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[1] We present a mesoscale erosion/deposition model, which differs from previous
landscape evolution models equations by taking explicitly into account a mass balance
equation for the streamflow. The geological and hydrological complexity is lumped into
two basic fluxes (erosion and deposition) and two averaged parameters (unit width
discharge q and stream slope s). The model couples the dynamics of streamflow and
topography through a sediment transport length function x(q), which is the average travel
distance of a particle in the flow before being trapped on topography. This property
reflects a time lag between erosion and deposition, which allows the streamflow
not to be instantaneously at capacity. The so-called x-q model may reduce either to
transport-limited or to detachment-limited erosion modes depending on x. But it also may
not. We show in particular how it does or does not for steady state topographies,
long-term evolution, and high-frequency base level perturbations. Apart from the unit
width discharge and the settling velocity, the x(q) function depends on a dimensionless
number encompassing the way sediment is transported within the streamflow.
Using models of concentration profile through the water column, we show the dependency
of this dimensionless coefficient on the Rouse number. We discuss how consistent
the x-q model framework is with bed load scaling expressions and Einstein’s
conception of sediment motion.

Citation: Davy, P., and D. Lague (2009), Fluvial erosion/transport equation of landscape evolution models revisited, J. Geophys.

Res., 114, F03007, doi:10.1029/2008JF001146.

1. Introduction

[2] It is not very original to say that predictions of
landscape evolution models (LEM) are strongly dependent
on the erosion model. The way of finding the relevant
equation is actually a balance between the complexity of
observed processes, the ability to find manageable param-
eters, and the simplicity of model formulation. Both later
points are requirements to make model predictions easy and
thus data understandable in terms of dynamics. The stream
power law erosion model, which emerged 20 years ago
[Howard and Kerby, 1983; Howard, 1994; Whipple et al.,
1999], is the perfect example of such successful compro-
mise. The quest of the right model (note that ‘‘right’’ does
not mean universal, which would be a good news for
modelers but may be an infringement to evidences that
geomorphic systems are not all physically similar) has the
following two main issues: (1) the mathematical formula-
tion of erosion rates, with the aim at covering the main
physical processes (such as the sediment tool and cover
effect in bedrock incision [Sklar and Dietrich, 2004]) and
(2) the mechanisms of sediment transfer within rivers. The
old debate of detachment-limited versus transport-limited

processes focuses most of the scientific activity around the
latter issue.
[3] Despite several attempts [Lave and Avouac, 2001; Loget

et al., 2006; Snyder et al., 2003; Stock and Montgomery,
1999; Tomkin et al., 2003; van der Beek and Bishop, 2003],
no simple model has proven adequate to model long-term
river evolution in a variety of context. A typical example of
the difficulty to define a unique model is that both simple
detachment-limited and transport-limited model can predict
the exact same steady state river profile [Lague et al., 2003;
Whipple and Tucker, 2002]. Even more complex models,
which include some elements of the physics of the interac-
tion between saltating grains and bedrock, predict geome-
tries that are not distinct enough from simpler formulations
[Sklar and Dietrich, 2004; Turowski et al., 2007]. It is now
clear that only transient, i.e., out of equilibrium, dynamics
analysis can help in reducing the range of valid models.
Interestingly, no unique model has emerged from the study
of transient dynamics, and in some cases, no known model
has performed correctly [Tomkin et al., 2003] to reproduce
channel evolution. Whether this general failure to predict
long-term channel evolution emerges from neglecting more
complex effects such as channel width dynamics [Lave and
Avouac, 2001; Turowski et al., 2006; Wobus et al., 2006],
discharge variability effects [Lague et al., 2005; Tucker
and Bras, 2000], the role of sediment in bedrock incision
[Sklar and Dietrich, 2004; Turowski et al., 2007] or bedrock
channel hydrodynamics, or simply point out a fundamental
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flaw in the way elementary processes are described in present-
day models is not clear.
[4] In this paper, we present a new formulation of the

processes of erosion, transport and sedimentation dedicated
to the modeling of landscape evolution. Although derived in
the context of rivers, this model is sufficiently general to be
applied to any kind of particle transport processes where
particle detachment and deposition can be individually
characterized. By introducing a disequilibrium length for
sediment deposition we demonstrate how detachment and
transport-limited models can be reconciled into a more
general class of topographic evolution models that we call
x-q model. The notion of disequilibrium length is not new
and has been introduced in a similar way in channel
evolution [Davy and Crave, 2000; Lague et al., 2003; Loget
et al., 2006], soil erosion problems [Hairsine and Rose,
1992], aeolian transport [Hersen et al., 2002; Kroy et al.,
2002], or basic experiments [Charru, 2006]. In this work
we derive its dependency with flow parameters and dem-
onstrate that it is not constant. We then illustrate the basics
consequences of this model on various aspects of landscape
evolution (steady state geometry, response to tectonic per-
turbations) and compare these results with the detachment
and transport limited model predictions. We then discuss the
complexity level that can be introduced in this model in
terms of elementary physics of sediment entrainment, bed-
rock incision and sediment transport.

2. Erosion//Transport Equation Revisited

[5] The general equations governing the dynamics of
erosion and sediment transport are derived from both mass
balance considerations [Howard, 1994; Paola and Voller,
2005] and heuristic laws that describe the impact of flow on
erosion and/or transport. The mass balance equations are
calculated for each system that is considered as an elemen-
tary entity of the general dynamics. In most of LEMs, only
the ‘‘basement’’ with its upper interface, the topography, is
generally considered. We argue here that we can gain in
understanding by considering the following two basic
systems: the basement (see definition thereafter) and the
stream. In this framework, the exchange fluxes are erosion
and deposition, defined as the flux of matter taken from
basement to stream (erosion), and conversely (deposition).
The interest of this framework stays in a better understand-
ing of the parameterization of both fluxes.
[6] The basement is defined as the matter system that is

not moving with streamflow. This includes both bedrock
and stable, or slowly moving, sediment layer. This could
appear as a loose definition since there is a continuum of
velocity between the ‘‘fixed’’ basement and main flow
with, in between, rolling sediments that participate in the
so-called bed load fluxes. We however consider that the
velocity transition between ‘‘slow’’ and intermittent bed
load velocity and ‘‘fast’’ hydraulic flow is sufficiently sharp
to remove this ambiguity.

2.1. System Variables

[7] Parameterization is the starting point, as well as a key
aspect, of any simplified theory. The trick is to find the
lumped variables that remain consistent with the theoretical
framework, and especially its degree of simplicity, but also

that fully define the causality relationships basic to the
system dynamics. In the following, the key fluxes are
defined as the erosion and deposition rates along the bed
interface. The physics of fluvial erosion and deposition
would emphasize the distribution of flow velocities, and
the velocity variations near the bed surface as key param-
eters. But the simplified theories generally hide the flow
complexity within mean fluxes.
[8] As in most previous theoretical frameworks, the basic

equations are thus parameterized by the following variables:
hT, the topography defined as the interface between the
basement and ‘‘stream’’ systems; q, the stream discharge per
unit width, which is the product of the flow depth h and the
average flow velocity v; s, topographic slope; qS, the
sediment river load per unit of river width; cS, the sediment
concentration within river that is the volume of sediment
normalized by the volume of water. The qS, cS, and q
variables are related by the expression

qS ¼ cSq ¼ cSvh: ð1Þ

Other definitions are given throughout the text.

