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S U M M A R Y
Collections of suitably chosen borehole profiles can be used to infer large-scale trends in
ground-surface temperature (GST) histories for the past few hundred years. These reconstruc-
tions are based on a large database of carefully selected borehole temperature measurements
from around the globe. Since non-climatic thermal influences are difficult to identify, represen-
tative temperature histories are derived by averaging individual reconstructions to minimize
the influence of these perturbing factors. This may lead to three potentially important draw-
backs: the net signal of non-climatic factors may not be zero, meaning that the average does
not reflect the best estimate of past climate; the averaging over large areas restricts the useful
amount of more local climate change information available; and the inversion methods used
to reconstruct the past temperatures at each site must be mathematically identical and are
therefore not necessarily best suited to all data sets. In this work, we avoid these issues by
using a Bayesian partition model (BPM), which is computed using a trans-dimensional form
of a Markov chain Monte Carlo algorithm. This then allows the number and spatial distribution
of different GST histories to be inferred from a given set of borehole data by partitioning the
geographical area into discrete partitions. Profiles that are heavily influenced by non-climatic
factors will be partitioned separately. Conversely, profiles with climatic information, which is
consistent with neighbouring profiles, will then be inferred to lie in the same partition. The
geographical extent of these partitions then leads to information on the regional extent of the
climatic signal. In this study, three case studies are described using synthetic and real data.
The first demonstrates that the Bayesian partition model method is able to correctly partition a
suite of synthetic profiles according to the inferred GST history. In the second, more realistic
case, a series of temperature profiles are calculated using surface air temperatures of a global
climate model simulation. In the final case, 23 real boreholes from the United Kingdom, pre-
viously used for climatic reconstructions, are examined and the results compared with a local
instrumental temperature series and the previous estimate derived from the same borehole
data. The results indicate that the majority (17) of the 23 boreholes are unsuitable for climatic
reconstruction purposes, at least without including other thermal processes in the forward
model.

Key words: Spatial analysis; Probability distributions; Heat flow.

1 I N T RO D U C T I O N

Borehole temperatures can be used to reconstruct surface tempera-
ture variations over past centuries (e.g. Lachenbruch & Marshall
1986; Mareschal & Beltrami 1992; Pollack & Huang 2000;
Majorowicz et al. 2004). This method of climate reconstruction
relies on the assumption that surface-air temperature variations are
propagated into the ground by heat conduction. Accurate measure-
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Bristol, BS8 1SS, UK.

ments of temperature–depth profiles are then used to constrain heat
transfer at the surface in the past. Since the thermal diffusivity of
the underlying rocks is low, of the order 10−6 m2 s−1, important
information on the last 500–750 yr can be derived from tempera-
tures measured in boreholes of around 500 m depth. However, this
low thermal diffusivity also means that the resolution over time of
the derived reconstructions is very low, and due to diffusion of the
thermal signal with time, the resolution decreases rapidly with time
before the present. Nonetheless, reconstructions derived from bore-
hole temperatures are important because they are physically based,
and so, no empirical calibration is required (in contrast to other
types of proxy data, for example), and they are entirely independent
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652 P. O. Hopcroft, K. Gallagher and C. C. Pain

of proxy and other physically based reconstruction techniques.
Borehole data also provide important constraints on low-frequency
climate variability (e.g. Pollack & Smerdon 2004; Hegerl et al.
2007), for which the reliability of other proxy data sources has been
questioned (e.g. von Storch et al. 2004).

Large scale estimates of temperature changes derived from bore-
hole temperatures consistently indicate around 1.0 ◦C of warming
over the last 500 yr (Huang et al. 2000; Beltrami & Bourlon 2004;
Pollack & Smerdon 2004; Harris & Chapman 2005), which is larger
than many estimates from multiproxy data (e.g. Briffa & Osborn
2002), although more recent studies show good agreement with the
borehole inferred amplitude (Esper et al. 2002; Moberg et al. 2005;
Hegerl et al. 2007). However, there remains considerable uncer-
tainty concerning the magnitude and timing of temperature change
over this time period (Jansen et al. 2007), and further analysis of
borehole data is therefore warranted.

