 kJmol−1
(T ′ ≥ 263.15K)

Melting point at atmospheric pressure, T0 273.15 K
Clausius–Clapeyron constant, β 9.8×10−8 K Pa−1
Universal gas constant, R 8.314 Jmol−1K−1
Heat conductivity of ice, κ 2.1Wm−1K−1
Specific heat of ice, c 2009 J kg−1K−1
Latent heat of ice, L 335 kJ kg−1
Minimum surface mass balance, bmin 0.15m ice equiv. a−1
Maximum surface mass balance, bmax 0.3m ice equiv. a−1
Domain radius, R 2000 km
Minimum surface temperature, Tmin 233.15 K
Surface temperature gradient, ST 2.5×10−9 K km−3
Sliding parameter

– for hard rock, CR 105 a−1
– for soft sediment, CS 500 a−1

Geothermal heat flux, qgeo 42mWm−2
Length of year 31 556 926 s

3. SET OF RUNS
For all ISMIP HEINO runs, the horizontal resolution is 50 km,
which leads to 81×81 gridpoints in the horizontal plane. The
choice of vertical resolution and the time-step are left open.
The ice is built up from ice-free initial conditions (zero ice
thickness) over a time t =0–200 ka. The set of model runs is
as follows:

1. The standard run, ST, is defined by the settings and
parameters given in section 2 and Table 1.

2. Theminimum surface temperature, Tmin, in Equation (2) is
varied by±10 K, resulting in the settings Tmin = 223.15K
for run T1 and Tmin = 243.15K for run T2.

3. The surface accumulation in Equation (1) is changed
by a factor of 0.5 and 2, giving values bmin =
0.075m ice equiv. a−1, bmax = 0.15m ice equiv. a−1

for run B1 and bmin = 0.3m ice equiv. a−1,
bmax = 0.6m ice equiv. a−1 for run B2 (m ice equiv.
indicates metres ice equivalent).

4. The sediment sliding parameter, CS, in Equation (4) is
varied according to CS = 100 a

−1 (run S1), CS = 200 a−1

(run S2) and CS = 1000 a
−1 (run S3).

4. PARTICIPATING MODELS
In total, nine models from eleven contributors participated
in the intercomparison exercise (Table 2). In the following,
the models are referred to in an anonymous fashion by ID
letters, which are given along with the main model features
in Table 3.

Downloaded from https://www.cambridge.org/core. 24 Mar 2021 at 16:00:31, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


374 Calov and others: Results from ISMIP HEINO

Table 2. Participating models

Author(s) Model URL Source

E. Bueler PISM* in SIA mode http://www.pism-docs.org/ Bueler and others (2007)
R. Greve and R. Calov SICOPOLIS† http://sicopolis.greveweb.net/ Greve (1997); http://hdl.handle.net/2115/34755
P. Huybrechts Huybrechts model — Huybrechts (1990, 2002); Huybrechts and de Wolde

(1999)
J.V. Johnson Glimmer http://glimmer-cism.berlios.de/ Rutt and others (2009)
F. Pattyn Pattyn model in SIA mode — Pattyn (2003)
D. Pollard Pollard model — Pollard and DeConto (2007)
C. Ritz GRISLI‡ in SIA mode — Ritz and others (2001)
F. Saito and A. Abe-Ouchi IcIES§ — Saito and Abe-Ouchi (2005)
L. Tarasov MUN/UofT GSM¶ — Tarasov and Peltier (1997, 1999, 2002)

*Parallel Ice Sheet Model.
†SImulation COde for POLythermal Ice Sheets.
‡GRenoble model for Ice Shelves and Land Ice.
§Ice sheet model for Integrated Earth system Studies.
¶Memorial University of Newfoundland/University of Toronto Glacial Systems Model.

Eight of the nine models employ the SIA, whereas in
model (c) a combination of the SIA and SSA is used. The
discretization of the model equations is carried out by the
finite-difference (FD) method in eight of the nine models;
model (d) partly uses the finite-volume (FV) method. In
addition, the models differ in the numerical grid, the vertical
resolution and the applied time-steps.