2.2. Mass Balance Equations

[9] The total volume of sediment involved in the mass
balance is the sum of topographic material ((1 � f)hT,
where the sediment mass porosity f takes account of
density changes) and of the sediment content within river
hS = cSh. The bulk mass balance relates the variations of
both these terms to the gradients of river fluxes plus the
tectonic input [Paola and Voller, 2005]

@ 1� fð ÞhT þ cShð Þ
@t

¼ �div qSð Þ þ 1� fð ÞT ; ð2Þ

where T is the uplift with respect to a reference frame
(generally sea level). This mass balance does not tell
anything about the partitioning between topography and
stream fluxes, which requires a rheological-like equation. At
this point, a very common assumption consists in taking qS
as a univocal function of water discharge q and topographic
slope s. This ‘‘capacity’’ model is statistically supported by
flux measurements in alluvial rivers; but generalizing a
statistical observation as a formal constrain is obviously a
step that deserves being tested out.
[10] A more general expression can be obtained by

explicitly considering the fluxes between river and topog-
raphy. For the topographic system, the mass balance equa-
tion writes as

@hT
@t

¼ � _eþ _d

1� f
þ T ; ð3Þ

where _e and _d are the erosion and deposition flux,
respectively. Note that both fluxes are expressed as the
total volume of sediment eroded or deposited per unit of
time and area, which justifies the factor 1

1�f that transforms

sediment volume into topographic variations. A similar
equation can be written for the river system, which actually
combines both equations (2) and (3). It gives the variations
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of the sediment flux per unit river bed area in a Lagrangian
framework attached to streamflow

D cShð Þ
Dt

¼ @ cShð Þ
@t

þ div qSð Þ ¼ _e� _d; ð4Þ

where D
Dt

is the Lagrangian derivative.
[11] This ‘‘two-phase’’ description, as well as the explicit

identification of both erosion and deposition fluxes (Ancey
et al. [2006], Charpin and Myers [2005], and Einstein
[1950] among others) differs from the Bagnold’s [1966,
1973] view, which uses an empirical expression of the river
sediment flux qs, heuristically derived from considering the
work done by fluid flow on bed (see Abrahams and Gao
[2006], Barry [2004], and Martin and Ham [2005] among
others).
[12] Although apparently straightforward, the system

dichotomy that leads to both equations (3) and (4) requires a
precise definition of the soil/water interface. The issue arises
for bed load flux qb that may be considered to operate either
below of above this interface, i.e., within the soil or river
system, respectively. If the interface is assumed above, the
mass balance equation (2) must be modified by adding the
term �div(qb) to its right-hand side, and qb must be defined
as a heuristic function of model variables. If the interface is
assumed below, qb is likely to derive from both _e and _d
fluxes. We demonstrate in a later paragraph that bed load
processes are both physically and mathematically consistent
with this latter formulation such that it is not necessary to
define a priori qb.

2.3. Erosion Flux

[13] There is nothing new in this paragraph. As for most
of LEMs, we assume that the erosion flux _e is dependent on
both the topographic slope s, and of the water discharge q

_e ¼ _e q; sð Þ:

The exact expression for this equation is discussed at length
in many papers (see Whipple [2004] for a review of bedrock
erosion processes and models), and is still an open question.
Within the scope of this paper, we consider that the erosion
rate derives from the basal shear stress exerted by the
streamflow on bed. By using a couple of heuristic equations
(see Lague et al. [2005] and Tucker and Bras [2000] for a
complete derivation), we can justify the classical stream
power law type of equation

_e ¼ K qmsn � _ec; ð5Þ

where m and n are two dimensionless exponents, K is an
erosion efficiency factor, and _ec a threshold. Note that the
shear stress paradigm leads to a more complex expression
_e = ke(t(q, s) � tc)

a, where the shear stress t is also a
power law relationship of q and s. This expression is
similar to equation (5) if a = 1, and equivalent to if the
threshold is small.
[14] Equation (5) depends on the nature of the river bed

(plain bedrock, partially alluviated or fully alluvial). In
short (this is a very hot issue in geomorphology), for
bedrock rivers, the erosion efficiency factor is expected to
vary with rock lithology [Lave and Avouac, 2001; Sklar

and Dietrich, 2001], the degree of alluvial cover [Sklar
and Dietrich, 2004; Turowski et al., 2007], and possibly
the amount of transported bed load [Sklar and Dietrich,
2001]. The slope exponent n is expected to be either 2/3 or
1 and the discharge exponent m in the range [1/3–1/2]
[Whipple, 2004]. For alluvial rivers, much less is known
on _e because this flux has rarely been considered by itself
with the notable exception of studies that aim at quanti-
fying the onset of sediment transport (see Buffington and
Montgomery [1997] for a review). Most of the studies
focus on the total exchange flux _e � _d, and deduce _e from
sediment concentration profiles [Garcia and Parker,
1991]. For entrainment of sediment in suspension, the
formulation is generally more complex than equation (5)
or its shear stress equivalent [Garcia and Parker, 1991;
Parker et al., 2003]. However, we will show that a simple
shear stress entrainment law can reasonably predict pro-
posed sediment transport capacity laws.
[15] As our objective is to illustrate the consequences of

the notion of disequilibrium length on long-term channel
dynamics, we retain equation (5) as the simplest possible
formulation for erosion rate; but we acknowledge that this
assumption bypasses, for instance, the differences between
bedrock and alluvial channels.

2.4. Deposition Flux

[16] Physically, the deposition flux depends on what
happens within the stream and more especially on the
product of the number of particles and their downward
velocity. On average (i.e., averaged over the water column),
the deposition flux is

_d
� �

¼ cSvS ;

with vS the average net downward velocity of sediment
grains. vs is actually the net settling velocity after turbulent
upward momentum is accounted for; it depends on grain
size, shear velocity, etc. The previous equation defines vS as
the average of the particle net settling velocity weighted by
volume.
[17] The deposition rate that we need is defined at the bed

interface

_d ¼ cS*vS ¼ d*cSvS ; ð6Þ

with c*S the sediment concentration at the bed interface, and

d* = c*S
cS
a dimensionless number equal 1 if the sediment flux

is uniformly distributed through depth. Replacing cS by qS
q

(equation (1)) leads to

_d ¼ d*
vSqS

q
¼ qs

x qð Þ ; ð7Þ

where the parameter x(q) defined as

x qð Þ ¼ q

d*vS
¼ vh

d*vS
ð8Þ

is the equivalent of a travel, or saltation, length. Physically it
represents the average travel distance of sediment grains
within flow from the moment they are eroded until they
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redeposit. We discuss later its relation with the average step
length defined by Einstein [1950] and characterized by
Ancey et al. [2003, 2006].
[18] Because of the q dependency of x, this model is

referred in the following as the x-q model. As a very
first hypothesis, we assume d* constant, i.e., _d proportional
to h _di, which leads to x proportional to q. But this assump-
tion will be discussed further in the text.

