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Abstract 

 

New U-Pb dating of detrital zircon and geochemical features of Permian-Mesozoic arc-

derived volcanic rocks and volcaniclastic turbidites (greywackes), when compared to the 

volcanic rocks associated with unconformable Late Cretaceous shallow-water sediments, 

reveal that subduction in New Caledonia, once thought to be extinct in the Late Jurassic (ca. 

150 Ma), was still active at least from ca. 130 Ma to 95 Ma. The accumulation of volcanic 

arc-derived sediments during the late Early Cretaceous suggests that, as in New Zealand, 

active margin activity went on for a short time in spite of the assumed subduction jamming by 

the Hikurangi plateau at ca.100 Ma. Meanwhile, the rift-related magmatic activity that 

preceded the marginal breakup migrated eastward: from ca. 130 Ma (130-95 Ma) in eastern 

Australia, 110 Ma (110-82 Ma) in New Zealand, and finally ca. 89 Ma (89-83 Ma) in New 

Caledonia, and generated large volumes of silicic magma. In contrast, marginal basins opened 

synchronously at ca. 83 Ma when the stretched continental crust finally broke out. In general, 

intraplate and volcanic-arc signatures coexisted in Cretaceous syn-rift magmas. Therefore, the 
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Australian marginal breakup appears to be the final effect of continuous southward unzipping 

of Gondwana that interfered with the subduction-modified mantle wedge of the Mesozoic 

active margin. The occurrence of lateral flow of the upper asthenospheric mantle due to the 

rapidly eastward migrating Australian plate margin possibly prevented the formation of a 

volcanic arc at the eastern end of the system. 
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Introduction. 

Knowledge of the southern Gondwanaland margin is still uncertain and new evidence 

based upon accurate dating methods is crucial to better constrain its evolution, in particular 

for the pre-Late Cretaceous period. Compared to the rest of Gondwanaland, this part of the 

supercontinent underwent break-off very late in its southward separation, initially in the 

Central Atlantic (Early Jurassic), then the South Atlantic (upper Early Jurassic), then the 

Mozambique basin (mid-Cretaceous), then at Australia's southeastern margin (Gippsland 

basin, lower Late Cretaceous) and finally to the Antarctic Ocean (Campanian ?) and 

Southwest Pacific (Campanian) (Marzoli et al, 1999; Müller et al., 2000; Storey et al, 1999; 

Bryan et al., 1997; Gaina et al., 1998a & b; Eagles and König, 2008). The close association of 

break-off features and continental flood basalt or thick volcano-sedimentary successions gave 

rise to the hypothesis of sequential mantle plume activation (Wilson, 1997; Bryan et al., 1997; 

Courtillot et al, 1999; Eagles and König, 2008). However, this interpretation does not fit all 

the features of the Southwest Pacific where a mantle plume, if one existed, probably 

interfered with subduction (Schellart et al., 2006). During the Late Cretaceous and 

Palaeocene, the plate boundary separating Australia from Pacific-related plates, which had 

been situated close to the main Gondwana landmass since the late Palaeozoic, moved quickly 

2000 to 3000 km eastward and then remained in an almost unchanged location, in spite of the 

numerous Tertiary to Recent tectonic events that occurred. Meanwhile, several marginal 

basins opened along the Australian margin, and in the process created isolated and elongate 

slices of thinned continental crust that now form continent-sized submarine plateaus or rises 

such as the Lord Howe Rise, Challenger and Campbell Plateaux, Chatham Rise, Norfolk 

Ridge and lesser units (Gaina et al, 1998a,b) (Fig. 1).  
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The formation of these marginal basins gave rise to several conflicting interpretations: i) 

marginal rifting triggered by a mantle plume (Bryan et al, 1997); ii) subduction of a spreading 

ridge (Bradshaw, 1989); iii) slab capture (Luyendik, 1995); or iv) marginal basin opening 

controlled by eastward slab roll-back and arc migration in a continuously converging 

environment (Lister and Etheridge, 1989; Veevers et al., 1991, Veevers, 2000, 2004; Cluzel et 

al., 1999; Cluzel et al., 2001; Betts et al., 2002; Schellart et al., 2006; Cluzel et al., 2010). 

However, a possible connection with Gondwana break-up has been rarely considered (i.e. 

Tulloch et al., 2009) and deciding whether Australia's marginal rifting is related to circum-

Pacific evolution (e.g., a supra-subduction feature); or alternatively, a consequence of super-

continent break-up, requires a precise knowledge of the timing and geochemical features of 

the associated  magmatic events. 

In this paper, we report U-Pb detrital zircon ages and geochemistry of Mesozoic 

volcaniclastic sediments, volcanics, and cover rocks of New Caledonia that formed 

contemporaneously with this series of magmatic events. These new data complement a 

previous study by Adams et al. (2009), which mainly addressed the pre-Late Cretaceous 

evolution of the New Caledonia sector of the Gondwana active margin. We focus here on the 

first evidence for Early Cretaceous rocks in New Caledonia and present a synthesis of the 

available chronological data on the Late Cretaceous rift-related magmatic activity and 

marginal basin opening across the Australian margin, which allows a model for the marginal 

rifting to be proposed. 

 

Pre-Late Cretaceous geology of New Caledonia 

In New Caledonia, Permian to mid-Cretaceous rocks occur in three major 

tectonostratigraphic units: the Teremba, Koh-Central, and Boghen terranes (Fig.1). These 

dominantly volcanosedimentary terranes are overlain by unconformable Late Cretaceous 

terrigenous shallow marine sediments. The three terranes that form the central mountains of 

New Caledonia are as follows:  

i) Koh-Central Terrane: a disrupted, Early Permian (Aitchison et al, 1998) ophiolite suite 

that occurs locally along the centre of the island. It is comprised of gabbro, dolerite, rare 

plagiogranite, island-arc tholeiites (IAT) and boninite pillow lavas, and undated chert directly 

overlying the pillow basalts (the Koh Ophiolite of Meffre et al., 1996). The Koh Ophiolite 

rocks are in turn overlain by a thick deep-water succession of volcano-sedimentary rocks: 

black shale, volcaniclastic turbidite (classically referred to as greywacke), radiolarian-bearing 

siltstone and chert (Meffre et al., 1996). The black shales are several hundred metres thick, 
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whilst volcaniclastic sandstones are generally associated with 20-50% argillite and abyssal 

chert, giving this terrane a distal and deep-water character. The sandstones are exclusively 

composed of volcanic lithic (andesite and basalt) and mineral clasts (feldspar, gulfed quartz, 

amphibole, etc.), while plutonic clasts are generally absent. Without exception, the 

geochemical and isotopic features of the volcaniclastic sandstone relate to subduction-zone 

magmatism, with no evidence for contamination by sediment or continental crust rocks. This 

feature is consistent with the eruption of the source rocks through oceanic or intermediate 

(thinned) crust (see geochemistry section below) (Meffre, 1995; Adams et al., 2009). Middle 

Triassic (Anisian), and Late Jurassic (Oxfordian-Kimmeridgian) faunas are correlated with 

those of the New Zealand Murihiku Terrane (Campbell et al., 1985; Meffre, 1995). 

ii) Teremba Terrane: a succession of Late Permian to mid-Jurassic proximal volcaniclastic 

and volcanic rocks (andesite, dacite and rhyolite). The sedimentary rocks are typically 

medium-grained volcaniclastic turbidite with only minor (<10%) intercalated argillite, some 

shallow-water volcaniclastic conglomerate, and rare black shale, a few tens metres thick 

associated with thin quartzose sandstone. This terrane also contains abundant faunas 

resembling those of the Murihiku Terrane of New Zealand (Grant-Mackie et al., 1977; Paris 

1981, Campbell, 1984; Campbell et al., 1985; Ballance & Campbell, 1993). The mineral, 

chemical and isotopic composition of greywackes closely resembles that of the Central 

Terrane and similarly contains only very few detrital zircons (Adams et al., 2009). Thus, they 

are likely derived from the same volcanic or sub-volcanic source. 

iii) Boghen Terrane (the ante-Permian of Paris, 1981): an accretionary complex comprising 

schistose unfossiliferous and broken volcano-sedimentary rocks (pillow basalt, chert, black 

shale, sandstone, tuffs, turbiditic greywacke, serpentinite and mafic/ultramafic melange), at a 

notably higher metamorphic grade (lower greenschist to blueschist facies) than the adjacent 

terranes. Besides widespread retrograde greenschist facies rocks, the occurrence of lawsonite-

glaucophane, epidote-glaucophane, and garnet-glaucophane schists allows an intermediate 

high-pressure low-temperature gradient to be defined. Peak metamorphic conditions indicate 

subduction of accreted and melanged material at depth equivalent to ca. 12 kbar at ca. 500°C 