5. RESULTS
5.1. Standard run ST
A graphical representation of the average ice thickness over
the sediment area, H, as a function of time in run ST for
each model is given in Figure 2. In order to eliminate spin-
up effects, the models were run for 200ka, and only the
last 50 ka of the total simulation times are shown. Models
(a)–(g) show clear oscillations, and the surging and recover-
ing phases are clearly visible. However, both phases differ in

duration frommodel to model, and the recurrence times vary
between ∼5 and 17 ka. Model (g) shows an interruption of
oscillatory behaviour that lasts ∼20 ka, and models (h) and
(i) show no noticeable oscillations at all.
The power spectrum of H for each model in the

intercomparison is depicted in Figure 3 (normalized to unity
for each model separately). The plots confirm the above-
mentioned range in periodicity. Further, the spectra vary
from very clear, single-peak types to those with one or more
secondary peaks. It is interesting to note that even models
(h) and (i) have peaks (though with very low spectral power)
at ∼7 ka, which is in agreement with the other models that
show clearly visible oscillations.
Figure 4 shows the fraction of warm-based ice over the

sediment area, A/Ased, as a function of time. This quantity is
a measure of the expansion of streaming over the sediment
area. For all oscillating models (a)–(g), A/Ased returns to ∼0
during the recovery phases, whereas maximum values during

Table 3. Main features of the participating models (made anonymous). SIA: shallow ice approximation; SSA: shallow shelf approximation
with basal drag; H eq.: ice thickness equation; T eq.: temperature equation; FD: finite-difference method; FV: finite-volume method;
AA: Arakawa A grid in 3-D (Arakawa and Lamb, 1977); ABH: Arakawa B grid in the horizontal plane; AC: Arakawa C in 3-D grid; ACH:
Arakawa C grid in the horizontal plane; ACH1/2/3: Arakawa C grid in the horizontal plane with method 1/2/3 (Hindmarsh and Payne, 1996,
only applicable to the SIA); σ: sigma transformation in the vertical

Model ID Type Method (H eq./T eq.) Grid (H eq./T eq.) Vertical resolution Time-step

(a) SIA FD/FD ACH2/AA, σ 26 layers 0.1 years
Remark: Concentration of layers towards the bottom.

(b) SIA FD/FD ACH3/AC, σ 91 layers 0.25 years
Remark: Polythermal model. Concentration of layers towards the bottom.

(c) SIA/SSA FD/FD ACH/ACH, σ 10 layers 1 year
Remark: Heuristic combination of SIA and SSA. Concentration of layers towards the top and bottom. Smoothing of the sharp
transition between no-slip and basal sliding by a ramp function over 0.01K.

(d) SIA FD/FV ACH3/AC, σ 65 layers 0.25 years
Remark: Smoothing of the sharp transition between no-slip and basal sliding by a ramp function over 0.1K.

(e) SIA FD/FD ACH3/AA, σ 41 layers 0.1 years
(f) SIA FD/FD ACH2/ACH, σ 20 layers 0.1 years

Remark: Adaptive time-stepping, average time-step is given. Larger time-step of 0.25 years for the T eq.
(g) SIA FD/FD ACH3/AA, σ 31 layers 0.2 years

Remark: Concentration of layers towards the bottom.
(h) SIA FD/FD ACH2/AA 25m 0.05–0.25 years

Remark: Adaptive time-stepping. All runs except ST include a thermal bedrock model.
(i) SIA FD/FD ACH1/ABH, σ 21 layers 0.125 years

Remark: Concentration of layers towards the bottom. Larger time-step of 0.25 years for the T eq.
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Fig. 2. Average ice thickness over the sediment area, H, as a function of time in run ST for each model in the intercomparison. Only the
last 50 ka are shown.

surges vary from model to model between ∼0.5 and∼1. The
shapes of the curves are highly varied. In the case of the non-
oscillating models (h) and (i), A/Ased remains nearly constant
at ∼0.2 and ∼0.15, respectively, so these models remain in
a state of slight streaming throughout time.
Four particular time slices are inspected in Figures 5–10,

namely for the times t1 (maximum average ice thickness over
the sediment area during the last 50 ka), t2 (minimum average
ice thickness over the sediment area during the last 50 ka), t3
(minimum average basal temperature over the sediment area
during the last 50 ka) and t4 (maximum extent of warm-based
ice over the sediment area during the last 50 ka), defined in
the reference document (Calov and Greve, http://www.pik-
potsdam.de/∼calov/heino/he setup 2006 11 02.pdf). Note

that these times differ from model to model because of the
irregular appearance of the surges.
Comparison between respective panels in Figures 5 and

6 illustrates the amplitude of the oscillations. Models
(a)–(d) show almost circularly symmetric ice-sheet geom-
etries at time t1, whereas models (e)–(i) have distinct surface
depressions over the sediment region. By contrast, the
geometries at time t2 are rather similar for all oscillating
models (a)–(g), with strong surface depressions over the sedi-
ment region due to the previous surge. As a consequence of
the permanently maintained slight streaming, the respective
geometries of models (h) and (i) look rather similar at times t1
and t2, always exhibiting ice thicknesses between theminima
and maxima of the other models.

