R. G. Beerkens and H. De-waal, Mechanism of Oxygen Diffusion in Glassmelts Containing Variable-Valence Ions, Journal of the American Ceramic Society, vol.21, issue.12, pp.1857-1861, 1990.
DOI : 10.1111/j.1151-2916.1990.tb05235.x

H. Behrens and F. Gaillard, Geochemical Aspects of Melts: Volatiles and Redox Behavior, Elements, vol.2, issue.5, pp.275-280, 2006.
DOI : 10.2113/gselements.2.5.275

J. Bockris, J. A. O-'m, S. Kitchener, J. W. Ignatowitcz, and . Tomlinson, Electric transport in liquid silicates, Electric 685 conductance in liquid silicates, pp.536-548, 1952.
DOI : 10.1039/tf9524800536

R. E. Botcharnikov, J. Koepke, F. Holtz, C. Mccammon, and M. Wilke, The 687 effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt, p.688, 2005.

D. Canil and K. Muehlenbachs, Oxygen diffusion in an Fe-rich basalt melt, Geochimica et Cosmochimica Acta, vol.54, issue.11, p.690, 1990.
DOI : 10.1016/0016-7037(90)90112-X

I. S. Carmichael, The redox states of basic and silicic magmas: a reflection of their source regions?, Contributions to Mineralogy and Petrology, vol.248, issue.2, pp.129-141, 1991.
DOI : 10.1007/BF00306429

I. S. Carmichael and M. S. Ghiorso, The effect of oxygen fugacity on the redox 694 state of natural liquids and their crystallizing phases, Modern source of igneous petrology: 695 understanding magmatic processes, pp.191-212, 1990.

S. Chakraborty, Diffusion in silicate melts, in Structure, dynamics and properties 697 of silicate melts, Reviews in Mineralogy, vol.32, pp.411-503, 1995.

G. B. Cook, R. F. Cooper, and T. Wu, Chemical diffusion and crystalline 699 nucleation during oxidation of ferrous iron-bearing magnesium aluminosilicate glass, p.700, 1990.

G. B. Cook and R. F. Cooper, Iron concentration and the physical processes of dynamic oxidation in an alkaline earth aluminosilicate glass, American Mineralogist, vol.85, issue.3-4, pp.397-406, 2000.
DOI : 10.2138/am-2000-0401

R. F. Cooper, J. B. Fanselow, and D. B. Poker, The mechanism of oxidation of a 704 basaltic glass: chemical diffusion of network-modifying cations, Geochim. Cosmochim. Acta, issue.17, pp.705-60, 1996.

P. Deines, R. H. Nafziger, G. C. Ulmer, and E. Woermann, Temperature-oxygen 711 fugacity tables for selected gas mixtures in the system C-H-O at one atmosphere total pressure, p.712, 1974.

M. P. Dickenson and P. C. Hess, Redox equilibria and the structural role of iron in alumino-silicate melts, Contributions to Mineralogy and Petrology, vol.72, issue.3, pp.352-357, 1981.
DOI : 10.1007/BF00398931

R. H. Doremus, Diffusion of Oxygen from Contracting Bubbles in Molten Glass, Journal of the American Ceramic Society, vol.6, issue.11, p.717, 1960.
DOI : 10.1063/1.1698258

T. Dunn, Oxygen diffusion in three silicate melts along the join diopside-anorthite, Geochimica et Cosmochimica Acta, vol.46, issue.11, pp.2293-2299, 1982.
DOI : 10.1016/0016-7037(82)90202-2

T. Dunn, Oxygen chemical diffusion in three basaltic liquids at elevated temperatures and pressures, Geochimica et Cosmochimica Acta, vol.47, issue.11, pp.1923-1930, 1983.
DOI : 10.1016/0016-7037(83)90209-0

T. Dunn and C. M. Scarfe, Variation of the chemical diffusivity of oxygen and viscosity of an andesite melt with pressure at constant temperature, Chemical Geology, vol.54, issue.3-4, pp.203-215, 1986.
DOI : 10.1016/0009-2541(86)90137-3

R. L. Everman and R. F. Cooper, Internal Reduction of an Iron-Doped Magnesium Aluminosilicate Melt, Journal of the American Ceramic Society, vol.56, issue.21, pp.487-494, 2003.
DOI : 10.1111/j.1151-2916.2003.tb03326.x

D. J. Frost and C. A. Mccammon, The Redox State of Earth's Mantle, Annual Review of Earth and Planetary Sciences, vol.36, issue.1, p.727, 2008.
DOI : 10.1146/annurev.earth.36.031207.124322

F. Gaillard, B. Scaillet, and M. Pichavant, Kinetics of iron oxidation-reduction in hydrous silicic melts, American Mineralogist, vol.87, issue.7, pp.829-837, 2002.
DOI : 10.2138/am-2002-0704

URL : https://hal.archives-ouvertes.fr/hal-00072812

F. Gaillard, B. Schmidt, S. Mackwell, and C. Mccammon, Rate of hydrogen-iron 731 redox exchange in silicate melts and glasses, Geochim. Cosmochim. Acta, issue.13, pp.67-2427, 2003.