(Cluzel & Meffre, unpub. data). The disposition of metamorphic isograds indicating 

westward-increasing grade (Guérangé et al., 1977; Paris, 1981), the orientation and top-to-

the-east kinematics of exhumation-related stretching lineation, together suggest westward-

plunging subduction (Cluzel & Meffre, 2002). The present location of the exhumed 

blueschist-facies rocks roughly marks the boundary between Central and Teremba terranes; 

therefore, the exhumation of the previously subducted material is likely to have taken place 
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within the fore-arc region of the Mesozoic volcanic-arc that generated the volcaniclastic 

turbidite. Late Jurassic metamorphic ages (ca. 150 Ma, whole-rock K-Ar) of the metabasalt 

(Blake et al., 1977) are incorrect and probably influenced by excess argon, because detrital 

zircon ages from metagreywackes at  the same locality set a maximum Early Cretaceous (< 

130 Ma) depositional age for the original sediments (Adams et al., 2009).  

 

To summarise, the New Caledonia sector of the Gondwanaland margin, which was 

previously considered as a continental active margin during the pre-Late Cretaceous period 

(Paris, 1981), can be now interpreted as a forearc sedimentary basin based upon trapped 

"oceanic" crust (Aitchison et al., 1995; Meffre et al., 1996), fed by an intraoceanic arc located 

to the west of present-day New Caledonia and now probably buried under younger sediments 

in the Lord Howe Rise. The paleogeographic features of the three pre-Late Cretaceous 

terranes suggest that they were formed during an episode of west-dipping subduction. In 

addition, the faunal endemism shared with New Zealand and usually referred to as the Maori 

Bioprovince (Wilckens, 1925; Grant-Mackie et al., 1977), and the provenance of most 

Triassic- Jurassic sediments inferred from detrital zircon age data, all suggest a discontinuous 

isolation from the main landmass, possibly related to the opening of a marginal basin (Cluzel 

& Meffre, 2002; Adams et al., 2009). 

 

The Late Cretaceous in New Caledonia 

Overlying the three above-mentioned terranes with angular unconformity (Fig. 2), there is 

a prominent Late Cretaceous (Coniacian to Campanian) (Paris, 1981), volcanosedimentary 

unit (classically referred to as Formation à charbon), which is composed of fining upwards 

marine shallow water sandstone, coal-bearing siltstone, tuffs and volcanic rocks that 

accumulated in a tidal-zone or a deltaic environment. The Late Cretaceous marine siltstones 

contain endemic faunas (ammonites and inocerams) (see Paris, 1981) which indicate an 

isolation from Australia, which is confirmed by the local provenance of detrital zircon 

populations (see below). The pre-Coniacian unconformity post-dates the final amalgamation 

of the three aforementioned terranes. Exhumation of high-pressure metamorphic rocks of the 

Boghen Terrane along the Gondwanaland margin thus occurred between the Barremian (ca. 

130 Ma; Adams et al., 2009) and the Coniacian (ca. 89 Ma). Mafic and felsic volcanic rocks 

and tuffs occur near the base of the Formation à charbon (pre-Campanian), the geochemical 

features of which contrast with that of pre-Late Cretaceous volcanic rocks (see below). U-Pb 
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dating of zircons extracted from a rhyolite flow near the base of the Fm. à charbon (88.4 Ma; 

Alexander et al., 2010) confirms the Coniacian age of the Late Cretaceous transgression. 

Some evidence for syntectonic sedimentation is recognized within unmetamorphosed Late 

Cretaceous rocks, especially in the Noumea area, that suggests a link with rifting events. The 

magmatic activity ceased before the Campanian and is thus restricted to the 89-83.5 Ma 

interval; and note especially that the magmatic activity ceased when the marginal basins 

opened (Tasman Sea, New Caledonia and South Loyalty basins). Meanwhile, sedimentation 

evolved from shallow-water marine sandstone and siltstone toward pelagic siliceous pelite 

(Maastrichtian), and micrite (Palaeocene to Early or mid-Eocene depending upon diachronous 

Eocene pre-obduction events). This environmental change may be related to the thermal 

subsidence that followed the marginal rifting and isolation of New Caledonia from 

continental sources (Cluzel et al., 1994; Aitchison et al, 1995; Cluzel et al., 2001), in 

particular from the Lord Howe Rise that was above sea level until the Maastrichtian 

(McDougall and Van Der Lingen, 1974). 

In northern New Caledonia, development of the Eocene high-pressure metamorphic 

complex (Yokoyama et al, 1986; Ghent et al, 1994; Clarke et al, 1997) as a consequence of 

the subduction of the northern tip of the Norfolk ridge (Aitchison et al, 1995; Cluzel et al., 

1994; Cluzel et al., 2001), and its subsequent Late Eocene exhumation (44-34 Ma) (Spandler 

et al., 2005; Balwin et al., 2007), have dramatically erased most of the primary features of the 

terrane protoliths. However, the bulk of the Late Cretaceous to mid-Eocene sequence, 

although metamorphosed to eclogite or blueschist facies, is similar to the unmetamorphosed 

sequence of the Noumea area; although Late Cretaceous carbonaceous sediments there are 

considered more distal (Maurizot et al., 1989). In contrast, a series of monotonous 

uncorrelated metasediments form the bulk of the Mt Panié massif (Fig. 1),this 

metasedimentary unit is bordered to the south by elements of the Koh Ophiolite (Meffre, 

1995) and has been referred to as "undifferentiated Permian to Cretaceous metasediments" 

(Carroué, 1971; Paris, 1981). As a whole it is correlated with the Koh-Central Terrane 

(Maurizot et al, 1989). 

 

Paleo-volcanic evidence for a mid-Cretaceous changing geodynamic setting  

A detailed study of paleo-volcanic rocks of New Caledonia is beyond the scope of this 

paper. However, a comparison of selected geochemical features of Permian to Early 

Cretaceous with Late Cretaceous volcanic rocks allows a mid-Cretaceous change to be 

established. 
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Permian to Early Cretaceous volcanic rocks of the Teremba Terrane display a wide 

compositional range from basalt to rhyolite (data from Adams et al., 2009), and mainly plot 

on the total alkali vs. silica diagram (Le Bas et al., 1986; Le Maître, 1989) within the field of 

alkaline series for mafic rocks and sub-alkaline series for felsic ones (Fig 3) (note that major 

elements features of volcaniclastic sandstones of Teremba and Koh-Central terranes do not 

allow reliable plotting on such a diagram). Late Cretaceous volcanic rocks of the Formation à 

charbon similarly display a wide range of compositions (Table 2, Fig 3). Mafic rocks plot 

within the domain of alkaline and sub-alkaline series as well; in contrast, most felsic rocks 

plot in the sub-alkaline series domain. Therefore, on the basis of major elements data only, it 

is difficult to distinguish pre-Late Cretaceous from Late Cretaceous volcanic rocks. However, 

although based upon a limited number of samples, incompatible trace element ratios (Hf, Ta, 

and Th) which are known to reflect source signatures (see Pearce, 1983; Wood, 1980 and 

references herein) show a significant change, appearing in the mid-Cretaceous. On the Hf/3-

Th-Ta triangular plot of Wood (1980) (Fig 4), the Permian to Early Cretaceous volcanic and 

volcaniclastic rocks mainly plot within the field of (intraoceanic) island-arc lavas. These 

rocks show a low Ta/(Hf/3.+Th) ratio diagnostic of a metasomatised supra-subduction mantle 

source and a variable Hf/Th ratio (trend "a") indicating minor or negligible input of 

continental crust-derived material. Thus, the geochemical features of Permian to Early 

Cretaceous volcanic rocks suggest that they were formed in a volcanic arc resting upon 

oceanic or intermediate (thinned) continental crust (Meffre, 1995; Adams et al., 2009). 

In contrast, Late Cretaceous volcanic rocks show two contrasting trends.  The first is a 

prominent scatter along the Th-Hf/3 side of the triangular plot (trend "b") and thus show 

variable contamination by continental crust, with a lesser subduction influence marked by 

higher Ta contents compared to Permian-Early Cretaceous rocks.  Second, approximately half 

of Late Cretaceous volcanic rocks plot within the field of intraplate continental provinces, 

with some influence of an "active margin" signature (trend "c"). This association of 

subduction-related with rift-related volcanic rocks is diagnostic of the period that predates the 

opening of a marginal basin. It is significant that Early Cretaceous volcanic rocks of the 

Whitsunday Province (Ewart et al., 1992; Bryan et al., 1997), although 45-10 Ma older, show 

a similar "melange trend," which indicates that the parent magmas result from mixing of 

active margin and intraplate sources (Fig. 4) and may be similarly interpreted in terms of 

crustal thinning (see Australian hinterland section below). 