Fig. 3. Power spectrum of the average ice thickness over the sediment area in run ST (see Fig. 2) for each model in the intercomparison. The
maximum power has been normalized to unity for each model separately.
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Fig. 4. Fraction of warm-based ice over the sediment area, A/Ased, as a function of time in run ST for each model in the intercomparison.
Only the last 50 ka are shown.

The basal temperatures shown in Figures 7 and 8 for times
t3 and t4, respectively, both indicate that, away from the
sediment region, a ring of warm-based ice occurs close to the
margin, and basal temperatures decrease towards the interior
of the ice sheet. This is the expected distribution. By contrast,
in the sediment region, cold-based conditions prevail for

the oscillating models (a)–(g) at time t3 (in the middle of
the recovery phase), the detailed temperature pattern varying
significantly between the models. At time t4 (during a surge),
warm-based conditions dominate in the sediment region,
ranging from ∼50% to ∼100% of the area (as mentioned
above). For the non-oscillating models (h) and (i), a channel

Fig. 5. Ice thickness at time t1 (maximum average ice thickness over the sediment area during the last 50 ka) in run ST for each model in
the intercomparison.
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Fig. 6. Ice thickness at time t2 (minimum average ice thickness over the sediment area during the last 50 ka) in run ST for each model in the
intercomparison.

Fig. 7. Basal temperature (relative to pressure melting) at time t3 (minimum average basal temperature over the sediment area during the
last 50 ka) in run ST for each model in the intercomparison.
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Fig. 8. Basal temperature (relative to pressure melting) at time t4 (maximum extent of warm-based ice over the sediment area during the last
50 ka) in run ST for each model in the intercomparison.

along ‘Hudson Bay’ and ‘Hudson Strait’ towards the ice
margin is constantly at the pressure-melting point, thereby
sustaining the weak, but continuous, streaming state.
The distributions of the basal sliding velocity at times

t3 and t4 (Figs 9 and 10) closely reflect that of the basal
temperature. Away from the sediment region, the basal
sliding velocity increases monotonically from the interior
towards the margin. In the sediment region, the oscillating
models (a)–(g) show little or no basal sliding at time t3
(recovery phase), whereas the basal sliding velocities exceed
1000ma−1 at time t4 (surge). The detailed structure of the
surge differs from model to model. The sustained streaming
conditions of the non-oscillating models (h) and (i) are also
clearly visible.
It is striking that the fields shown in Figures 5–10

are not fully symmetric with respect to the line y =
2000 km, whereas the geometry and boundary conditions
are. The strength of symmetry breaking clearly differs from
model to model. There are three possible reasons for this
phenomenon, namely:

1. usage of non-symmetrically discretized, but mathematic-
ally correct, numerical schemes, whose small asymme-
tries can grow to macroscopic size;

2. usage of the usual symmetrically discretized numerical
schemes allows asymmetrical order of floating-point
evaluation, and these slight asymmetries can grow to
macroscopic size;

3. real bugs in the coding.

Since the participating models have been tested in previous
model intercomparison exercises, severe coding errors are
unlikely, so either of the first two reasons (or a combination
of them) is probably the cause of the broken symmetry.

5.2. Variations of the surface boundary conditions
(runs T1, T2, B1, B2)
We now discuss the effect of varied surface boundary
conditions (temperature, accumulation) on the different
model results. For runs T1 (10◦C colder), T2 (10◦C warmer)
and ST (reference for comparison), the average ice thickness
over the sediment area, H, is depicted as a function
of time for each model in Figure 11. The mean value
of H over the shown 50ka increases with decreasing
surface temperature, which is a direct consequence of the
temperature dependence of the rate factor (colder ice is
stiffer; Table 1). More interestingly, it becomes clear that
lower temperatures favour the occurrence of oscillations,
whereas higher temperatures hamper them. While seven out
of the nine models show oscillations in run ST, oscillations
occur for all nine models in the colder run, T1, but only for
three models in the warmer run, T2. By contrast, there is
no evident correlation between the period of oscillations (if
existing) and the surface temperature.
For the runs with varied accumulation rate, B1 (half

accumulation) and B2 (double accumulation), H is shown
in Figure 12 (along with ST for comparison). An immediate
observation is that the mean value of H over the shown
50 ka increases in the order B1, ST, B2, i.e. with increasing
accumulation. Similar to the dependence on surface tem-
perature, the occurrence of oscillations is favoured by lower
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Fig. 9. Basal sliding velocity at time t3 (minimum average basal temperature over the sediment area during the last 50 ka) in run ST for each
model in the intercomparison.