The estimates derived from boreholes are calculated by averaging
hundreds of individual reconstructions to reduce the effects of local
perturbing factors, the thermal effects of which can be misidenti-
fied as due to changing climate. This averaging means that regional
scale variations are not inferred. Furthermore, the net effect of the
perturbing factors may not cancel upon averaging, and so, this could
imply that the average of all of the reconstructions is not most repre-
sentative of past climate. This issue has been tested in the context of
a global climate model (González-Rouco et al. 2003, 2006), and the
results support the borehole estimate, indicating that the influence
of precipitation (particularly snow cover), vegetation and freezing
and thawing of soil moisture are less important. However, other per-
turbing factors not tested in this approach include: site topography
(see Hopcroft et al. 2009), subsurface heterogeneity, agricultural
expansion and deforestation and underground fluid flow. These may
all be significant, although it is plausible that some of these per-
turbing factors, for example, land use change, could be expected
to produce systematic biases in the reconstructed temperature his-
tories, whereas others, such as subsurface heterogeneity, may exert
a more randomized influence. Finally, in deriving these individual
reconstructions by inverting each individual borehole profile, the
parameters of the inverse model must be kept the same for each site
and, so, cannot necessarily be tailored to be optimal in each case
(Huang et al. 1996, 2000; Beltrami et al. 2003).

In this work, we describe a novel method for inferring regional-
scale past temperature variations from multiple borehole pro-
files, which additionally allows the identification of profiles re-
sulting in inconsistent temperature histories. Our method does not
rely on comparison or calibration with instrumental temperatures
(e.g. Mann et al. 2003; Rutherford & Mann 2004) and explic-
itly accounts for uncertainty in both the borehole data and the in-
ferred models. We use recent developments in Bayesian partition
modelling (BPM; Denison et al. 2002; Stephenson et al. 2006),
which allow us to consider spatial signals of temperature change
in a flexible manner. In this, models of differing parametriza-
tions can be compared robustly using a trans-dimensional
Bayesian approach, which is calculated using Reversible jump-
Markov chain Monte Carlo (RJ-MCMC; Green 1995, 2003;
Sambridge et al. 2006). The BPM method is then used to infer
the number and spatial distribution of independent ground tem-
perature histories, which are supported by a given set of borehole
profiles, given the estimated level of data noise (e.g. Backus &
Gilbert 1970). Profiles that are influenced by non-climatic factors
will be inferred to lie individually in separate partitions. Conversely,
borehole profiles that are consistent with other neighbouring pro-
files will be inferred to lie in partitions with these other profiles. The

ground-surface temperature (GST) histories relating to these larger
partitions are then likely to be more robust, because the corrupted
profiles are not included. Additionally, the spatial extent of these
larger partitions will provide information on the regional extent of
the inferred GST signal (e.g. Majorowicz et al. 2002; Beltrami et al.
2003).

The GST history in each partition is inferred jointly from all of
the data contained in that partition, again using a trans-dimensional
Bayesian approach computed with RJ-MCMC and as described pre-
viously in Hopcroft et al. (2007). The GST model parametrization
itself is less likely to induce spurious GST histories, as demonstrated
by Huang et al. (1996), since simpler models are automatically pre-
ferred by the Bayesian method and also because the approximate
timing of past GST changes is also estimated in this method, by
allowing the time points of the GST history to move along the
time axis. Additionally, by relying on the natural parsimony of the
Bayesian approach (e.g. Malinverno 2002), no temporal smoothing
of the GST model parameters is required, meaning that the magni-
tude of temperature change is more objectively inferred from the
data, and this is crucial given the level of uncertainty surrounding the
magnitude of temperature change over the past millennium (Jansen
et al. 2007). As in previous Bayesian borehole methods (e.g. Huang
et al. 2000), uncertainty in both the data values and model parame-
ters is explicitly accounted for. Here, however, the assumption that
the inferred model parameters follow a Gaussian distribution is not
required, allowing for more robust quantification of the uncertainty
and any non-uniqueness in the posterior distribution.