3. Basic Predictions of the Model

3.1. Nonequilibrium Length

[19] To discuss the physical meaning of parameters, we
develop equation (4) in the stationary case (no time change
of cSh) for flow (both q and qs) varying in the direction x.
With these conditions, the sediment discharge varies along x
as

dqs

dx
¼ _e� qs

x
: ð9Þ

Except that _e and x depend on the distance x, the previous
equation can be viewed as a first-order kinetic equation with
x the distance to reach the equilibrium. Here qs

eq = x _e is the
long-term equilibrium state of qs equivalent to the stream
capacity; it fixes whether the mass balance is net erosion
(qs < qs

eq) or net deposition (qs > qs
eq). The first-order kinetic

equation of Beaumont et al. [1992] and Kooi and Beaumont
[1996] is similar to equation (9), except that x is assumed
constant.
[20] This model thus enters into the category of nonequi-

librium models [Cao and Carling, 2002], for which the
sediment transport is not assumed to be systematically at
capacity. Its specificity is that the basic disequilibrium
parameter x depends on flow, and thus on drainage area.

3.2. Detachment-Limited/Transport-Limited Issue

[21] If x is large enough to make the deposition flux much
smaller than erosion, basic equations (3) and (7) thus
combine into

@ht
@t

¼ � _e

1� f
þ T ; ð10Þ

which is typical for the so-called detachment-limited (DL)
equation [Howard and Kerby, 1983; Howard, 1994;
Whipple and Tucker, 1999].
[22] In contrast, if x is small, the sediment load is

everywhere close or equal to its equilibrium value (assum-
ing that sediment supply is large enough) qs = qs

eq (which is
physically consistent with the fact that x is the distance to
reach equilibrium). The mass balance equation then
becomes

@ht
@t

¼ � 1

1� f
div x _euð Þ þ T ; ð11Þ

where u is the flow direction. To demonstrate this, we may
imagine the mass balance applied to an elementary along-
stream pixel of coordinates [x, x + Dx]. The topographic
increase comes from sediments that are eroded upstream
and deposited within the pixel. Since x is the travel distance
of sediments, only sediments located on average at a
distance less than x from the upstream boundary are going

to deposit within the pixel. A similar reasoning is applied to
sediments that come out of the pixel, which leads to an
expression of the net topographic variation

@ht
@t

¼ � 1

1� f
x _ejx�x _ejxþDx

Dx
þ T ;

equivalent to equation (11) in the limit when Dx approaches
0. Equation (11) is a typical expression for the so-called
transport-limited (TL) equation, in which the sediment flux
qs
eq = x _e is

qeqs ¼ q

d*vS
Kqmsn � _ecð Þ: ð12Þ

In a model where x is taken constant, the slope-area
relationship exhibits detachment-limited behavior at short
distance and transport-limited at large distance [Whipple
and Tucker, 2002], with a transition area proportional to the
square root of the drainage area A (actually the transition
occurs when A

W
= x, with W the river width).

[23] In the x-q model, x is small for small drainage areas
and large for large basins. But it does not mean that the
system goes from transport-limited regime on the drainage
divide to detachment-limited regime at river mouth since it
depends on the reference taken to define the notion of small
and large. This aspect is discussed below.

3.3. Physical Meaning of the Stream Capacity

[24] The relationship between stream capacity and ero-
sion rate (qs

eq = x _e developed in equation (12)) makes the
link between different concepts used in the physics of
erosion/transport, the erosion of a resting pile of sediment
in the one hand, and the sediment transport in the other
hand. Using equation (5), the typical expression is

qeqs ¼ x qð ÞK t � tcð Þa:

For identical flow characteristics (unit discharge and bed
shear stress), the stream capacity increases with transport
length but also with the bed erodibility K (as statistically,
particles will spend less time on bed, and more in
suspension/saltation). This underlines the notion that stream
capacity emerges from a balance between bed erosion and
deposition. Later in this paper, we discuss the link between
existing bed load transport formulae and the x-q formulation
by looking in greater detail at the significance of x in the
case of saltating grains.

3.4. Dynamic Implications: Steady State and the
Slope-Area Relationship

[25] We investigate the steady state topography that
results from the x-q model. Steady state is defined as a
dynamic equilibrium, for which both erosion and deposition
rates keep pace with uplift rates. The slope-area relationship
at any point P of topography is derived from the mass
balance equations (3) by considering that both topography
h and unit river outflow qS are stationary

T ¼ 1

1� f
_e� d*

vSqS

q

� �
: ð13Þ
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At equilibrium, qS is the total upstream eroded material
(1 � f)AT divided by the river width W, where A is the
drainage area of the basin whose outlet is P

qS ¼ 1� fð ÞAT
W

:

The unit width discharge is likewise related to the upstream
rainfall rate r that effectively contributed to discharge (also
called effective rainfall rate thereafter)

q ¼ rA

W
;

entailing that the ratio qS
q
=

1�fð ÞT
r

. Equation (13) then writes

T ¼ 1

1� f
_e� 1� fð Þd* vST

r

� �
: ð14Þ

By replacing _e by a power law equation (5), we can derive
the basic equation for the slope-area relationship

qmsn ¼ 1� fð ÞT
K

d*vS

r
þ 1

� �
þ _ec

K
: ð15Þ

The eventual slope-area relationship is derived by replacing
q by the drainage area (by using the empirical equation that
links the river width with water discharge, generally W 	
Q0.5 if we neglect the potential dependency of W on incision
rate, sediment supply and rock lithology [Ferguson and
Church, 2004; Lave and Avouac, 2001; Turowski et al.,
2007].
[26] Equation (15) calls for the following comments:
[27] 1. If the net settling velocity vs is independent of

q and s, the deposition term in the right-hand term of
equation (15) is independent of the drainage area. Thus
the slope-area relationship exhibits a single scaling what-
ever drainage area, with an exponent close to �m/2n. The
form of this equation is similar to that of the detachment-
limited case. This result contrasts with previous theories that
include both detachment-limited and transport-limited pro-
cesses, which predict two scaling relationships [Whipple
and Tucker, 2002] at short (detachment-limited) and large
distances (transport-limited). Note that these two scaling
relationships, although theoretically predicted, has never
been justified by data.
[28] 2. Although the disequilibrium length increases with

drainage area, this does not correspond formally to a
downstream transition from a transport-limited to detach-
ment-limited regime. Because qs and x are both proportional
to A/W, the deposition rate (equation (8)) is constant along
stream, and thus so is the erosion rate, which is equal at
steady state to T(1 � f) � _d according to equation (3). The
ratio of deposition over erosion, which is a good indicator
of the detachment or transport-limited character of the
dynamics, is thus constant along stream.
[29] Equation (15) can be compared with similar expres-

sion obtained for the detachment-limited and transport-limited
models (equation (12) is taken for the transport-limited model)
Detachment-limited

qmsn ¼ 1

K
1� fð ÞT þ _ecð Þ

Transport-limited

qmsn ¼ 1

K

vSd* 1� fð ÞT
r

þ _ec

� �
:

All the three erosion/deposition models end up with the
same form of slope-area relationships.

3.5. Dynamic Implications: Low-Frequency Evolutions

[30] It is beyond the scope of this paper to explore all the
consequences of this erosion/deposition model, in particular
when adding some complexity in the erosion term (tool and
cover effects, erodability difference along stream between
bedrock and alluvium). We just discuss simple cases that
can be used as benchmark of erosion laws. The first case is
the time required to reach equilibrium for a plateau submit-
ted to a vertical uplift. The erosion/deposition model was
compared to both detachment-limited and transport-limited
processes defined by equations (10) and (11), respectively.
The calculation was performed with the following hypoth-
esis and equations.
[31] The fluvial erosion/transport process is modeled by

using equations (3) and (4) for both mass balances. Varia-
bles are given in a dimensionless form defined such as the
grid mesh, the uplift rate T, and the effective rainfall rate r
are all equal to 1. The river width is supposed to vary as the
square root of the total discharge, entailing that W 	 q (for
simplicity reasons, we take W = q, which leads to q =

ffiffiffiffi
Q

p
).