Fig. 10. Basal sliding velocity at time t4 (maximum extent of warm-based ice over the sediment area during the last 50 ka) in run ST for each
model in the intercomparison.

Downloaded from https://www.cambridge.org/core. 24 Mar 2021 at 16:00:31, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


380 Calov and others: Results from ISMIP HEINO

Fig. 11. Average ice thickness over the sediment area, H, as a function of time in runs ST (solid), T1 (dashed) and T2 (dotted) for each model
in the intercomparison. Only the last 50 ka are shown.

accumulation rates: seven out of eight models (no results
from model (f) for runs B1 and B2) produce oscillations in
run B1, but only four models in run B2. Further, the period
of oscillations (if existing) is clearly correlated with the accu-
mulation rate. This is because the accumulation rate directly
affects the growth time required to build up the ice sheet to
the critical thickness at which a surge can be released.

5.3. Variations of the basal sliding (runs S1, S2, S3)
The effect of varied basal sliding conditions over the sediment
area becomes evident in Figure 13, which shows the average
ice thickness over the sediment area, H, as a function of

time for each model in runs S1 (20% basal sliding), S2 (40%
basal sliding), S3 (200% basal sliding) and ST (reference for
comparison). Since sediment sliding is the crucial process
for the occurrence of large-scale surges, it is not surprising
that a significant influence of the sliding parameter for soft
sediment, CS, on the oscillatory behaviour becomes evident:
two out of eight models (no results from model (f) for runs
S1–S3) produce noticeable oscillations in run S1, three
models in run S2 and six models in run S3. As long as
oscillations are present, their amplitudes tend to increase in
the order S1, S2, ST, S3 (with increasing sliding). However,
the period of oscillations is only affected to a small extent
and in a non-systematic fashion.

Fig. 12. Average ice thickness over the sediment area, H, as a function of time in runs ST (solid), B1 (dashed) and B2 (dotted) for each model
in the intercomparison. Only the last 50 ka are shown. The straight line in (e) belongs to run B2; it should be dotted but appears solid due
to the used plot utility. There are no results from (f) for B1 or B2.
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Fig. 13. Average ice thickness over the sediment area, H, as a function of time in runs ST (solid), S1 (dashed), S2 (dotted) and S3 (dash–dotted)
for each model in the intercomparison. Only the last 50 ka are shown. There are no results from (f) for S1, S2 or S3.

6. DISCUSSION AND CONCLUSION
Section 5 has shown that Heinrich-type oscillations occur for
a broad range of parameters and for all participating models.
Low surface temperatures, low accumulation rates and high
sliding velocities over sediment favour oscillatory surges,
whereas high surface temperatures, high accumulation rates
and low sliding velocities hamper them. However, there
are significant differences between the models. At one end
of the range, oscillations are produced by models (b) and
(d) for all eight runs, whereas, at the other end, model
(h) produces oscillations only for run T1 (Fig. 14). Also,
strong variabilities in amplitudes, recurrence times and
detailed structures of the surge cycles occur. These results are
consistent with findings of two of the participating modellers
who experimented with different schemes. They observed
a dependence of the oscillations on discretization, ranging
from strong oscillations to almost non-oscillatory behaviour
with permanent ice streaming.
We are aware that simulation of the abrupt transition

between slow and fast ice movement at the position where
the basal ice changes from cold to warm is problematic in the
SIA, which yields a strong localization in the ice velocities.
Bueler and Brown (2009) analysed the situation considering
ice flow in an inclined ice slab, and demonstrated that in the
case of SIA the vertical velocity becomes infinite in the ice
column (or rather along the line in the ice slab) that is situated
at the transition between cold- and warm-based ice. It is from
this high-frequency transition in basal velocity that some
numerical schemes may produce macroscopic asymmetric
behaviours, and other schemes do not. To some extent this
sharp transition is hidden by the rather coarse horizontal grid
used in the computations (Bueler and Brown, 2009). It is
apparent that for non-localized equations, like full-Stokes
or SSA, the situation will improve, and the velocities in
the column over the transition from cold to warm basal
ice will behave more smoothly. However, note that SIA
model (d) features explicit smoothing of the abrupt transition
between cold-based no-slip conditions and warm-based
sliding by linearly increasing the sliding parameters, CS and