In this paper, we provide three case studies to illustrate the BPM
methodology. In the first synthetic case, 10 synthetic profiles have
been calculated using three synthetic temperature reconstructions
with largely differing trends. The BPM method is able to reconstruct
the three spatial partitions applied to calculate the data and also
to faithfully reconstruct the temperature evolution applied in each
partition, and this is possible in the presence of data noise. In the
second, more realistic example, 10 synthetic temperature profiles
are calculated using surface-air temperature series at 10 gridpoints
of a coupled ocean–atmosphere global climate simulation of last
250 yr. The BPM method is used to determine how much of the
more realistic air temperature variations in space (and time) can be
discerned using borehole data. The results show that the BPM is
able to effectively divide up the geographical space according to the
inferred GST history, and that for each gridpoint, the inferred GST
reconstruction corresponds well with the applied air temperature
series.

In both synthetic examples, only measurement errors are intro-
duced, and so, there are no non-climatic signals present in the data.
In the third case, a real data set of 23 borehole temperature profiles
from the United Kingdom is examined to test whether the borehole
data can be used to infer robust climatic signals, in the presence of
potentially non-climatically perturbed data. The UK data are appro-
priate for this purpose since the small geographic coverage implies
that the borehole sites used should have been subject to similar long-
term air temperature variations, and because a long and reliable
instrumental temperature record, the Central England Temperature
(CET) series (Manley 1974; Parker et al. 1992), provides a good
basis for comparison with the inferred GST histories.

This paper is structured as follows: in Section 2, the forward
model used in this work is briefly described; in Sections 3 and
4, partition modelling and Bayesian inference are introduced; in
Section 5, we describe the implementation of the BPM sampling al-
gorithm used here, whereas a full mathematical description is given
in the Appendix; in Section 6, the results from the two synthetic
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Spatial climate signals from boreholes 653

cases are shown; and in Section 7, the results of the real data appli-
cation are given. In Section 8, a discussion of the results from both
synthetic and real data is given. This is followed by the conclusions,
which can be drawn from the present study.

2 F O RWA R D M O D E L

The forward model we use has been described in Hopcroft et al.
(2007), and we only briefly describe this here. Heat flow is assumed
to be purely vertical with no advective component. Thus thermal
perturbations from the long term equilibrium at depth are the result
of time-varying GST only. The relevant form of the heat conduction
equation in 1-D is

ρC
∂T

∂t
= ∂

∂z

(
kc

∂T

∂z

)
, (1)

where z is depth, t is time and ρ, c and kc are the rock density, specific
heat capacity and thermal conductivity, respectively. The present-
day temperature–depth profile can then be expressed in terms of
the equilibrium thermal conditions, the past surface temperature
variations and random measurement error:

T (tpresent, z) = Teq + q0

∫ z max

0

1

kc
dz + Ts(z) + εd , (2)

where T eq is the long-term equilibrium surface temperature, q0 is the
basal heat flux, T s(z) is the subsurface perturbation at depth z due
to past surface temperature variations and εd is the measurement
error. As in Hopcroft et al. (2007), eq. (1) is solved numerically
by the method of finite elements. To estimate the background basal
heat flow, a steady state solution is first derived, and this is then
perturbed using a transient FE model to give the final temperature–
depth values. These are then compared with the measured data
through the likelihood function (see Section 5).

3 B AY E S I A N PA RT I T I O N M O D E L L I N G
U S I N G V O RO N O I T E S S E L L AT I O N S

To divide up the space over which the boreholes are located, a
Voronoi tessellation approach is used (e.g. Green 1995; Denison
et al. 2002). This allows divisions of a specified space into regions
defined by tessellation centres Ci . Each Voronoi tessellation region
is formed by including in a tessellation, say R1 associated with
centre C1, all the points in space which are closer to C1 than to
any other centre, Ci . This distance can be measured in a variety
of manners (Denison et al. 2002), but in this work, the standard
Euclidian distance metric is used:

D(xa, xb) =
∑

i

(xai − xbi )
2. (3)

Fig. 1 depicts an example Voronoi tessellation that has eight
centres.