[32] The erosion equation is a simplified version of (5)
_e = Kq1.0s = KQ0.5s. The deposition model is defined
by the expression of the disequilibrium length x(q) =
xoq = xoQ

0.5. By varying xo, we expect to investigate
several behaviors. Note that xo = 1 corresponds to a
case where x is about equal to the flow path length
everywhere (the demonstration is similar to that of the
Hack’s law).
[33] According to equations (10) and (11), both the

equivalent detachment-limited and transport-limited models
can be encompassed in the same mathematical framework
by taking either x =1 for detachment-limited, or x � 1 and
equation (12) for transport-limited.
[34] We choose to compare erosion laws that end up to

the same eventual topography, and thus to the same slope-
area relationships. This was achieved by taking the follow-
ing erodability constants K for each model: (1) model 1
(x-q), x(q) = 10q and _e = 1.1q1.0s; (2) model 2 (x-q), x(q) =
q and _e = 2q1.0s; (3) model 3 (x-q), x(q) = 0.1q and _e =
11q1.0s; (4) model 4 (detachment-limited), x(q) = 1 and
_e = q1.0s; (5) model 5 (transport-limited), x(q) = 10�1 and
_e = 10q2.0s.
[35] In addition to these fluvial erosion/transport equa-

tions, hillslopes are shaped by another process that is
responsible for the classical convex/concave hillslope
shape. The choice of such a process is rather arbitrary but
not critical for this study. Indeed, although hillslope pro-
cesses control the time scale of system dynamic, it does it
by a scaling factor that is independent of fluvial process
[Davy and Crave, 2000]. Thus the results do not depend on
hillslope processes in a relative sense as long as they are the
same for all simulations. This assessment has been verified
by testing different hillslope laws.
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[36] The following hillslope process was chosen for the
realism of the eventual topography: a Fickean diffusion with
a diffusion coefficient D = 10�4, associated with a linear
erosion/transfer process corresponding to equation (11) with
qs = x _e = 3.0 * Q1 * s1. This process operates for water flow
less than 10 (in pixel units).
[37] The calculations were performed for a grid of 256 


256 with the mixed Eulerian-Lagrangian code Eros [Crave
and Davy, 2001; Davy and Crave, 2000; Lague et al., 2003;
Loget et al., 2006]. The results of the simulations are shown
in Figure 1 for 3 different stages of the topography history.
Note that, although the slope-area relationships are similar
for all models, the eventual average altitude at steady state
can slightly vary because of small differences in the fluvial
network organization (Figure 1).
[38] As intuitively expected, the x-q model can behave

either as its detachment-limited equivalent if xo > 1, or as a
transport-limited model if xo < 1. In the former (this model
x = 10q and detachment-limited model x = 1 in Figure 1),
most of the erosion concentrates into large rivers at the
first stages, with a fast upstream propagation; steady state
is reached much faster than in the detachment-limited case
(dimensionless time less than 10). In the latter (this model
x = 10�1q and transport-limited model x = 10�1 in
Figure 1), the erosion is widespread even at the first
stages of process. The case x = q is intermediate between
both end-members.
[39] For constant x (equivalent to the undercapacity

model [Beaumont et al., 1992; Kooi and Beaumont,
1994]), topography is shaped by detachment-limited-like
process at small upstream distance, and transport-limited at
large distance [Howard, 1980; Whipple and Tucker, 2002].

The transition occurs at the point where both processes
have the same efficiency (or yields the same slope at
equilibrium). Comparing both modes amounts to consid-
ering a detachment-limited mode with an erosion rate _e,
and a transport-limited mode with a river flux qs = x _e.
Equilibrium states between erosion and uplift T are thus
defined by the following relationships: _e = (1 � f)T (DL)
and _e = (1 � f)T q

rx (TL) (see equation (14) and follow-
ing). The dimensionless number Q that measures the
relative contribution of TL (Q > 1) and DL modes (Q < 1)
is thus

Q ¼ q

rx
: ð16Þ

The specificity of the x-q model is that Q is constant along
the stream in contrast with the undercapacity model where
Q systematically increases downstream. It means that the
very nature of the erosion process (DL-like or TL-like) is
similar everywhere. This could explain why no obvious
transition of erosion mechanisms is observed in rivers (see
section ‘‘Field Evidence for Convexity Index of Transport-
Limited Erosional Systems’’ by Whipple and Tucker
[2002]). This is demonstrated by the simulations presented
in Figure 1, which show TL behavior for Q = xo

�1 > 1, and
DL for Q = xo

�1 < 1.
[40] Q can be related to the ingredients of the physical

model by using equations (7) and (16)

Q ¼ d*vS

r
; ð17Þ

Figure 1. Simulation of the erosion of an uplifted plateau with five different erosion/deposition models.
Erosion law as described in the text are shown Topographies at dimensionless times of 2, 3, and 5,
respectively, and the average altitude history are shown. Note that the eventual altitude is different from
one case to another.

F03007 DAVY AND LAGUE: LEM EROSION/TRANSPORT EQUATION REVISITED

6 of 16

F03007



vS, the volume average vertical velocity of particles in river,
takes a large range of values, for example between 10�6 and
10�1 m s�1. Here r is the effective rainfall, that is the ratio
between discharge and drainage area. A reasonable upper
bound of its annual average is about 10�7 m s�1

(corresponding to a rainy climate of 3 m per year), while
values about 10�5 m s�1 (3 cm in a hour) or more are
frequently encountered during the main erosive events. This
back of the envelope calculation shows that the erosion
mode number Q is generally larger than 1, which is
consistent with a transport-limited mode, but detachment-
limited mode is likely to occur either for very small
particles, or for intense climate event, or if d* is much
smaller than 1 (see the discussion thereafter).
[41] The above discussion is valid if the erosion law is

similar for bedrock and deposited sediment. This is the case
if the basement is a former alluvial system, or if bedrock
erosion processes are not that different from transporting
rock pieces. But if there is a significant difference between
basement and sediment, which is likely to occur in the
general case, the previous model at equilibrium can be
extended by stating that equilibrium entails both (1) an
erosion of the bedrock at the same rate as the uplift T and
(2) an erosion of the whole sediment cover. Of course,
basement and sediment erosion cannot occur at the same
time, which implies a time partitioning of erosion processes
between both processes. If a is the percentage of time
during which basement erosion occurs at a rate _eB, and thus
1 � a for cover erosion at a rate _eS previous statements
(1) and (2) lead to the following equations: (1) bedrock
erosion (assuming that bedrock porosity is nil) a _eB = T
and (2) cover erosion (1 � a) _eS = (1 � f)qSx = (1 � f)Tq

rx =
(1 � f)TQ. Here a can be removed by injecting the former
equation in the latter, which leads to

_eB ¼ T 1� fð Þ _eB
_eS
Qþ 1

� �
:

A slope-area relationship can derived from previous
equation by replacing _eB and _eS by their expressions. The
complete derivation can be quite complicated and will be
done in a further work. The relative contribution of TL and
DL modes is given by the dimensionless ratio

Q0 ¼ 1� fð Þ _eB
_eS
Q:

Here Q0 is the product of a large number (Q) and a small
one ( _eB_eS). Given the difficulty in quantifying erosion laws, it
remains difficult to determine whether Q0 is smaller or
larger than 1, and the issue DL versus TL is still open.
[42] The time partitioning that we invoke for cover and

bedrock erosion addresses directly the issue of flow vari-
ability whose consequences have yet to be derived in the
framework of this model. Since this can lead to quite long
developments, we leave this issue for future work.