The mid-Cretaceous thus marks the transition from the Permian to Early Cretaceous period 

of "active margin" activity, to the Late Cretaceous marginal rifting. It is worth noting that 
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"onland" rift-related magmatic activity on present-day New Caledonia ends whilst the 

Campanian-Paleocene New Caledonia Basin and South Loyalty Basin open to the west and to 

the east of New Caledonia respectively (Cluzel et al., 2001). 

 

U-Pb dating of detrital zircons 

Analytical procedures (see Appendix 1) 

 

Early Cretaceous volcaniclastic sandstones in the Koh-Central Terrane 

In the Koh-Central terrane, volcaniclastic sandstones generally display a single zircon 

population, the average age of which is very close to the fossil age (see Adams et al., 2009). 

Such features are very similar to those of many volcaniclastic sediments in which the 

youngest detrital zircons are derived from penecontemporaneous volcanic sources.  

Two samples from volcaniclastic turbidite outcrops along the Pouembout River (loc. 2 on 

Fig. 1), previously mapped as Late Jurassic, surprisingly contain late Early Cretaceous 

(Albian) and early Early Cretaceous (Hauterivian-Barremian) zircons respectively (Table 1; 

Fig. 5a & b). The samples were collected from a series of fine grained greywacke beds 1 to 10 

cm thick, associated with minor argillite seams and rare debris flow conglomerate; they 

mainly consist of fine grained volcaniclastic material (andesite, clinopyroxene, feldspar) and 

display geochemical and isotopic features identical to that of other Mesozoic volcaniclastic 

sandstones of New Caledonia; therefore they are considered to derive from the same volcanic-

arc source (Adams et al., 2009, see also Fig. 4). One sample gave a prominent (80%) 

population of Albian zircons, (108 ± 5 Ma) and a minor one at ca. 123 ± 4 Ma (Adams et al., 

2009). The second sample, which displays similar features, has provided a main population 

(80%) of Barremian-Hauterivian zircons (131 ± 3 Ma) (this study). This record of Early 

Cretaceous detrital zircons within the Koh-Central terrane significantly lifts the younger age 

limit of the volcaniclastic sedimentation (e.g., volcanic arc-related) in New Caledonia, which 

was previously set upon paleontological grounds at ca. 150 Ma (Paris, 1981). 

 

Mid- and Late Cretaceous metasediments in the metamorphic complex of Northern 

New Caledonia. 

Upstream of Paimboas village, on the southeastern flank of Mt Panié Massif, a series of 

monotonous blueschist facies rocks crops out along the upper reaches of the Diahot river 

(location 3 on Fig 1). The protoliths of these metamorphic rocks were volcaniclastic 

sandstone and argillite intruded by scarce meta-dolerite bodies, an association closely similar 
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to that of the Koh-Central Terrane (Maurizot et al, 1989; Meffre, 1995). Three samples have 

been processed for zircon dating: i) a tectonic boudin with glaucophane, albite and epidote 

(PAIMB3) enclosed in strongly sheared blueschist facies schist, ii) a meta-sandstone with the 

same metamorphic association (PAIMB2); and, iii) a meta-conglomerate with a sandstone 

matrix (PAIMB 1). The boudin (PAIMB3) contains one single population of upper Early 

Cretaceous zircons (102 ± 3 Ma, Albian) (Fig 5c). Some of the zircons display a small 

recrystallisation rim dated at 38 ± 3 Ma (Table 3), clearly related to Eocene high-pressure 

low-temperature metamorphism. It is suggested by analogy to similar unmetamorphosed 

volcaniclastic sandstones that the single Albian zircon component represents a magmatic 

event close to the time of sedimentation. Although no geochemical data is yet available on 

this rock, and in spite of its relatively high metamorphic grade, it clearly appears on the basis 

of its petrography and the general features of the enclosing series, that it may be correlative to 

the Koh-Central Terrane greywacke. The meta-sandstone (PAIMB2) contains a few Late 

Cretaceous zircons (ca. 86±2 Ma, Coniacian-Santonian) and thus may be correlative to the 

Formation à charbon; it otherwise displays a wider detrital zircon age range, with groups at 93 

± 2 and 115 ± 2 Ma, and only a few are older (Table 2; Fig 7c). The metaconglomerate 

(PAIMB 1), together with Cretaceous populations similar to PAIMB 2 (85 ± 6 and 99 ± 3 

Ma), also contains a wide range of reworked older zircons that include Jurassic, Triassic, 

Early and mid-Palaeozoic, and Late Proterozoic zircons (Table 2; Fig 7d), many of which 

would derive directly from a "continental" source; or alternatively, from older, directly 

underlying greywackes. 

 

 

Early Cretaceous rocks in the Boghen terrane. 

With only a few exceptions, the metamorphosed and highly sheared Boghen terrane, which 

mainly consists of sliced and broken volcano-sedimentary rocks: pillow lavas, mafic tuffs, 

sandstone, and very fine grained meta-sediments, has proven to be almost barren of detrital 

zircon, in spite of extensive sampling by the authors. However, meta-volcaniclastic sandstone, 

and carbonaceous meta-sandstone that appear rarely within each of the three massifs that form 

this terrane, have provided abundant detrital zircon populations, the youngest of which set a 

maximum age constraint on the enclosing meta-sediment. A detailed description of this 

terrane is beyond the scope of this paper; however, two representative samples will be 

described here. A typical broken sandstone formation crops out along the reaches of the 

Komendu River (location 4 on Fig. 1). It is composed of highly disrupted sandstone beds 5 to 
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10 cm thick, having angular clasts associated with carbonaceous siltstone or argillite. 

Compared with previous results that set a maximum age of ca. 180 Ma for similar rocks 

(Cluzel and Meffre, 2002), much younger zircons were extracted from this sandstone (NCAL  

32; Table 2). The youngest components fall within the Early Cretaceous (140 ± 5 Ma, 

Berriasian-Valanginian) (Fig. 6a). The remainder of the zircon population has features similar 

to that of most sandstone samples of the Boghen terrane (i.e., a major Late Proterozoic - Early 

Palaeozoic population and a mid-Palaeozoic gap: Cluzel and Meffre, 2002). 

 

Although meta-volcaniclastic sandstones are not rare in the Boghen terrane, they are 

generally too fine grained for zircon studies. However, one sample from the Faténaoué River 

(FTN2a; location 5 on Fig. 1) has provided a well defined population (ca. 30%) of Early 

Cretaceous zircons (133 ± 5 Ma, Hauterivian; Table 1) the youngest grain being 130 ± 3 Ma 

old (Table 2), together with older Palaeozoic and Early Mesozoic ones (Fig. 6b). From the 

occurrence of ca. 130 Ma detrital zircon, one can infer a slightly younger depositional age. 

Therefore, the maximum age of the Boghen terrane is now shown to be 50 Ma younger than 

previous estimates. It is significant that most greenschists/meta-volcaniclastic sandstones in 

this terrane display geochemical features of primitive arc-related (island-arc tholeiite) 

volcaniclastic rocks (Cluzel & Meffre, unpub. data). Therefore, although more investigation is 

needed, the Fatenaoué metavolcaniclastic sandstone probably signals a prominent phase of 

previously unrecognized Early Cretaceous volcanic-arc activity.  

 

"Formation à charbon" 

An extensive study of detrital zircon provenances in this unit is still in progress; however, 

preliminary results from sandstone samples from the unconformable cover of the Koh-Central 

terrane near Koh (loc. 1 on Fig. 1) (Aitchison et al, 1998; Adams et al., 2009) reveal the 

importance of mid-Cretaceous zircon populations in the "Formation à charbon" and the rarity 

of older "continent-derived" zircons. Two more samples, a coarse sandstone of the Noumea 

region (Boulari) (location 7 on Fig. 1) and a slightly metamorphosed sandstone from near the 

Paimboas village in the north of the island (location 6 on Fig 1) similarly display a very 

limited range of reworked zircons that include a dominant Aptian-Albian population (Table 2; 

Fig. 7a & b). 