In this work, each partition has an independent GST history. Thus,
the number of partitions, nc can vary over the range nc = (1, nb)
where nb is the number of boreholes. When the number of partitions
is 1, all of the borehole profiles fall within the same Voronoi region
and, so, are fitted with a common GST history. For nc = nb, each
borehole is located in a separate Voronoi cell, and so, a different
GST history is fitted to each individual borehole profile. In this case,
we would expect to obtain the best fit to the observed data, as each
borehole is treated independently. However, the aim of BPM is to
find an appropriate and objective balance between the number of
partitions (in a sense, a measure of the model complexity) and the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1. An example of a Voronoi tessellation with eight Voronoi centres
(black dots). Any point lying within a particular Voronoi cell is closer to that
cell’s centre than any other centre. The boundaries of a cell are defined by
the perpendicular bisectors of the line segments joining from neighbouring
centres to the centre of that cell.

quality of the fit to the observed data. The prior information plays
a key role in achieving this balance (see Section A1). The results
of this Bayesian partition method are conditional on the estimated
data noise and the prescribed prior information, both of which are
discussed in detail in Section 5.

One of the key assumptions used in this method (see also Denison
et al. 2002) is that the GST histories in different partitions (Voronoi
cells) are independent. However, in reality, long-term temperature
trends vary continuously and with spatial correlations across large
areas. The BPM method is often used in cases for which the under-
lying pattern of interest is smoother or of a different form than the
individual model realizations used (here, for example, the Voronoi
partitions, Fig. 1). However, the predictive posterior model, which
is found by averaging over all of the models in a sample (in propor-
tion to their posterior probability values), will result in a generally
smoothly varying function that will also respect any discontinu-
ities evident in the data (e.g. Stephenson et al. 2004), as these will
be present in the majority of the samples. Therefore, the actual
parametrization of the partitioning is less important in the over-
all modelling scheme than, say, the chosen prior information. How
this issue relates to the present borehole inversion problem will be
discussed further, alongside the synthetic and real data examples.

4 B AY E S I A N I N F E R E N C E V I A M A R KOV
C H A I N M O N T E C A R L O

The parameters of interest are C, the locations of the Voronoi cen-
tres, θ the GST histories in each partition and q0 and Teq the basal
heat flux and surface equilibrium temperature at each borehole,
respectively. These are encapsulated by a total model parameter
vector:

m = (C, θ , q0, Teq). (4)

where Ci are the coordinates of the Voronoi centres and θi is a
2 × ki matrix, containing the time and temperature points, t j , T j , j
= 1, ki , in the GST history i. θi are defined for each partition, and
q j

0 and T j
eq are defined for each borehole.
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654 P. O. Hopcroft, K. Gallagher and C. C. Pain

In Bayesian formalism, no distinction is made between data and
model parameters, and so, in theory, all of the parameters of the
simulation could be incorporated into m; including, for example,
the thermal conductivity values and even the temperature data them-
selves (e.g. Gallagher 1990). In this work, we limit m to the Voronoi
centres and those parameters that have been of most interest in simi-
lar work, namely the GST histories and the background equilibrium
thermal conditions (Huang et al. 2000; Beltrami et al. 2003). Cast-
ing the problem in a probabilistic framework using Bayesian infer-
ence (e.g. Mosegaard & Tarantola 1995; Tarantola 2005) allows for
uncertainty in all of these model parameters, which can be quanti-
fied through the associated conditional posterior probability density
functions (pdf). The joint pdf of the four model parameter vectors
conditioned on the data and prior information is given by Bayes’
law and is termed the posterior (e.g. Bernardo & Smith 1994; Sivia
& Skilling 2006):

p(m | d, ℘) = p(m | ℘) × p(d | m, ℘)

p(d | ℘)
, (5)

where p is probability and p(a | b, c) means the probability of
a given b and c. m and d are the model and data vectors and ℘

is the theory or hypothesis underlying the model formulation and
incorporates the prior constraints. In words, Bayes’ Law can be
expressed as

posterior = prior × likelihood

evidence
. (6)

The goal of Bayesian inference is to determine the posterior
probability distribution. To do this, we resort to Markov chain Monte
Carlo methods (e.g. Gilks et al. 1996), which allow us to sample
the posterior up to a constant of proportionality [i.e. we neglect the
evidence term, p(d | ℘)].