3.6. Dynamic Implications: High-Frequency
Transient State

[43] We suspect that the response of the x-q model to fast
perturbations (such as very fast base level drop) can be
significantly different from both end-member models. We
have argued in the previous paragraph that the long-term
evolution of x-q models (model 3 in Figure 1, for instance)
can be equivalent to transport-limited model. Conversely,
we suspect that the large disequilibrium length x encoun-
tered downstream should produce detachment-limited-like
evolutions at least during a short period.
[44] To illustrate this dual behavior, we modify the

boundary conditions of the topographies eroded during the
5 experiments described in the previous section, by decreas-
ing suddenly the altitude of the outlets of drainage basins.
Before this base level drop, the topographies are at steady
state. Figure 2 gives the changes of the longest stream
topographic profile at different times for the model 3 (x(q) =
0.1q). It shows the inland propagation of the erosion wave
subsequent to the base level drop.
[45] The altitude changes during each experiment are

plotted in Figure 3 for the detachment-limited (Figure 3e),
transport-limited (Figure 3f), and x-q cases (Figures 3a–3d)
models, respectively. The curve is obtained by subtracting
the stream profile at a given time and the initial profile at
t = 0. The dotted line indicates the initial step conditions.
We choose to compare the x-q model 3 (x = 0.1q) with
both the detachment-limited and transport-limited equiva-
lent models.
[46] The step boundary condition is expected to propa-

gate inland and to smooth out because of the diffusion part
of the erosion/transport equations. The relative contribution
of the former (inland propagation) versus the latter (smooth-
ing) is a signature of the erosion mode. The DL model is
close to a wave propagating model, while the TL model
contains both propagation and smoothing at the very first
stages, but rapidly establish into a diffusion-like regime
(Figure 3).
[47] As expected the x-q model behaves as DL for Q < 1

(see above for a definition). On the other hand, the x-q
model with Q = 100 has the expected TL-like behavior. But
a difference with the long-term response can be observed

Figure 2. Stream profile for the model 3 of the previous
section after applying a lowering of the outlet altitude.
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for the case Q = 10 (xo = 0.1), which has now some aspects
of DL-like behavior for this simulation. We suspect that this
discrepancy is related to the absolute transfer distance x of
the river outlet, i.e., where the perturbation is applied. A
DL-like propagation is defined by x larger than the distance
over which the perturbation propagates. In the simulations,
x is about equal to 150 xo at the largest basin outlet (i.e.,
150
Q ). It cannot be considered as negligible compared to the
stream length (	100) if xo = 0.1 (Figure 3c). This example
shows up that the x-q model cannot be fully mapped on to
the equivalent DL or TL models, and that typical features of

DL dynamics (knickpoints in particular) can be reproduced
without being strictly in DL.

4. Discussions About the x-q Model

[48] The modeling exercise for a dynamics as complex
as sediment transport and channel incision processes is
a tradeoff between physical relevance and simplicity
(‘‘Everything must be made as simple as possible, but
not one bit simpler,’’ quotation attributed to Albert
Einstein). The trick consists in reducing complexity into

Figure 3. Altitude change during a ‘‘step’’ experiment. The curves represent the difference between the
initial stage and the evolving topography for different time steps Dt following the instantaneous base
level drop. The dotted lines are the initial stage. Note that the time step is different from one experiment
to another. The definition of the disequilibrium length x is indicated.

F03007 DAVY AND LAGUE: LEM EROSION/TRANSPORT EQUATION REVISITED

8 of 16

F03007



a few parameters and equations that keep relevance of
basic physical processes. With respect to the other land-
scape evolution models that consider only topography
variations, the x-q model broadens the physical (and thus
mathematical) framework of long-term erosion/transport
equations by considering nonequilibrium transport capac-
ity with a ‘‘kinetic’’ parameter that depends on hydraulic
variables. This renders the ability of river to transfer sed-
iment over finite distance with consequences on long- and
short-term evolution of topography such as illustrated in
the previous paragraphs. The physical consistency of the
x-q model (‘‘. . . but not simpler’’) lies in the capacity of
subsuming the physics into the heuristic equations that
described basic fluxes of erosion _e (equation (5)) and
deposition _d (equation (6)), with the additional require-
ment that these equations only involve lumped variables
(here q, the discharge per unit width q, and s, the topo-
graphic slope).
[49] Actually, the x-q model is an extension of Einstein’s

view of sediment transport [Einstein, 1950] where particles
are episodically moving in the fluid, and which has been
remarkably illustrated in experiments by Ancey et al. [2003,
2006]. This is a way to say that saltation-like processes are
ubiquitous in transport processes, even for bed load trans-
port at low shear stresses (see experiments from Lapointe
[1992], for instance), but with a large range of disequilib-
rium lengths and erosion rates (or resting times).
[50] A saltation-like description of grains contains the

following three stages: erosion/abrasion rate of bed, ejection
of grains, and particle settling of grains in fluid. The former
and latter processes are directly encompassed in the erosion
and deposition fluxes, respectively. Grain ejection is not, but
it is likely to control the distribution of sediment within
flow, which appears in the parameter d* of equation (6).
Here d* is actually the ratio between the sediment concen-
tration near the river bed interface and the average over the
water column; it intervenes in the definition of x and in its
dependency with q. Actually d* contains all the physics that
describes the distribution of sediment through water column
(grain ejection, upward turbulence forces, etc.), and that the
x-q model is not aimed at describing. In the later para-
graphs, we will discuss how river processes can fit into the
x-q model framework or how we can adapt the model to
take account of the diversity of sediment transport process-
es. We first discuss how d* can be calculated for suspended
load and bed load rivers.

4.1. Estimate of d* for Natural Rivers

[51] As explained above, the physics of the transport
process is encompassed into the following three main
parameters of the x-q model: the erosion rate _e, d* that
quantifies the distribution of sediments in the water column,
and the settling velocity vS. As a gross approximation, we
consider that most of sediment is carried in a bottom layer
of the river, whose thickness is h* and velocity v*. The
sediment concentration of this bottom layer is the ratio
between qs, the unit sediment flux, and q* = v*h*, the actual
unit water flow in the bottom layer. The deposition rate
writes as

_d ¼ cS*vS ¼ qS
vS

q*
;

which leads to simple expressions for the saltation length
x(q) and d*

x qð Þ ¼ q*

vS

and d* = q

q*
. This simple calculation shows that the

dimensionless number d* defines in some way the dominant
transport process.
[52] A proper estimation of q* requires knowing both the

velocity profile and the sediment concentration in river. The
sediment concentration profile within turbulent flow is
generally described by a competition between the down-
ward settling of particles and the mixing due to turbulence,
whose intensity is given by the velocity distribution. Rouse
[1937] postulates a Fourier-like diffusion for turbulence
mixing, which leads to a first-order equation for sediment
concentration where the mixing flux balances the settling
velocity. The solution for a logarithmic velocity profile is

cs zð Þ ¼ cs að Þ *
z� a

h� a

a

z

� �Z

; ð18Þ

where z is the depth, a is a reference depth that is considered
to be the base of the river system, h the thickness of the
water column, c(a) is the concentration at z = a, and Z is a
dimensionless parameter that depends on the actual settling

velocity vS and on the shear velocity u* Z =
vS

bku*
, with b as

a ‘‘correcting’’ coefficient and k the von Karman’s constant
likely equal to 0.4. In the genuine Rouse’s theory, Z is the