Together with rare Coniacian-Santonian zircons which are probably related to volcanic 

activity contemporaneous with sedimentation, the occurrence of prominent Early Cretaceous 

(130-95 Ma) and minor Early to Middle Jurassic (220-160 Ma) zircon components, and also 
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the rarity of older zircons, all suggest that the bulk of the Late Cretaceous sandstone is 

derived from locally eroded pre-Late Cretaceous terranes.  For example, Early Cretaceous 

zircons may come from "Pouembout-type" volcaniclastic turbidite (greywackes, see above), 

or from the younger zircon components in the Boghen terrane rocks (Faténaoué-type see 

above). A close local origin is consistent with the mineral petrography of the studied sample, 

which contains dominantly angular elements clearly derived from directly underlying rocks; 

e.g.: clinopyroxene and chert from Koh ophiolite and its abyssal sedimentary cover; schist, 

epidote and serpentinite clasts from the Boghen terrane; feldspar and some lithic clasts from 

Mesozoic volcaniclastic sandstone, etc. A local origin for Late Cretaceous sandstone is 

consistent with the endemic character of the ammonite faunas contained in the sediment. 

These results further indicate that Early Cretaceous volcaniclastic sandstones and/or 

volcanic rocks were much more widespread than previously estimated, and much had 

probably been eroded before Coniacian time. A minor component of 200-160 Ma Jurassic 

zircons is also present (Table 1, Fig. 7) and is most likely also derived from eroded 

volcaniclastic sandstones. It is worth noting that apparent absence of Late Jurassic-Early 

Cretaceous zircons in these samples was also mentioned by Aitchison et al. (1998). 

 

Implications for New Caledonia's geological evolution 

From the evidence presented above, some new constraints on the geological evolution of 

New Caledonia may be set out as follows: 

i) the subduction-related "active margin" evolution of New Caledonia probably 

paused during the 150-130 Ma interval. 

ii) Subduction-related magmatism continued then until mid-Cretaceous time (ca. 95 

Ma), instead of 150 Ma as previously postulated.  

iii) Most Early Cretaceous volcaniclastic turbidites have been extensively eroded 

before the Coniacian. 

iv) A prominent change occurred in the mid-Cretaceous and an intraplate-type 

volcanic activity appeared during the Coniacian-Santonian; however, the 

coexistence of volcanic-arc magmas indicates the persistence of a metasomatised 

supra-subduction mantle below New Caledonia at that time. 

v) Late Cretaceous shallow water sediments (Formation à charbon) mainly contain 

mid-Cretaceous zircons, probably reworked from the directly underlying 

"basement" rocks. 
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Correlative terranes and events in New Zealand 

The Mesozoic terranes that form the basement of New Zealand are comprised of mostly 

Palaeozoic and Mesozoic sedimentary rocks, active-margin volcanic arcs, and associated 

plutonic complexes. These are divided into an early Paleozoic foreland (Western Province), 

related to the Lachlan Fold Belt of southeast Australia, and a accretionnary belt (Eastern 

Province), a collage of several late Paleozoic-Mesozoic tectonostratigraphic terranes. The 

boundary between the two provinces is occupied by a Median Batholith of Permian-Jurassic 

plutonic rocks (Bishop et al. 1985, Mortimer et al. 1999).  The Median Batholith may be 

correlated with the more extensive igneous complexes of similar age within the New England 

Fold Belt of northeast Australia. 

The Eastern Province terranes of New Zealand comprise an eastern group (Torlesse, 

Waipapa and Caples) of Permian to Cretaceous, volcaniclastic sandstone-dominated turbiditic 

sequences probably deposited on an "oceanic" crust and thereafter accumulated in an 

accretionary prism environment (Bishop et al. 1985). The remaining, western, terrane group 

(Dun Mountain-Maitai, Murihiku, Brook Street), has mainly Permian, Triassic and Jurassic, 

redeposited volcaniclastic sandstone-dominated successions (Ballance & Campbell 1993, 

Landis et al. 1999), but in a more shallow-water setting (with limestones and also calc-

turbidites). The Dun Mountain-Maitai terrane includes the major Dun Mountain Ophiolite 

Belt (Coombs et al. 1976), an "oceanic" suture (Davey, 2005) which extends through the 

South and North Islands of New Zealand, and probably farther north (Williams et al, 2006). It 

represents the remnants of a Permian-Mesozoic back-arc basin (Kimbrough et al., 1992; 

Sivell & McCulloch, 2000). The relative positions of the terranes, with respect to the 

Gondwana continental margin, suggest that several, especially the Torlesse composite terrane, 

have been tectonically displaced from elsewhere along the Gondwana margin. Original 

sedimentary depocentres have been suggested in the New Zealand-West Antarctic region 

(Cawood et al. 1999, Wandres et al., 2004a, b); however, Devonian zircons from the 

extensive Lachlan Fold Belt are very minor in the detrital zircon age patterns, and a required 

(and extensive) Late Permian-Early Triassic zircon source in this region is absent. 

Alternatively, original depocentres in the northeastern Australian sector have been suggested 

(Ireland, 1992; Pickard et al, 2000; Adams et al., 2007), and source rocks in this region would 

show superior matches of Eastern Province detrital zircon age patterns. In contrast, the 

Murihiku Terrane which has endemic faunas that closely resemble those of the Teremba 

Terrane of New Caledonia (Campbell et al. 1985) may be more closely related to New 

Caledonian terranes.   
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In the South Island of New Zealand, intrusion of the younger arc-related granitoids and 

adakitic plutons of the Median Batholith indicates the subduction of relatively young and hot 

"oceanic" lithosphere (Mortimer et al, 1999). Preserved in the Dun Mountain ophiolitic 

melange, there are undated, but obviously younger, boninite-like felsic dykes (Sivell & 

McCulloch, 2000) that crosscut mafic and ultramafic rocks as well, and which may represent 

fore-arc magmas formed during the early stages of basin closure. Therefore, to account the 

diverse provenances of deep fan volcaniclastic sandstone series, occurrence of arc-type 

volcanics and also the biogeographic features (i.e. occurrence of endemic faunas), a 

geodynamic model including the opening and the subsequent oblique subduction of a 

marginal basin has been proposed, in which the Dun Mountain ophiolitic melange represents 

the suture of a Permian-Early Mesozoic obliquely-closed marginal basin, and New 

Caledonian terranes represent the discontinuously active fore-arc (Adams et al., 2009).  

From biostratigraphic evidence in Torlesse Terrane rocks, the active margin activity in 

New Zealand ceased by mid-Cretaceous time (Motuan stage of New Zealand). It is thought 

that subduction ceased at ca.100 Ma, when the Hikurangi Plateau, part of the dismembered 

gigantic Hikurangi-Manihiki-Otong Java plateau (Taylor, 2006), blocked plate margin 

subduction at the latitude of New Zealand (Davy et al., 2008). However, magmatic activity 

until 95 Ma is recorded by the occurrence of younger detrital zircons in some volcaniclastic 

sandstone terranes (Cawood et al, 1999); for example, in the Torlesse Supergroup (Omaio 

Gr.), the youngest zircons are Albian. The collision timing of Hikurangi Plateau at ca. 100 Ma 

was predicated on the timing of cessation of spreading along the Osbourn Trough; thus, it is 

mainly based upon the correlation of magnetic anomalies and a reassessment of the latter 

might change the interpretation, but not the fact that subduction probably ceased at that time. 

Rift-related ductile shear zones that affect Early Cretaceous granitic plutons started at ca. 

115 Ma and evolved into half-grabens as late as ca. 88 Ma (K-Ar) (Tulloch & Kimbrough, 

1989). In the Otago Schist, age constraints suggest that extensional shear zone formation took 

place between 135 and 105 Ma, and probably overlaps the timing of marginal rifting (Deckert 

et al., 2002). It is possible, although not strictly proven, that syn-convergence extensional 

exhumation at the accretionnary wedge overlapped ductile extension related to the marginal 

break-off. After the deposition of syntectonic coarse clastic sediments in narrow submarine 

half-grabens (Tulloch & Kimbrough, 1989), there was a recurrence of Late Coniacian-

Santonian (ca. 87-84 Ma) disconformable deposition of coarse, fining-upwards, sandstone 

(Laird & Bradshaw, 2004). These are overlain by Maastrichtian-Palaeocene hemipelagic 

deposits, that reflect the initial thermal uplift and later cooling and subsidence of the passive 
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margin, coincident with seafloor spreading in the Tasman Sea. This sequence of events is very 

similar to that of New Caledonia. The Cretaceous extension-related magmatic activity started 

in New Zealand and on the Lord How Rise as early as 112 Ma, and continued until 82 Ma 

(Tulloch et al., 2009). It shows mixed features with typical volcanic-arc signatures and intra-

plate signatures as well (Nicholson et al., 2008; Tulloch et al., 2009) (Fig 4). 