In this work, we employ RJ-MCMC (Green 1995), as it allows
inference on both model parameters and model dimensionality (see
e.g. Malinverno 2002). Like the more well-known Metropolis–
Hastings, RJ-MCMC constitutes a two stage process of proposing
a model probabilistically and then accepting or rejecting this pro-
posed model. The proposal is made by drawing from a probability
distribution q(m′ m) such that a new proposed model m′ is condi-
tional only on the current model m. The new model is then accepted
with a probability min [1, α(m′, m)]. If the model is accepted, the
current model m is replaced by m′, which becomes the current
model for the next iteration. If it is not accepted, the current model
m is retained for another iteration. This process is then iterated
many times so that after a period of initial exploration of the model
space (referred to as the burn-in), a series of samples of the model
parameters is collected. It can be shown that for any proposal distri-
bution, the stationary probability distribution sampled in this way
will be a good estimate of the true probability distribution (Gilks
et al. 1996).

To ensure convergence of the sampling distribution to the true
distribution, each transformation of the model needs to satisfy de-
tailed balance (see Green 1995, 2003). This is accounted for by the
exact form of the acceptance probability, α. When the number of
dimensions does not change during a proposal, α can be written
in the same form as the well-known Metropolis–Hastings sampler.
However, the more general form of acceptance probability is

α = min

[
1,

p(m′ | ℘)

p(m | ℘)

p(d | m′, ℘)

p(d | m, ℘)

q(m | m′)
q(m′ | m)

∣∣∣∂(m′, u′)
∂(m, u)

∣∣∣]
= min

(
1, (prior ratio)

(likelihood ratio) (proposal ratio)|Jacobian|), (7)

where u and u′ are vectors of random numbers, which are used to
transform the current model m to the proposed model m′, which
may or may not be of a different dimension. In most practical fixed
dimension cases, the Jacobian is 1 and can be ignored. For variable
dimension models, the form of the Jacobian depends on the form
of the transformation between dimensions. The derivation of the
correct values for the Jacobian as well as the prior, proposal and
likelihood ratios are given in the Appendix, where our implementa-
tion of the RJ-MCMC algorithm is described in detail.

As implied earlier, we might anticipate that the RJ-MCMC al-
gorithm will tend to a solution with nb partitions, such that each
borehole profile is individually fitted, and we achieve the lowest
possible misfit to all the data. However, Bayesian inference is natu-
rally parsimonious and tends to avoid unnecessarily complex models
(Jefferys & Berger 1992). To illustrate this, consider the evidence
(see eq. 5) for two models m1 and m2, where m1 is the simpler of the
two; for example, it could be formulated with a smaller number of
free parameters. As a result of the normalization of the pdf, the evi-
dence for the simpler model m1 is larger, as it is spread over a smaller
region in data space (Denison et al. 2002; MacKay 2003). We do not
calculate the evidence, instead the RJ-MCMC algorithm samples
models of different dimensionality in proportion to their relative
evidence values (Green 2003; Sambridge et al. 2006). Thus, the
method will tend to favour the simplest model that can adequately
fit the data. This therefore relies on the a priori estimates of the
noise on the data. Here we fix the estimates of the data noise a
priori at realistic values, which are given alongside the examples in
Sections 6 and 7.

5 T H E B AY E S I A N PA RT I T I O N M O D E L
F O R B O R E H O L E T E M P E R AT U R E S

The prescribed prior information has been designed to be as general
as possible while providing sufficient information for constraining
the model. The number and positions of the partitions are con-
strained using a uniform prior probability distribution, with the
limits chosen to prevent partitions centres from being outside of
the spatial domain and to prevent more partitions than boreholes
in the model. Apart from this, the uniform distribution implies no
preference for a certain number of partitions or a certain set of
locations of the partitions.

The prior distributions used to constrain the GST histories are
given in Hopcroft et al. (2007) and also in the Appendix. Briefly,
these priors imply no change of GST over time and also no cor-
relation between different times. This latter point means that no
explicit temporal smoothing of the temperature history is used. Ad-
ditionally, for simplicity, we impose the same prior uncertainty at
all times in the past, which is similar to, for example, Huang et al.
(2000). Uniform prior constraints are used for the number of points
used to parametrize each GST history and also the heat flux and
pre-reconstruction equilibrium surface temperature at each site.