Rouse number Zo =
vS

ku*
, and was found to fix the relative

contribution of suspended, wash and bed load. However,
important corrections (with b > 1) appear to be necessary to
take account of complex flow dynamics over rough bed
and/or to fit actual measurements (see Graf and Cellino
[2002] and data therein).
[53] Further improvements to the original Rouse model

concern the ‘‘diffusivity’’ term but the basic ideas remain sim-
ilar. The modified solutions are either similar to equation (18)
with correcting terms applied to Z, or different mathematical
equations such as the very simple exponential decrease with
a typical length scale equal to h/Ro [Bridge, 2003].
[54] Equation (18) can be easily mapped into the x-q frame-

work since cs(a) is likely to be the sediment concentration c*s
that is involved in equation (6). This postulates that turbu-
lence mixing flux (and thus force) vanishes below z = a. Even
if this assumption is debatable, we can consider the product
cs(a) * vS as an upper bound of the deposition flux.
[55] The second assumption that we use to derive simple

analytical functions is to consider that the sediment flux qs
can be calculated by integrating cs(z)u(z) from a to h, which
amounts to assuming that the contribution of the sediment
flux below z = a is negligible. This is a reasonable
assumption when suspended load dominates, or if a can
be taken small enough (i.e., within the bed load system) to
make the assumption right. Both assumptions make the
following calculations only indicative of what x could be.
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[56] The sediment flux can be calculated by integrating
csu between a and h

qS ¼
Z h

a

cs zð Þu zð Þdz ¼ cS að Þ
Z h

a

z� a

h� a

a

z

� �Z

u zð Þdz:

We assume u(z) to follow the classical logarithmic velocity
profile of turbulent flow, which is besides the basic
assumption used to derive the Rouse equation. Then d*
can be calculated from equations (6) and (7)

d* ¼ cS að Þ
cS

¼ cS að Þ q

qS
¼

Z h

a

u zð Þdz
Z h

a

z� a

h� a

a

z

� �Z

u zð Þdz

¼

Z h

a

ln
z

zo

� �
dz

Z h

a

z� a

h� a

a

z

� �Z

ln
z

zo

� �
dz

; ð19Þ

with zo as the characteristic roughness. Here x can be
calculated from d* by equation (8). The above expression
depends mostly on Z, and only slightly on the ratios a/h and
zo/h (Figure 4).
[57] An example of x values calculated from the previous

equations is given in Figure 5 as a function of the total
discharge for a ‘‘representative’’ alluvial river. This calcu-
lation does not pretend to explore all the range of admissible
river parameters; it just aims at illustrating a few trends with
‘‘reasonable’’ values. For this, we take the regression param-
eters given by Knighton [1998] for alluvial rivers, where the
water depth, river width, and topographic slope scales with
the bankfull discharge Qb as 0.58 * Qb

0.36, 3.937 * Qb
0.5, and

0.0007 * Qb
�0.3, respectively. The shear velocity is derived

from its basic definition, u*2 = ghs, with g the gravity

acceleration; with the chosen river parameters, it varies
slightly in the range 0.06–0.09 m s�1. Typical settling veloc-
ities have been taken from Dietrich [1982].
[58] Without pushing too far the previous calculations, we

can emphasize the follwoing few points from these graphs.
(1) For small rivers and large particles, most of the entrain-
ment mechanism is bed load, d* is much larger than 1 and
the disequilibrium length x is small. (2) Conversely, if the
Rouse number of large rivers (or of small particle) is small,
d* is close to 1 and the disequilibrium length is defined by
the simple relationship x = q

vS
. (3) Except for coarse sand, the

disequilibrium length is about larger than the river width,
which may have consequences on the development of
meandering or braiding instabilities (this is slightly devel-
oped in a next paragraph). (4) The exponential model gives
much larger values than the corrected Rouse profile except
for fine grains for which d* is small. Assessing d* is
actually an issue for deriving predictive models. (5) If
taking into account a downstream fining, x could vary along
stream faster than q.
[59] Note that the above simulations are just an example

of how x can be, and are strongly dependent on the
variations of h, W, and s with Q. In the calculations shown
in Figure 5, d* does not vary a lot with Qb, and thus x scales
likely as q. But this depends strongly on the along-stream
evolution of the shear velocity u* (and thus of the product s
* h), and an increase or a decrease of d* with Q is also
likely to occur.

4.2. The x-q Model and Bed Load Flux Prediction

[60] For bed load processes, sediment concentrates in an
‘‘active’’ layer whose thickness h* is small compared to
water depth h. However, the exact value of h*, its depen-
dency with discharge, grain size, etc., is still an issue partly
because of the difficulty of having in situ measurements in
natural rivers and experiments. Typically, for saltation
dominated bed load, the physical definition of h* is the

Figure 4. Value of d* calculated from equation (19) as a function of the Rouse number Z for different
values of the ratios a/h and zo/h. Here d* is always larger than 1 and smaller than 3 for Rouse numbers Z
smaller than 0.1. For Z between 0.1 and 2, d* increases rapidly mainly as a function of a/h.
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grain ejection height h*e. However, for sheet flow domi-
nated bed load occurring at higher shear stresses [Gao,
2008], h* would likely correspond to the thickness of the
layer of actively sheared grains hs* located below the active
saltation zone. Keeping in mind the difficulty with factoring
this complexity into a simple framework, the predicted
equilibrium bed load flux can be estimated using qb = x _e
(equation (12)) and compared to existing bed load transport

laws. In this configuration the transport length is replaced
by the following expression:

x ¼ q*

vS
¼ u*h*

vS
;

where u* is the mean velocity of the saltation layer (resp.
sheet flow layer) supposed to be proportional to the shear

Figure 5. (a) Plot of the disequilibrium length x as a function of the bankfull discharge Qb for the
average river of Leopold and Maddock [1953]. The settling velocity has been derived from Dietrich
[1982] for particle diameter of 1 (coarse sand), 0.25 (medium sand), 0.125 (fine sand), 0.062 (very fine
sand), 0.03 (coarse silt), and 0.016 mm (medium silt). For each granulometry, the lower curve is
calculated with the classical Rouse equation with the correcting term b = 1 + 2(vS/u*)

2 defined by Graf
and Cellino [2002] and the upper curve is calculated with the exponential concentration profile. (b) Same
as Figure 5a but for the ratio x by river width.
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velocity ~u ¼ kv
ffiffiffiffiffiffiffiffi
t=r

p
, where kv is a constant. A generic

grain entrainment law can be defined

_e ¼ ke t � tcð Þa;

where ke could incorporate a series of factors such as median
grain diameter, sediment concentration (that could have a
positive or negative effect on grain entrainment) or the degree
of near-bed turbulence. According to equation (11), the
equilibrium sediment flux writes as

qb ¼ x _e ¼ ke
u*h*

vS
t � tcð Þa¼ kekvh*ffiffiffi

r
p

vS
t

1
2 t � tcð Þa: ð20Þ

We note that if h* is constant and a = 1, then equation (20)
presents the following basic elements of many bed load
transport laws [Bagnold, 1977; Einstein, 1950; Fernandez
Luque and van Beek, 1976; Meyer-Peter and Muller, 1948]:
(1) a critical threshold, (2) an asymptotic dependency with
shear stress with an exponent 3/2, and (3) an inverse
dependency with grain diameter via the sediment settling
velocity. Yet, h* is likely not constant, in the case of saltation-
dominated regime, a compilation of particle trajectory
analysis [Sklar and Dietrich, 2004] shows that the grain
ejection height h*e varies as h*e1D(t� tc)