 

Australian hinterland in the Early Cretaceous 

Marginal rifting in eastern Australia probably started in the Early Cretaceous. The 

Whitsunday Volcanic Province and Eromanga Basin system, in north-eastern Australia, and 

the Otway-Gippsland basin system along the south-eastern margin of Australia, are regarded 

as evidence for this event. The Whitsunday Volcanic Province is part of a high-K calc-

alkaline pyroclastic volcanic belt that extends along the central and southern Queensland 

coast. Unless there is a drastic age revision using new dating methods, these rocks show a 

rather broad range of ages (K-Ar and fission tracks) from 132 to 95 Ma, but climaxing at 120-

105 Ma (Ewart et al, 1992; Bryan et al., 1997). Meanwhile, sedimentary basins in eastern 

Queensland were receiving large volumes of volcanogenic sediment. The Aptian–Albian 

Otway and Gippsland Basins mainly consist of intrabasinal volcanic rocks that are probably 

related to the rifting episode, and younger extrabasinal volcanogenic sediment supplied from 

the east; i.e. probably from the southern extension of the Whitsunday volcanic belt (Bryan et 

al., 1997). There is no general agreement on the geodynamic setting of these basins and the 

associated magmatic activity. Some authors propose a rifting environment which is 

apparently supported by geochemical evidence from volcanic rocks (Bryan et al., 1997; 

Bryan, 2005; Fig. 4) whilst others, mainly on the basis of subsidence modelling, favour a 

back-arc model in which Early Cretaceous basins opened under continuous subduction 

influence (Waschbusch et al., 2009; Korsch and Totterdell, 2009).  

A Whitsunday provenance for some of the Early Cretaceous zircons found in Late 

Cretaceous sandstone of New Caledonia merits consideration; however, the overall features of 

the "Formation à charbon", and the lack of older zircon populations of doubtless Australian 

provenance (e.g. the New England Orogen which is closely associated to Whitsundays 

volcanic rocks, see Fig 8) do not support such a remote origin. 

 

Discussion: Cretaceous evolution of the Southwest Pacific margin in New Caledonia. 

The analysis of detrital zircon age populations of Late Mesozoic volcaniclastic sandstone, 

metavolcaniclastic sandstone, and "normal" sandstone of New Caledonia suggest almost 
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continuous magmatic activity characterised by subduction-related features in the 250-150 Ma 

and 130-95 Ma intervals, ca. 10 million years before the opening of Tasman Sea, New 

Caledonia and South Loyalty basins (Fig. 9). In contrast, extension-related magmatic activity 

is restricted to a short period ca 89-83 Ma. Deciding whether magmatic activity in eastern 

Australia or in New Zealand is directly related to an asthenospheric uplift or a back-arc 

process, is beyond the scope of this paper. However, it is important that the younger 

subduction-related volcaniclastic sandstones of the Central terrane (ca. 95 Ma) are more or 

less synchronous with the end of rifting events in eastern Australia, while rift-related 

magmatic activity in New Caledonia is much younger (< 89 Ma) than in Australia or in New 

Zealand. Such diachronism is consistent with the general style of Gondwana breakup during 

which there was progradation southward or south south-eastward in Mesozoic time. Lateral 

flow of the asthenosphere associated with a ‘scissors-like’ break-off of the continental 

lithosphere may have had effects similar to an asthenospheric uplift, i.e. generation of silicic 

large igneous provinces (Bryan et al., 1997; Bryan, 2005), that differ mainly from classical 

LIP by the involvement of lower continental crust melts. 

Biostratigraphic data, and detrital zircon populations of volcaniclastic sandstones also, 

record a Late Jurassic-Early Cretaceous time-gap, which may be related to a period of relative 

quiescence of the subduction zone in the vicinity of New Caledonia. In the Boghen terrane, 

occurrence of Early Cretaceous zircons associated with older "Australian" zircon components 

records the continuing magmatic activity located farther west. We suggest that the apparent 

slow-down of paleo-Pacific subduction in the late Jurassic-early Cretaceous was due to the 

subduction and exhumation of the Boghen accretionary complex (Fig 10a). Thereafter, 

subduction recommenced for a while and generated the magmatic products that now appear as 

reworked components in Albian volcaniclastic sandstones and in Late Cretaceous sandstones. 

Farther south, cessation of subduction at New Zealand latitudes at ca.100 Ma, by the 

Hikurangi Plateau (Davy et al, 2008) was responsible to the progressive extinction of 

magmatic activity, because subduction-related volcaniclastic sediments accumulated until ca. 

95 Ma in New Zealand and New Caledonia as well. 

The intraplate magmatic activity that is closely associated with the opening of continental 

rifts started as soon as 130-125 Ma in eastern Australia, at ca 100 Ma in New Zealand, and 

much later, at ca. 89-85 Ma in New Caledonia (Fig 9). Finally, fast eastward roll-back of the 

Pacific slab, mega-boudinage of the continental lithosphere, and marginal basin formation 

during the Campanian to Palaeocene, ca. 83-55 Ma, sliced the former margin into elongate 

submarine rises separated by "oceanic" basins (Fig 10c). Meanwhile, this process also opened 
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such basins (e.g., the South Loyalty Basin; Cluzel et al., 2001) to the east of the Norfolk 

Ridge, the easternmost known fragment of Gondwanaland. The opening of a marginal basin 

to the east of the Norfolk ridge would infer the existence of a Late Cretaceous-Paleocene 

volcanic arc to the east, beyond the South Loyalty Basin. However, there is no trace of such 

an arc, unless it is buried below younger volcanic-arc rocks in the Fiji-Tonga region; and at 

this time, no evidence for such older basement rocks has been found. It is possible however 

that the prominent eastward flow of the upper asthenosphere associated with the initial 

stretching of the Australian margin and further, the opening of "oceanic" basins of ca. 2,000 

km cumulated width, prevented the usual corner flow (uplift of metasomatised asthenosphere 

controlled by downward drag of the mantle wedge) process to operate, and a volcanic-arc 

may have never existed at the eastern end of the system. No geochemical data on the rocks 

that form the oceanic floor of the Tasman Sea and New Caledonia basins is available; 

however, the "enriched" character of the MORB which compose the obducted part of the 

South Loyalty Basin (the Poya Terrane of New Caledonia) (Cluzel et al., 2001), suggest the 

involvement of an asthenospheric mantle component consistent with such an origin. 
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Figure captions 

 

Figure 1: Sketch map of New Caledonia with location of sampling localities referred to in the 

text (see Table 1). Insert legend: QP: Queensland Plateau; MP: Marion Plateau; DR: Dampier 

Ridge; LHR: Lord Howe Rise; NR: Norfolk Ridge; LR: Loyalty Ridge; ChP: Challenger 

Plateau; HP: Hikurangi Plateau; CR: Chatham Rise; CP: Campbell Plateau. 

 

Figure 2: Very simplified cross section of New Caledonia (La Foa – Canala; see location on 

Fig. 1) to show the three pre-Late Cretaceous terranes tectonically juxtaposed, eroded, and 

overlain by the unconformable "Formation à charbon". 

 

Figure 3: Total alkali vs. silica diagram after Le Bas et al (1986) and Le Maitre (1989) to 

compare the major elements compositions of Permian to Early Cretaceous volcanic rocks of 

the Teremba Terrane (3a) to the Late cretaceous volcanic rocks of the Nouméa region and 

Diahot Terrane (3b).The dividing line between alkaline and sub-alkaline series is from Irvine 

& Baragar (1971). 

 

Figure 4: Hf/3 – Th – Ta triangular plot of Wood (1983) to show the distribution of Permian 

to Early Cretaceous (290-95 Ma) volcanic rocks and greywackes of New Caledonia in the 

field of oceanic arcs (left triangle; Adams et al., 2009), the star represents the sample NCAL 

10 (Albian); and in contrast, the more scattered distribution of Late Cretaceous (ca. 89-83.5 

Ma; Table 2) volcanic rocks (right triangle) in the field of active margins and volcanic arcs, 
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and in the domain of intraplate continental provinces respectively. The fields of Early 

Cretaceous (130-95 Ma) Whitsunday volcanic rocks (Ewart et al., 1992 in: Bryan et al., 

1997), mid-Cretaceous (112-82 Ma) volcanic rocks of New Zealand – Lord Howe Rise 

(Tulloch et al., 2009), and Late Cretaceous rocks of the Three Kings Islands (New Zealand; 

Nicholson et al., 2008) are shown for comparison. 