F. Gaillard, M. Pichavant, and B. Scaillet, Experimental determination of 733 activities of FeO and Fe2O3 components in hydrous silicic melts under oxidizing conditions, p.734, 2003.

F. Gaillard, Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure, Earth and Planetary Science Letters, vol.218, issue.1-2, pp.215-22810, 2004.
DOI : 10.1016/S0012-821X(03)00639-3

F. Gaillard and G. Iacono-marziano, Electrical conductivity of magma in the 739 course of crystallization controlled by their residual liquid composition, J. Geophys. Res, vol.110, pp.740-0620410, 2005.

F. Gaillard and B. Scaillet, The sulfur content of volcanic gases on Mars, Earth and Planetary Science Letters, vol.279, issue.1-2, pp.34-43, 2009.
DOI : 10.1016/j.epsl.2008.12.028

URL : https://hal.archives-ouvertes.fr/insu-00361741

D. Giordano, J. K. Russell, and D. B. , Viscosity of magmatic liquids: A model, Earth and Planetary Science Letters, vol.271, issue.1-4, pp.1-4, 2008.
DOI : 10.1016/j.epsl.2008.03.038

D. S. Goldman, Oxidation Equilibrium of Iron in Borosilicate Glass, Journal of the American Ceramic Society, vol.53, issue.5, p.746, 1983.
DOI : 10.1016/0016-7037(74)90161-6

D. S. Goldman and P. K. Gupta, Diffusion-Controlled Redox Kinetics in a Glassmelt, Journal of the American Ceramic Society, vol.43, issue.12, pp.188-190, 1983.
DOI : 10.1007/BF00498768

P. Henderson, J. Nolan, G. C. Cunningham, and R. K. Lowry, Structural controls and mechanisms of diffusion in natural silicate melts, Contributions to Mineralogy and Petrology, vol.28, issue.2-3, pp.263-751, 1985.
DOI : 10.1007/BF00379459

C. D. Herd, L. E. Borg, J. H. Jones, and J. J. Papike, Oxygen fugacity and 753 geochemical variations in the martian basalts: implications for martian basalt petrogenesis and 754 the oxidation state of the upper mantle of Mars, Geochim. Cosmochim. Acta, issue.11, pp.66-2025, 2002.

C. D. Herd, Basalts as probes of planetary interior redox state, Reviews in 756 Mineralogy and Geochemistry, pp.527-553, 2008.

J. S. Huebner and R. G. Dillenburg, Impedance spectra of hot, dry silicate minerals and rock; qualitative interpretation of spectra, American Mineralogist, vol.80, issue.1-2, pp.46-64, 1995.
DOI : 10.2138/am-1995-1-206

C. Jaupart, T. , and S. , Dynamics of differentiation in magma reservoirs, Journal of Geophysical Research: Solid Earth, vol.19, issue.B9, pp.17615-17656, 1995.
DOI : 10.1029/95JB01239

V. C. Kress and I. S. Carmichael, Stoichiometry of the iron oxidation, Am. 762 Mineral, pp.11-12, 1988.

V. C. Kress and I. S. Carmichael, The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states, Contributions to Mineralogy and Petrology, vol.85, issue.1-2, pp.82-92, 1991.
DOI : 10.1007/BF00307328

C. E. Lesher, R. L. Hervig, and D. Tinker, Self diffusion of network formers 774 (silicon and oxygen) in naturraly occurring basaltic liquid, Geochim. Cosmochim. Acta, vol.60, issue.3, pp.775-405, 1996.

I. Pascarelli, O. Vickridge, P. Pinet, and . Richet, Kinetics and mechanisms of iron redox 778 reactions in silicate melts: the effects of temperature and alkali cations, p.779, 2008.

J. Maumus, N. Bagdassarov, and H. Schmeling, Electrical conductivity and 781 partial melting of mafic rocks under pressure, Geochim. Cosmochim. Acta, issue.19, pp.69-4703, 2005.

R. Moretti and P. Papale, On the oxidation state and volatile behavior in multicomponent gas???melt equilibria, Chemical Geology, vol.213, issue.1-3, pp.265-280, 2004.
DOI : 10.1016/j.chemgeo.2004.08.048

C. T. Moynihan, Description and analysis of electrical relaxation data for ionically conducting glasses and melts, Solid State Ionics, vol.105, issue.1-4, pp.175-183, 1998.
DOI : 10.1016/S0167-2738(97)00462-1

K. Muelhenbachs and I. Kushiro, Oxygen isotope exchange and equilibrium of 788 silicates with CO 2 or O 2, pp.232-236, 1974.

B. O. Mysen, The Structure of Silicate Melts, Annual Review of Earth and Planetary Sciences, vol.11, issue.1, pp.75-790, 1983.
DOI : 10.1146/annurev.ea.11.050183.000451

C. Pettersen and R. F. Cooper, Float-reaction between liquid bronze and magnesium aluminosilicate and ZnO-doped magnesium aluminosilicate glass???ceramic-forming glassmelts, Journal of Non-Crystalline Solids, vol.354, issue.27, pp.3194-3206, 2008.
DOI : 10.1016/j.jnoncrysol.2008.01.007

A. Pommier, F. Gaillard, M. Pichavant, and B. Scaillet, Laboratory measurements 797 of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure, J. Geophys. 798 Res, pp.10-1029, 2008.