CR, from zero to their regular values (Table 1) as the basal
temperature increases from 0.1 K below the melting point to
the melting point (Table 3). Despite this smoothing, model
(d) produces oscillations for all eight runs, indicating that
a sharp transition between no-slip and basal sliding is not
essential for oscillating behaviour of SIA models. Further, the
combined SIA/SSA model (c) is one of the more oscillation-
prone models (Fig. 14), which demonstrates that oscillations
are not limited to pure SIA models.

Fig. 14. Illustration of the parameter space for each model in the
intercomparison. Upper panel: variation of the surface temperature;
middle panel: variation of the surface mass balance; lower panel:
variation of the sliding parameter. Black boxes indicate that
oscillations occur (criterion: period 5–20 ka, power >107 km2 a2,
distinct peak visible in the power spectrum); white boxes show that
there are no oscillations; grey boxes denote no data.
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In addition to the standard run and the seven variations
specified in the ISMIP HEINO description (Calov and
Greve, http://www.pik-potsdam.de/∼calov/heino/he setup
2006 11 02.pdf) and discussed here, Greve and others
(2006) carried out further simulations with the ice-sheet
model SICOPOLIS. A doubled horizontal resolution of 25 km
was applied, different time-steps of 2, 1, 0.5 and 0.25 years
were tested, the sediment mask was rotated by 5, 10, ...,
45◦ around the centre of the quadratic model domain, and a
continuous formulation for sub-melt sliding was employed
as an alternative to the abrupt switch between no-slip
conditions and fully developed basal sliding. The latter
involves a temperature parameter, γ. Its meaning is that basal
sliding is 1/em times fully developed, warm-based sliding if
the basal temperature is below the pressure-melting point by
mγ. We found that the oscillations of the simulated ice sheet
are very robust with respect to resolution, time-step and grid
rotation. Sub-melt sliding with γ = 0.2◦C also yields strong
oscillations, while sub-melt sliding with γ ≥ 0.5◦C produces
continuous states of streaming without oscillations, similar
to models (h) and (i) for the standard run ST. This gives rise
to the conjecture that in these models the oscillations are
suppressed by too strong implicit dampening of the transition
from warm-based sliding to cold-based no-slip due to the
applied numerical scheme.
A solution to the problems of SIA models in adequately

capturing the physics in the ice column where the flow
changes from slow to fast could be to treat this column as
a boundary-layer problem. Alternatively, one could make
use of the full-Stokes solution for the entire ice sheet.
However, it should be kept in mind that full-Stokes solvers for
ice sheets are computationally very expensive. An attempt
to carry out the ISMIP HEINO exercise with the full-
Stokes model Elmer/Ice (e.g. Zwinger and others, 2007;
Seddik and others, 2009) failed because of overwhelming
computational demand. Other already existing approaches
use a combination of SIA and SSA, like model (c) of this
study (Pollard and DeConto, 2007; Bueler and Brown,
2009), and are more applicable because of computational
efficiency, and because of delocalization due to membrane
stresses in these models. Nevertheless, the traditional, pure-
SIA models should not be dismissed. Pragmatically speaking,
one could try a simple parameterization at the transition
from slow to fast flow and regard such modified SIA models
as a workaround. The capturing of observed frequencies
and recurrence times of Heinrich-type oscillations with
such a workaround would be of some advantage. In the
end, the applicability depends on the desired application
of the model. Heinrich events play an important role in
palaeoclimatic research, and a model such as that presented
here offers a tool to simulate some of their characteristics.
There are two important lessons to learn from our

intercomparison exercise. On the one hand, all models
which took part (including the combined SIA/SSA model (c)
and the SIA model (d) with a smoothed transition between
cold-based no-slip conditions and warm-based sliding) are
capable of producing Heinrich-type free oscillations if the
boundary conditions are sufficiently favourable. However,
the large differences between the results of different models
demonstrate that it is a great asset to maintain a plurality
of ice-sheet models in the community. This allows us to
establish, using model intercomparison, which aspects of
simulated ice-sheet dynamics are robust, which are not and
where there is a need for improvement.
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