 

Figure 5: Probability density diagram for detrital zircon age populations from Early 

Cretaceous greywackes of the Koh-Central terrane, 5a & b: Pouembout river, 5c: Paimboas, 

Diahot river. 

 

Figure 6: Probability density diagram for detrital zircon age populations from the Boghen 

Terrane. 6a: Faténaoué river, 6b: Komendu river. 

 

Figure 7: Probability density diagram for detrital zircon age populations from the Late 

Cretaceous "Formation à charbon". 7a: sandstone Ouéhole village (north); 7b: sandstone 

Boulari (SE of Noumea); 7c: meta-sandstone Paimboas (Diahot); 7d: meta-conglomerate 

Paimboas (Diahot). 

 

Figure 8. Configuration of the south-eastern Gondwanaland margin before the mid-

Cretaceous marginal rifting (modified from Gaina et al. 1998; Sutherland 1999; and Hall 

2002) to show the location of major provinces and possible sediment sources cited in the text. 

The thick black line represents the Dun Mountain Ophiolite Belt. There is still some 

uncertainty on the precise limits of continental fragments due to the Cretaceous stretching of 

continental crust. 

 

Figure 9: A summary of event chronology in the Australian margin during the Late Jurassic 

Oligocene period to show the timing of subduction-related magmatism, eastward migration of 

rift-related magmatic activity; and in contrast, the simultaneous opening of Tasman, New 

Caledonia and South Loyalty marginal basins. 

 

Figure 10: Reconstruction of the Jurassic to Palaeocene evolution of the south-eastern 

Australian margin at the latitude of New Caledonia. 10a: Late Jurassic to Early Cretaceous 

final closure of the marginal basin(s), accretion of Eastern Province terranes, and formation of 

the Median Batholith in part (NZ); meanwhile, sediments coming from Australia could not 



 26

reach New Caledonia unless following a northern route and were accreted to form the Boghen 

Terrane; 10b: mid-Cretaceous incipient marginal rifting of south-eastern Gondwanaland and 

development of the Whitsunday Volcanic Province and possibly of the youngest components 

of the Medium Batholith; 10c: Latest Cretaceous break-up, large scale boudinage of the 

lithosphere and "Pacific" slab rollback accompanied by prominent eastward flow of the 

asthenosphere (10c adapted from Schellart et al., 2006). 

 

 

 

Appendix I: TECHNICAL DETAILS 

Stages names and limits used in the text refer to the New Zealand timescale of Cooper 

(2004) and G.S.A. geological timescale of Walker and Geissman (2009). 

Zircon dating at GEMOC (CJA) 

Samples NCAL 10, NCAL 24, and NCAL 32 were taken at stratigraphic horizons where 

coarse-medium greywacke and sandstone predominate (Table 1). To minimise sample 

handling for zircon recovery, a 1 kg sample was collected at the field outcrop as 5 mm-size 

gravel, removing all weathered rinds, blemishes, inclusions and joint faces. This enabled 

direct crushing in a tungsten carbide swingmill 2-3 times, for 5-10 seconds, sieving at each 

stage through a single, 250 micron mesh sieve. The sieved material was washed and 

decanted several times in water, to remove mud-size fractions, thus retaining a 200-300 g 

sample in a ~30-250 micron size range, which was then dried. A heavy mineral concentrate 

was obtained from a 100 g portion in sodium polytungstate liquid, adjusted to a specific 

gravity of 2.95-2.98, from which about 500 zircon grains were then hand-picked as 

randomly as possible, i.e. taking all grains within a 1 mm microscope stage field of view. Of 

these, 50-100 grains were mounted in resin to be polished for LA-ICPMS (laser-ablation 

inductively-coupled plasma-source mass spectrometry) analysis. 

   Analytical protocols relating to ablation procedures, mass spectrometric analysis and data 

treatment are discussed in detail in Jackson et al. (2004). These authors’ preferred 

procedures were followed in this work, using a Merchantek pulsed Nd-YAG laser, 

frequency-quintupled to operate at 213 nm, and an Agilent 7500S ICPMS instrument. 

   In all cases, the ablated spot size was in the range 30-50 microns, with the ablation time 

about 60 seconds, preceded by 60 seconds background measurement, and followed by 60-

120 seconds washout.  Groups of 10-12 zircon sample grain analyses were preceded and 
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followed by duplicate analyses of firstly, the in-house zircon standard GJ-1, and secondly, 

by 1-2 analyses each of the international zircon standards, MT-1 and 91500. The GLITTER 

data interpretation software package (www.els.mq.edu.au/GEMOC/) enabled analysis of U, 

Pb and Th absolute count rates, and all relevant isotopic ratios, during the run cycle, and the 

elimination of unstable beam intervals, and rejection of data where zircon core regions were 

inadvertently encountered. 

Using the laser spot size of 30-50 microns enabled age measurements to be made adjacent to 

crystal margins, rather than cores, and preferably, close to crystal terminations (as defined 

by two crystal edges). Isotopic data were continually monitored during ablation to check that 

zircon cores were not being intersected. Efficient use of the instrument time dictated that 

strongly unimodal patterns were investigated only to analysis totals of N=33-50, bimodal 

patterns to N=50-70, and strongly polymodal patterns to N=100 (N.B. throughout this work 

‘N’ and ‘n’ refer to dataset totals and subgroups respectively). This allowed significant age 

groups (n) comprising >10% to be revealed by three or more analyses (Andersen, 2005). 

Full 207Pb/206Pb, 206Pb/238U, 207Pb/235U, and 208Pb/232Th age data (and 1 standard errors) are 

listed in the Appendix. All ages used here are 206Pb/238U zircon ages where <1000 Ma, and 
207Pb/206Pb ages where >1000 Ma. A small minority of the analyses have common Pb 

corrections (using protocols of Andersen, 2002). Age groupings, were determined by visual 

inspection of probability density plots of zircon age sets, using deconvolution (and weighted 

average) algorithms in the ISOPLOT-Ex (version 3.0) software (kindly provided by K. 

Ludwig, United States Geological Survey).  

 

Zircon dating at Hobart (SM) 

 

Zircon crystals from samples PAIMB 1, 2, 3, 4, PM 118, NOU 121 and FTN2A were dated 

using a Hewlett Packard HP4500 ICP-MS fitted with a Merchantek Nd-YAG laser operating 

at 213 nm at the University of Hobart (Tasmania). The crystals were separated using a gold 

pan and a magnet, mounted in epoxy blocks, and 30 µm spots on each crystal was sampled 

by the laser in a He atmosphere. Mass bias, machine drift and fractionation were corrected 

by analysing the Temora zircon standards of Black et al. (2003). The 1063 Ma 91500 

zircons (Wiedenbeck et al., 1995), and an in-house secondary standard widely used by the 

Australian National University (the 42.2 Ma 98-521 zircons; C. Allen written 
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communication 2004), were analysed in the same analytical runs as the granitoid zircons and 

gave results within analytical error of the recommended values. 

 

 

 

Table 2. U-Pb detrital zircon age data (see Excel file). 



 29 

Table 1: New Caledonia Cretaceous greywacke and sandstone sample description, location, and data. 
 
 

Sample Loc. on 
Fig 1 location coordinates terrane lithology assumed age younguest 

zircon 
younguest zircon 

population 
older 

populations 

NCAL 
24 1  near Koh 

village 
21°33'48"S 

165°49'57"E 
Fm à 

charbon sandstone Coniacian-
Santonian 80 ± 2 Ma 85 ± 2 Ma 

(n=5) 
130-95 Ma 
200-160 Ma 

PAIMB 
4 6 south of 

Paimboas 
20°32'47"S 

164°30'40"E Diahot sandstone Late Cretaceous 92 ± 5 Ma 103.0 ± 2.2 Ma 
(n=24) 

172 
942, 614 

NOU 
121 7 Boulari 22°13'50"S 

166°31'20"E 
Fm à 

charbon 
feldspathic 
sandstone 

Coniacian-
Santonian 96 ± 2 Ma 101.7 ± 1.5 Ma 

(n=25) 
115, 135 

211-189 Ma 

NCAL 
10 5 Pouembout 

riv. 
21°06'41"S 

165°01'25"E Koh-Central greywacke correlated to the 
Late Jurassic 103 ± 1 Ma 108 ± 2 Ma 

(n=16) 
123 ± 4 Ma 

(n=5) 

PM 118 5 Pouembout 
riv. 