A. Pommier, M. Malki, F. Gaillard, and M. Pichavant, Methodological re- 800 evaluation of the electrical conductivity of silicate melts, Am. Mineralogist, accepted. 801 Pownceby and O'Neill Thermodynamic data from redox reactions at high 802 temperatures. IV. Calibration of the Re-ReO2 oxygen buffer from EMF and NiO+Ni-Pd redox 803 sensor measurements, Contrib. Mineral. Petrol, vol.118, pp.130-137, 1994.

J. E. Reid, B. T. Poe, D. C. Rubie, N. Zotov, M. Wiedenbeck et al., The self- 805 diffusion of silicon and oxygen in diopside (CaMgSi 2 O 6 ) liquid up to 15 GPa, Core formation in the Earth's Moon, pp.77-86, 1996.

J. J. Roberts and J. A. Tyburczy, Frequency-dependent electrical properties of 810 minerals and partial melts, pp.239-262, 1994.

K. Roselieb and A. Jambon, Tracer diffusion of Mg, Ca, Sr, and Ba in Na-aluminosilicate melts, Geochimica et Cosmochimica Acta, vol.66, issue.1, pp.109-123, 2002.
DOI : 10.1016/S0016-7037(01)00754-2

M. Roskosz, M. J. Toplis, D. R. Neuville, and B. O. Mysen, Quantification of the 814 kinetics of iron oxidation in silicate melts using Raman spectroscopy and assessment of the role 815 of oxygen diffusion, American Mineralogist, vol.93, pp.11-12, 2008.

M. Sasabe and K. S. Goto, Permeability, diffusivity, and solubility of oxygen gas in liquid slag, Metallurgical Transactions, vol.1, issue.10, pp.2225-2233, 1974.
DOI : 10.1007/BF02643937

K. W. Semkow and L. A. Haskin, Concentrations and behavior of oxygen and oxide ion in melts of composition CaO ?? MgO ?? xSiO2, Geochimica et Cosmochimica Acta, vol.49, issue.9, pp.1897-820, 1908.
DOI : 10.1016/0016-7037(85)90084-5

H. Schmalzried, Oxide solid-solutions and its internal reduction reactions, H. Ber, p.822, 1984.

H. D. Schreiber, S. J. Kozac, A. L. Fritchman, D. S. Goldman, and H. A. Schaeffer, Redox kinetics and oxygen diffusion in a borosilicate melt, Physics Chem. Glasses, vol.824, issue.4, pp.825-852, 1986.

C. R. Thornber, P. L. Roeder, and J. R. Foster, The effect of composition on the ferric-ferrous ratio in basaltic liquids at atmospheric pressure, Geochimica et Cosmochimica Acta, vol.44, issue.3, pp.525-532, 1980.
DOI : 10.1016/0016-7037(80)90048-4

D. Tinker, C. E. Lesher, and I. Hutcheon, Self-diffusion of Si and O in diopside-anorthite melt at high pressures, Geochimica et Cosmochimica Acta, vol.67, issue.1, pp.133-142, 2003.
DOI : 10.1016/S0016-7037(02)01039-6

J. A. Tyburczy and H. S. Waff, Electrical conductivity of molten basalt and andesite to 25 kilobars pressure: Geophysical significance and implications for charge transport and melt structure, Journal of Geophysical Research, vol.1, issue.88, pp.2413-243010, 0836.
DOI : 10.1029/JB088iB03p02413

J. A. Tyburczy, H. S. Waff, and R. N. Shock, High pressure electrical conductivity in naturally 837 occurring silicate liquids, in Point Defects in Minerals, Geophys. Monogr. Ser, vol.31, pp.78-87, 1985.

H. S. Waff and D. F. , Electrical conductivity of magmatic liquids: effects of temperature, oxygen fugacity and composition, Earth and Planetary Science Letters, vol.28, issue.2, pp.254-260, 1975.
DOI : 10.1016/0012-821X(75)90235-6

R. F. Wendlandt, Oxygen diffusion in basalt and andesite melts: experimental results and discussion of chemical versus tracer diffusion, Contributions to Mineralogy and Petrology, vol.21, issue.4, pp.463-843, 1991.
DOI : 10.1007/BF00303450

. As and . Cooper, two kinds of experiments are commonly used to study 852 diffusion-limited oxidation/reduction kinetics: oxygen self-diffusion and chemical diffusion 853 (redox) experiments. By " chemical diffusion experiments " , we consider experiments that let the 854 sample equilibrate with a change in the gaseous atmosphere. The diffusing species, depending on 855 the authors, are oxygen or cations or both (this study) By " oxygen self-diffusion experiments, 856 we consider experiments (mainly isotopic) that study the tracer (or network) diffusion of oxygen, p.857, 1996.