0.5, whereD is the
median grain diameter. Moreover, in the case of coarse
gravel, inertial effects induce a positive dependency between
the mean settling velocity and shear stress (i.e., the higher is
the grain ejected, the more accelerated it can be). Compiled
data [Sklar and Dietrich, 2004] suggest that vs 	 (t � tc)

0.2.
Combining these results gives a slightly different asymptotic
prediction of equilibrium bed load flux if a = 1 qb 	 t1.8,
which is close to the reanalysis of Meyer-Peter and Müller
data by Wong et al. [2007], or the quadratic model proposed
by Charru et al. [2004]. For sheet flow dominated regime,
hs* increases linearly with shear stress [Gao, 2008].
However, given the very large sediment concentration and
the nonnegligible grain-grain collisions, vs cannot simply be
evaluated. A proper treatment would also require factoring in
the impact of sediment concentration on the fluid-grain
mixture. This is likely the point where the balance between
complexity and efficiency is reached for a model dedicated
primarily at landscape evolution modeling.

4.3. The x-q Model Versus Einstein’s Model

[61] As said before, the x-q model shares with Einstein’s
[1950] model the same conception of episodically moving
particles. The point here is to discuss to which extent the
physical and mathematical descriptions are similar.
[62] Briefly, Einstein’s conception is a particle-based

model, where the dynamics is characterized by short flights
within fluid and long resting times. The main parameters of
this model are the length of the particle flight and the
distribution of resting times. The average time spent by a
particle within flow can be calculated by considering that
the streamflow is a sediment reservoir with a given volume,
an inflow, and an outflow. At equilibrium (inflow is
outflow), the average residence time of particles is the ratio
between volume and outflow. In the river case, the outflow
is _d, the volume csh, and thus the time spent by a particle
tp = csh

_d
= h

d*vS
. The average particle distance in the

Einstein’s model is x* = tpv* = x v*
v
, where v* is the

particle velocity that is likely different from v the average
flow velocity. Two additional points: (1) x* has only a
statistical meaning and is not by the way a material
velocity and (2) the above calculation is not strictly correct
since x* is basically the average of the product of time and
velocity and not the product of the averages. The above
calculation shows that the Einstein’s length x* is related to
the travel length, but the correspondence is not strictly one
to one.
[63] In situ travel lengths have been measured by follow-

ing particles in sand bed or gravel bed streams with bed
load-like entrainment mechanisms [Church and Hassan,
1992, 2002; Habersack, 2001; Hassan et al., 1991, 1992,
1999, 2006]. The travel distances take values of the order of
a couple of meters for gravel bed rivers, and from tenths of
meters to couple of kilometers for sand bed rivers. However,
apart from Haschenburger and Wilcock [2003] who radio-
tracked individual particles, they are measured during a
flow event or during the flood season, which makes the link
with x not straightforward. The differences notwithstanding,
in situ measurements are at least 1 order of magnitude larger
than x values calculated with the formula used in Figure 5.
For gravel bed rivers, the 6-m average distance measured by
Habersack [2001] is well above the couple of centimeters
that would predict equation (8). This discrepancy addresses
two issues. The first is about the actual meaning of x in
terms of particle displacement, i.e., does it represent only
one jump or a trip in the active sheet layer? The second is
about the applicability of the Rouse-like theory when
dealing with bed load processes. Even in introducing
correcting terms such as b in the formulae, it is doubtful
that this theory succeeds to fit concentration profile in
saltating bed load streams. A better approach would be to
consider the particle ejection height, h*, in the definition of
x as given by Charru [2006], but natural constraints are
badly needed.
[64] A similar reasoning can be applied for the particle

rest periods. The survey of particle histories, motivated by
the Einstein’s model, clearly demonstrates that particles
move only episodically with quite a large distribution of
rest periods including ‘‘long-term’’ deposition. Linking the
rest periods with the erosion rate requires assessing the
volume of particles within the active layer. It is likely given
as the average burial depths of particles when they stop.
Hassan et al. [1999], for instance, measured depth of the
order of several tenths of centimeters for a sand bed river.
We can imagine a scour and fill process to be model in the
x-q model framework in relationship but this would require
a detailed modeling of each flood that is beyond the scope
of the x-q model, as is bed form dynamics that is likely to
play a role in the particle displacement.
[65] To conclude with this part, it is not straightforward to

match the x-q model into a particle-based theory such as
MacVicar et al. [2006] and Malmaeus and Hassan [2002],
because it is based on a flux parameterization. Here x, for
instance, is typically the average distance for stream to
reach equilibrium, which is defined as statistic equality
between erosion and deposition rates. Whether x relates or
not to the average particle travel distance is still an issue that
deserves being explored.
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4.4. The x-q Model and Geomorphic Instabilities

[66] Here x is above all a ‘‘disequilibrium’’ distance,
meaning that a river with uniform conditions in flow and
erosion rates can be out of equilibrium (deposition does not
balance erosion) on distances smaller than x. Because of this
potential discrepancy between erosion and deposition, this
length was found to be a major control in the development
of dunes or sand ripples in either aerial or fluvial regimes
[Kroy et al., 2002]. Here x also called the saturation length
[Kroy et al., 2002] inhibits the growth of the smallest
wavelengths; it is thus found to give the minimal size of
dunes [Andreotti and Claudin, 2007; Hersen et al., 2002;
Parteli et al., 2007a; 2007b]. The physical significance of
the ‘‘saturation length’’ in the case of aerial dune is however
different than x. There, it likely originates in the particle
inertia within the airflow. In viscous fluid, inertia is negli-
gible and [Charru, 2006] proposed that x is a deposition
length whose definition is exactly similar to ours.
[67] The understanding of other fluvial instabilities, such

as channel bars that are basic to braiding, is not so advanced
[Bridge, 2003], but still the transfer distance of particles is
likely controlling the distribution of bars in braided rivers
[Pyrce and Ashmore, 2003, 2005]. Although a full treatment
of this issue is beyond the scope of this paper, we show in
Figure 6 three simulations made with the particle-based
Eros code with small and large disequilibrium length x that
illustrates its effect on braiding. The code is an enhanced
version of the one used above and presented by Crave and