21°06'41"S 
165°01'25"E Koh-Central greywacke correlated to the 

Late Jurassic 121 ± 3 Ma 131 ± 1.2 Ma 
(n=35) 

195-167 Ma 
775-500 Ma 

PAIMB 
3 3 Témélin 

(Paimboas) 
20°30'40"S 

164°34'32"E 

Koh-Central 
within 

Diahot ? 
mafic boudin 

? 
(Tertiary HP-LT 

complex) 
94 ± 4 Ma 95.5 ± 1.5 Ma 

(n=8) 
101.6 ± 2 Ma 

(n=8) 

PAIMB 
2 3 Témélin 

(Paimboas) 
20°30'40"S 

164°34'24"E Diahot ? meta-sandstone 
? 

(Tertiary HP-LT 
complex) 

86 ± 2 Ma 93 ± 2 Ma 
(n=11) 

115 ± 4 Ma 
180 Ma 

PAIMB 
1 3 Témélin 

(Paimboas) 
20°32'06"S 

164°33'40"E Diahot ? meta-
conglomerate 

? 
(Tertiary HP-LT 

complex) 
85 ± 6 Ma 99 ± 3 Ma 

(n=5) 

159 ± 5,  
250-212,  
850-650 

FTN2a 2 Faténaoué 
riv. 

20°50'00"S 
164°47'41"E Boghen metagreywacke 

? 
(Late Mesozoic 

HP-LT complex) 
128 ± 2 Ma 133 ± 5 Ma 

(n=5) 

250-220 Ma 
330 Ma 

600-450 Ma 

NCAL 
32 4 Komendu 

riv. 
21°19'26"S 

165°24'40"E Boghen  carbonaceous 
sandstone 

? 
(Late Mesozoic 

HP-LT complex) 
140 Ma 140 ± 5 Ma 

(n=3) 

170-150 Ma 
215 Ma 

650-415 Ma 
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Table 2 Whole-rock major and trace element geochemistry of Late Cretaceous volcanic rocks 

of the Diahot Terrane and Nouméa area  

 
sample BP58-1 BP46-3 BP46-2 BP46-1 BP73 BP72 BP71 BP70 BP61 BP60 BP56 BP43  BP24 BP16 
lithol rhyol. basalt basalt basalt metabas

. 
metabas
. 

metabas
. 

metabas
. 

metabas
. 

metabas
. 

metabas rhyol. doler andesit 

Loc. Fern 
hill 

Bambo
u 

Bambo
u 

Bambo
u 

Ouégoa Ouégoa Ouégoa Ouégoa Bondé Bondé  Ougne Crossro
ad 
Mérét 

Arama 

Terrane Diahot Diahot Diahot Diahot Diahot Diahot Diahot Diahot Diahot Diahot Diahot Diahot Diahot Diahot 
SiO2 76.22 50.26 46.91 46.63 46.98 50.19 45.00 43.70 45.11 43.09 44.78 74.11 49.15 48.45
A1203 10.78 14.26 14.75 14.74 14.00 13.46 18.22 17.21 17.05 17.20 16.41 11.50 14.50 17.67
Fe203 1.31 10.35 12.21 13.28 11.93 13.63 8.58 9.05 9.83 9.12 9.32 0.75 11.10 9.45
MnO nd 0.07 0.17 0.17 0.18 0.18 0.11 0.12 0.15 0.14 0.14 nd 0.15 0.13
MgO 0.05 6.59 7.58 5.90 8.47 6.92 5.69 10.77 8.10 9.96 9.83 0.46 7.17 7.23
CaO nd 8.37 5.11 6.19 10.50 9.86 10.52 9.69 10.27 11.08 10.48 9.21 7.14 4.02
Na20 0.59 3.54 3.81 4.10 2.76 2.96 3.35 2.05 2.46 1.58 2.31 0.09 3.73 4.76
K20 8.74 0.34 1.73 1.48 0.02 0.01 0.02 0.26 0.28 0.26 0.04 0.20 0.51 0.03
TiO2 0.13 1.85 2.49 2.95 1.30 1.77 1.21 0.51 0.94 0.85 0.78 0.14 1.84 1.64
P205 nd 0.26 0.54 0.56 0.17 0.20 0.18 0.09 0.11 0.12 0.12 0.04 0.27 0.34
LOI 0.74 3.93 4.52 3.82 3.51 0.70 6.92 6.40 5.55 6.41 5.76 3.31 4.25 6.18
Total 98.56 99.82 99.82 99.82 99.82 99.87 99.80 99.85 99.85 99.81 99.97 99.81 99.81 99.90
        
As 12.10 0.48 0.42 0.71 0.23 10.90 2.61 0.13 0.07 0.28 0.38 0.01 1.33 0.02
Ba 729 86.6 224 136 19.70 6.94 24.3 99.4 151 176 13.8 419 98.6 66.4
Be 0.39 1.26 1.46 0.60 nd nd nd nd 0.38 0.23 0.15 nd nd 0.31
Bi 0.28 nd nd 0.01 nd nd nd nd nd nd nd nd 0.02 nd
Cd 0.25 0.22 0.80 0.03 0.12 0.25 1.45 0.13 0.16 0.15 0.14 0.13 0.34 0.11
Ce 21.52 20.91 51.06 61.64 11.62 11.00 13.00 4.27 7.01 5.77 5.96 17.25 26.72 27.04
Co 1.52 33.60 35.10 36.00 46.70 49.80 29.70 41.40 41.10 43.90 42.80 1.96 32.00 28.70
Cr 37.3 371 93.1 16.4 357 138 210 460 304 441 336 51.9 144 204
Cs 0.98 0.68 0.75 0.81 0.20 0.21 0.21 0.46 4.10 5.05 0.33 0.18 0.96 0.21
Cu 23.2 44.9 96.9 50.5 150 79 58.6 53.6 81.4 86.7 70.1 3.80 52.9 60.5
Dy 2.41 4.02 5.21 5.90 3.96 6.64 4.78 2.33 4.03 2.97 3.25 2.11 7.07 7.33
Er 1.66 1.89 2.54 2.78 2.34 4.17 2.89 1.62 2.49 1.89 2.07 1.26 4.26 4.32
Eu 0.42 1.50 2.25 2.52 1.13 1.34 1.21 0.57 0.96 0.86 0.73 0.27 1.62 1.74
Ga 10.4 23.5 24.7 26.4 15.6 19.4 17.2 14.2 16.3 15.1 15.5 11.3 22.2 20.3
Gd 2.00 4.18 6.36 6.91 3.23 4.87 3.81 1.67 2.73 2.20 2.38 1.84 6.00 6.12
Hf 5.41 2.84 3.77 4.54 1.96 3.07 2.65 0.87 1.30 1.22 1.40 2.49 4.55 4.58
Ho 0.54 0.84 1.09 1.18 0.90 1.64 1.13 0.62 0.95 0.71 0.77 0.48 1.73 1.69
La 8.72 9.56 25.36 30.30 4.36 3.49 4.64 1.59 2.40 1.86 2.05 8.54 10.47 10.86
Lu 0.38 0.23 0.29 0.32 0.36 0.69 0.43 0.28 0.42 0.32 0.33 0.20 0.64 0.66
Mo 17.20 4.24 9.29 3.85 3.16 26.10 9.07 0.89 0.83 2.15 1.94 13.00 0.72 1.99
Nb 5.78 13.50 34.50 47.60 3.83 2.53 3.04 0.89 0.97 0.84 0.99 1.82 7.37 12.30
Nd 9.60 12.34 26.28 30.87 9.02 10.56 10.53 3.67 6.76 5.40 5.45 7.75 19.14 19.76
Ni 33.7 95.8 82.2 28.7 105 105 81.9 279 174 291 238 54.2 63.3 51.6
Pb 15.5 2.68 2.33 3.44 1.21 1.17 17.40 1.07 1.36 2.02 2.02 5.39 3.03 1.13
Pr 2.60 2.65 6.16 7.39 1.75 1.91 2.07 0.71 1.28 0.99 1.00 2.04 3.91 4.01
Rb 132 7.05 23.6 21.5 1.14 0.99 1.49 8.10 8.58 8.75 1.77 2.84 12.0 1.05
Sb 0.47 0.09 0.11 0.13 0.18 0.36 0.37 0.20 0.13 0.10 0.14 0.23 0.28 0.08
Sc 2.9 17.2 15.3 13.6 27.7 27.6 20.1 18.7 23.8 21.8 20.0 7.1 22.2 19.1
Sm 2.53 3.77 6.51 7.29 2.84 4.11 3.60 1.27 2.37 1.95 1.89 1.72 5.60 5.68
Sn 2.54 1.57 2.40 2.40 1.01 1.54 1.30 0.45 0.56 0.59 0.73 0.84 1.93 1.88
Sr 9.8 98.9 182 170 48.7 83.8 339 182 187 175 71.9 383 66.3 43.5
Ta 0.57 0.98 2.51 3.54 0.31 0.20 0.24 0.07 0.08 0.07 0.08 0.24 0.55 0.88
Tb 0.37 0.71 1.00 1.06 0.61 1.00 0.71 0.34 0.55 0.43 0.46 0.33 1.05 1.10
Th 8.78 1.22 2.71 3.78 0.37 0.20 0.68 0.15 0.22 0.16 0.37 1.52 1.85 1.21
Tm 0.29 0.27 0.33 0.38 0.35 0.66 0.45 0.26 0.41 0.29 0.33 0.21 0.67 0.66
U 2.16 0.41 0.86 1.23 0.10 0.09 0.20 0.05 0.06 0.06 0.13 0.60 0.48 0.35
V 4.93 182 203 200 315 380 197 131 198 178 152 10.8 284 234
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W 0.61 0.24 0.50 0.34 0.20 0.61 0.28 0.17 0.41 0.19 0.26 0.35 0.48 0.38
Y 13.2 21.7 28.7 31.4 23.9 41.6 28.6 16.4 23.2 18.7 21.6 14.0 43.3 43.9
Yb 2.35 1.54 2.03 2.35 2.27 4.26 2.79 1.66 2.74 1.92 2.12 1.33 4.55 4.52
Zn 5.1 111 128 143 88.6 115 198 57.1 69.5 61.9 62.1 3.86 106 80.7
Zr 198 106 157 197 75 115 113 36.0 51.5 47.6 55.2 68.6 185 202
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sample NOU 4 NOU 3 NOU 2 PdF 4 PdF 3 PdF 2 CONC 1 PYR KATIR1 PNDH1 
lithol rhyolite andésite rhyolite andesite basalte basalt basalt dacite ignimbrit andesite 
Loc. Tina Tina Tina Pt des Fr Pt des Fr Pt des Fr Conception Col Pirogue old RT1 Poindah 
Terrane Noumea Noumea Noumea Noumea Noumea Noumea Noumea Noumea Noumea  
SiO2 78.65 70.86 82.940 67.84 48.370 49.14 53.87 64.21 74.09 52.89
TiO2 0.21 0.59 0.22 0.28 1.20 0.6 0.8 0.61 0.26 1.36
A1203 10.55 13.05 8.9 13.49 15.05 14.48 14.40 16.77 12.69 15.28
Fe203 2.59 4.99 0.78 5.28 8.95 10.24 8.11 5.22 3.80 11.51
MnO 0.03 0.15 0.0 0.27 0.24 0.23 0.12 0.1 0.07 0.18
MgO 0.36 0.52 0.04 0.52 4.80 7.14 5.95 0.58 1.50 4.41
CaO 0.06 0.72 0.05 1.45 8.60 8.79 6.58 1.56 0.05 6.03
Na20 4.12 5.43 5.08 4.43 4.62 3.95 2.79 7.82 4.21 3.51
K20 1.42 1.82 0.03 3.36 1.23 0.51 3.99 0.62 1.82 0.27
P205 0.00 0.15 0.0 0.03 0.35 0.29 0.49 0.25 0.05 0.22
LOI 1.74 1.32 0.58 2.75 6.29 4.33 2.46 1.87 1.82 3.56
Total 99.74 99.59 98.62 99.69 99.70 99.70 99.56 99.61 100.35 99.22
     