Davy [2001] and Davy and Crave [2000], where particles
are elementary water volumes representing a full slice of
river. Wide channels and braided patterns actually results
from the following two additional rules:
[68] 1. In addition to the underlying river bed, particles

are eroding their side neighbors (except the upstream and
downstream neighbors that are eroded along the flow path)
at the same rate as basal erosion. The surface on which
lateral erosion applies is the altitude difference between the
pixel and its neighbor, and thus the volume eroded laterally
is the basal erosion volume multiplied by lateral slope.
Deposition is assumed to occur only vertically on the basal
bed.
[69] 2. The former code neglected water depth, and routed

particles on top of bed topography. However, this assump-
tion precludes channels from overflowing, which seriously
limits the number of active channels that form the braided
structure. The enhanced code calculates explicitly water depth
h from discharge q and slope s via a Darcy-Weisbach-like
equation (in these simulations where slope is about constant,
the exact nature of the equation, Manning or Darcy-Weisbach,
is less important than x). Particles are then moved on top of the
water surface. A smoothing procedure is applied to the water
surface to remove unmanageable roughness due to discharge
variability.
[70] Figure 6 shows that a braid-like instability develops

if x is neither too small (the bed load regime) nor too large
(only straight rivers develop). The trade-off for a full
braiding system is likely obtained when x is a fraction of
the braid plain width, but larger than individual channel
width. This range of x does not seem unusual according to
Figure 5. Note that the erosion/deposition law is only part of
the braiding issue. The simulations of Figure 6 were
performed in a pure sediment transfer regime (exact balance
of erosion by deposition at the system scale). A departure
from this stationary case inhibits braiding by forming either
straight rivers (erosion case) or delta-like patterns (deposi-
tion case).The x-q model is actually potentially richer in
terms of channel forms than a model with constant x. All the
consequences of the x-q model have still to be derived for
alluvial and bedrock rivers. In the latter case, refinements
will likely be necessary as the flux of depositing particle can
potentially play a role in the erosion flux (i.e., the tool effect
in bedrock river abrasion [Sklar and Dietrich, 2004]) and
partial alluvial cover limits bedrock erosion (requiring to
specify alluvial thickness above bedrock as a third state
parameter on top of unit discharge and channel slope).

5. Conclusion

[71] In this paper, we develop and discuss a mesoscale
erosion/deposition model, which differs from previous LEM
equations by taking explicitly into account a mass balance
equation for the streamflow. This approach is not new, and
even less sophisticated than that by Paola and Voller
[2005], but we try to develop a physically meaningful
parameterization for this model, and to derive consequences
on relief dynamics.
[72] As for other LEMS, the model is based on a meso-

scopic description of the physical processes that reduces the
geological and hydrological complexity into average param-
eters. All the physics is lumped into two basic fluxes,

Figure 6. Top views of three simulations calculated from
the particle-based model Eros with three different disequili-
brium lengths, i.e., x = (left) 2, (middle) 5, and (right) 100,
respectively. All the other erosion parameters of equation (5)
are similar (K = 1, m = 1.5, n = 1). For each view, x
corresponds to the distance between the blue and yellow
squares. The blue color indicates water flow. Note that this
version of the Eros program is slightly more sophisticated
than that used in Figures 1–3. The river width emerges from
dynamics thanks to the following two additional terms: a
heuristic description of water height that allows channel
avulsion and lateral channel erosion.
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erosion and deposition, and the following two averaged
parameters: unit width discharge q, and stream slope s.
[73] Basically, the model consists in coupling the dynam-

ics of streamflow and topography through a sediment
transport length function x(q), which is the average distance
covered by a particle in the streamflow before being trapped
on topography. This property reflects a time lag between
erosion and deposition, which allows the streamflow not to
be instantaneously at capacity. The disequilibrium distance
function is basically proportional to the ratio of q to the net
settling velocity.
[74] The x-q model (a name that emphasizes the depen-

dency of x with q) has the same property as other models
based on a disequilibrium length. The product of erosion
rate and x, qS = x _e, is the stream capacity that is eventually
reached along stream when erosion keeps pace with depo-
sition. If x is small, the model reduces to a classical
transport-limited equation, where qS = x _e is the equivalent
‘‘bed load’’ flux. If x is large, sediments never redeposit
after being eroded, and the x-qmodel is typical of detachment-
limited behavior.
[75] The consequences of the x-q model have been

analyzed for long-term geological evolutions as well as
for high-frequency changes. In the former case, the model
challenges undercapacity models where the disequilibrium
length x is constant, which predict a transition from DL to
TL along stream. Whatever the models, the sediment
entrainment mode is given by the dimensionless number
Q = q

rx, with r the average upstream effective rainfall rate,
with both end-members DL for Q � 1, TL for Q � 1.
Undercapacity models with constant x predict a downstream
increase of Q, and a consequent transition from DL to TL at
the critical discharge where Q = 1. Conversely, Q is
constant along stream for the x-q model where x is propor-
tional to q, and the very nature of the erosion process
(DL-like or TL-like) does not change along stream. We show
that this leads to a unique power law for the slope-area
relationships even if large x values are encountered down-
stream. We derive the corresponding equations.
[76] High-frequency evolutions lead to slightly different

conclusions mainly because of the consequences of large x
values that the x-q model predicts downstream. Some
experiments in the TL-like regime during long-term changes
(i.e., with Q < 1) exhibit DL-like behaviors during high-
frequency variations. This was illustrated by the inland
propagation of a base level drop, which propagates as a
pure wave for these experiments as it does for DL models.
[77] Apart from the unit width discharge q and the settling

velocity vs, the x function is likely to depend on a dimen-
sionless number that encompasses the way sediment is
transported within the streamflow. By using models of
concentration profile through the water column, we show
that this dimensionless coefficient depends on the Rouse
number Zo, is about 1 for small Rouse number (Zo < 0.1),
but can become very small for larger Zo.
[78] Finally we discuss how consistent the x-q model

framework is with bed load scaling expressions, considering
that the bed load flux qb is matched into the product of x and
erosion rate _e. We also discuss how the model relates with
the Einstein’s conception of sediment motion, which is
based on the description of the motion of individual
particles with travel distances within flow and rest periods.

[79] The model is a suitable framework to explore more
complex systems. Feedbacks between erosion, sediment
transport and deposition (such as tool or cover effects of
bedrock channels) can be easily implemented and the
consequences tested. The model is also a suitable to explore
the consequences of discharge variability on both erosion
and transport.

Notation

A drainage area.
a height of the base of the turbulent layer, used as the

reference depth for the Rouse profile.
cS sediment concentration within stream, equal to the

volume of sediment normalized by water volume
cS = qS/q.

c*S the sediment concentration at the bed interface.
_d deposition flux.

d* the ratio between cS, the mean sediment concentra-
tion in stream, and c*S.

D
D t

Lagrangian derivative with time.
_e erosion flux.
g gravity acceleration.
h flow height.
hT topography (defined as the interface between the

basement and ‘‘river’’ systems).
K sediment erodibility (assuming that _e = Kqmsn � _ec).
q river discharge per unit width q = vh.
qS sediment river load per unit of river width.
r rainfall rate that effectively contribute to discharge

(or effective rainfall).
S topographic slope.
T tectonic uplift (with respect to a reference frame

generally taken as the sea level).
t time.

u* the shear velocity defined by u*2 = ghs.
v average flow velocity.
vS the net particle downward velocity, which is the net

settling velocity after turbulent upward momentum is
accounted for.

W river width.
Zo the Rouse number, Zo =

vS

ku*
, with k von Karman’s

constant.
Q TL-DL dimensionless number.
f sediment mass porosity (1 � f is the mass ratio

between a volume of bed material and a correspond-
ing volume of sediment grains).

x disequilibrium or sediment length equal to the ratio
between the sediment river load qS and the deposition
flux _d.
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P. Davy and D. Lague, Géosciences Rennes, UMR 6118, Université de
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