As 0.37 0.40 0.15 1.46 0.44 0.41 1.27  5.09 1.196
Ba 581 444 49.1 803 934 483 851 202 505 78
Be 1.87 4.45 0.56 3.34 1.05 0.0 1.36  3.15 < L.D.
Bi 0.04 0.01 0.04 0.14 0.02 0.04 0.08  0.15 < L.D.
Cd 0.15 0.33 0.12 0.52 0.13 0.11 0.27  0.8 < L.D.
Ce 100.3 179.9 116.1 197.9 36.15 18.53 57.83 42.3 210 18.14
Co 2.47 3.21 0.89 0.68 25.6 35.3 23.1 9.95 0.288 26.34
Cr 39.4 49.6 53.3 39.9 40.5 347 253 46.9 5.98 107
Cs 0.31 0.22 0.23 0.61 0.96 0.76 1.17 1.01 0.20 0.24
Cu 6.65 5.31 5.8 4.48 50.6 102 85.4  3.043 123.9
Dy 7.55 12.57 8.32 12.59 4.27 2.57 3.92 0.476 18.8 4.373
Er 3.3 6.1 4.0 6.49 2.38 1.42 1.69 0.191 9.29 2.621
Eu 2.24 4.1 2.1 4.44 1.66 1.02 2.07 3.57 5.38 1.313
Ga 15.6 25.9 6.91 31.6 14.2 14.5 15.8  31.64 19.21
Gd 8.25 14.62 9.71 14.56 4.67 2.67 5.47 0.487 21.11 4.166
Hf 8.35 17.7 7.79 18.7 3.18 1.31 4.08 0.619 18.82 2.269
Ho 1.41 2.43 1.60 2.49 0.97 0.537 0.75 1.279 3.429 0.892
La 46.4 84.15 55.7 90.5 15.7 8.02 26.9 20.5 129 7.21
Lu 0.51 0.82 0.54 0.97 0.41 0.239 0.25 3.029 1.16 0.41
Mo 14.20 19.6 20.9 14.7 1.36 1.86 2.49  9.616 3.53
Nb 56.0 113 52.2 126 9.92 2.15 9.92 8.45 105.2 1.96
Nd 47.33 86.43 56.58 95.62 20.99 11.6 31.12 19.17 125.2 13.19
Ni 33.7 45.6 44.2 35.5 26.1 54.6 48.6 10.8 25.14 57.59
Pb 7.84 9.05 2.98 15.8 4.30 3.92 7.05 5.06 13.7 1.9
Pr 11.53 21.72 14.7 24.31 4.83 2.62 7.35 5.07 32.4 2.73
Rb 23.6 32.2 2.22 64.8 22.4 11.7 99.5 23.6 32.3 3.76
Sb 0.25 0.21 0.14 0.42 0.11 0.05 0.22  0.613 < L.D.
Sc 1.7 5.6 1.8 4.1 19.2 25.1 19.7   
Sm 9.97 17.34 11.76 17.96 4.95 2.94 6.56 3.912 26.03 3.78
Sn 1.62 4.25 1.9 5.91 1.18 0.77 1.25  7.973 0.90
Sr 77.6 67.4 67.4 59.1 477 803 1103 683 90 278
Ta 4.17 8.38 4.02 8.76 0.77 0.14 0.71 5.58 7.83 0.15
Tb 1.35 2.25 1.48 2.21 0.76 0.42 0.75 2.47 3.28 0.688
Th 9.12 13.8 8.71 11.1 2.42 1.06 4.15 1.43 13.43 1.09
Tm 0.51 0.84 0.55 0.91 0.36 0.22 0.27 0.19 1.29 0.386
U 2.78 4.21 2.68 3.42 0.69 0.37 1.39 1.43 4.04 0.326
V 10.4 27.0 8.07 3.06 257 242 215 144.4 < L.D. 351.2
Y 35.2 64.1 42.7 66.9 24.9 14.3 18.9 13.164 101 24.5
Yb 3.39 5.78 3.71 6.38 2.40 1.50 1.62 0.205 8.21 2.62
Zn 68.4 150 11.9 175 85.1 72.9 70.4 14 212.5 100.6
Zr 302 684 270 851 126 49 166 129.4 749.4 77.82
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 Figure 1: Geological map of New Caledonia basement terranes and U-Pb geochronology sampling localities
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Figure 2: Very simplified cross section of New Caledonia to show the pre-Late Cretaceous terranes
overlain by the unconformable “Formation à charbon”
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Figure 5: Probability density diagrams of detrital zircon populations from Early Cretaceous 
metagreywackes and greywackes from the Koh-Central terrane
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Figure 7: probability density diagram for detrital zircon populations 
from the Late cretaceous "Formation à charbon" and Diahot Terrane.
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Figure 10: a tentative model for the evolution of the Australian margin