To sample from the posterior pdf of the model parameters m (see
eq. 4) using RJ-MCMC as described previously, a set of probabilistic
proposal functions is required. Here six such proposals functions are
used, and these mainly focus on the partition structure. One of these
proposals is randomly selected at each iteration of the RJ-MCMC
algorithm. The proposed model m′ is then accepted according the
acceptance probability (eq. 7). The six proposal options we select
from are:

(1) Birth: add a new Voronoi centre with the position found by
drawing from the prior distribution on C;
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Spatial climate signals from boreholes 655

(2) Death: delete one Voronoi centre chosen randomly from the
current set;

(3) Move an existing Voronoi centre to a position drawn from
the prior on C;

(4) Perturb one Voronoi centre by drawing from a normal distri-
bution centred on its current position;

(5) Update the heat flux (q0) and equilibrium surface temperature
(Teq) for one borehole site;

(6) Propose a new GST history (θi ) for partition i.

The appropriate acceptance probability α for each proposal type is
given in the Appendix.

Since the GST history in each different partition is unknown, a
secondary RJ-MCMC sampling algorithm is additionally used to
approximate the conditional posterior of the GST history condi-
tioned on the data within that partition p(θi | ds(i), ℘), where s(i)
indicates the borehole profiles in a partition i. This distribution is
then used as the basis for the proposal distribution each time a new
GST history is required. This occurs when option (6) is selected or
because one of options (1)–(4) causes a new configuration of the
data with respect to the partition structure. The details of the sec-
ondary sampler are the same as the method used in Hopcroft et al.
(2007), with some minor modifications described in Appendix.

The likelihood term for a particular borehole quantifies the fit of
the simulated data calculated using the GST history to the measured
data. In this work, the likelihood term is assumed to be a multivari-
ate Gaussian distribution with uncorrelated parameters (see also
for example Malinverno 2002) and is a function of the calculated
temperature profile (using finite elements) and the measured tem-
perature profile:

p(d | m, k, ℘) = 1

[(2π )ndetCd]1/2
exp

[
−1

2
(dsim − dobs)

T C−1
d

× (dsim − dobs)

]
, (8)

where there are n data points, dsim and dobs are the simulated and
observed subsurface temperatures, respectively, and Cd is the data
covariance matrix. By assuming the errors on the measured data
in each borehole are statistically independent of other boreholes,
the joint likelihood for an ensemble of borehole profiles can be

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

Partition 2

Partition 1

Partition 3

0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

year

su
rf

ac
e 

te
m

pe
ra

tu
re

 (
°C

)

Partition 1
Partition 2
Partition 3

Figure 2. Left-hand panel: true model setup for the synthetic test case. Borehole locations are given by crosses, the partition boundaries show how the profiles
are grouped according to the applied surface GST history. Right-hand panel: temperature history applied in each partition in the true forward model for the
synthetic data case 1.

simplified; thus,

p(d j=1,nb | m, k, ℘) = p(d1 | mv(1), kv(1), ℘)

× p(d2 | mv(2), kv(2), ℘) . . .

× p(dnb | mv(nb ), kv(nb), ℘)

=
nb∏
j=1

p(d j | mv( j), kv( j), ℘), (9)

where d j is the data for borehole j, m is the current model and mv( j)

is the relevant set of model parameters for borehole j, where v(j)
gives the Voronoi partition in which borehole j is located.

The estimated noise on each data point in a borehole profile
is quantified by the correlation matrix of eq. (8). In all the work
presented, this matrix is assumed to be diagonal, so that the data
errors are assumed to be uncorrelated. The diagonal values of Cd

are given given in the descriptions of the three case studies in
Sections 6 and 7. In each case the diagonal value is chosen so that
σd, the standard deviation of the data error is equal to either 0.05
or 0.1 K, corresponding to medium and high levels of data noise,
respectively.

6 S Y N T H E T I C C A S E S

6.1 Three partition synthetic example

In this first example, an arbitrary partition structure is set up on a
square of dimensions 1 × 1, by selecting three points as the centres.
10 points in the square were selected as the locations of the synthetic
borehole profiles (Fig. 2). The GST histories in each partition have
been designed to give markedly different trends over the 600 yr time
period also shown in Fig. 2. The first (Partition1) shows cooling to
year 300, followed by 1 ◦C of warming; Partition2 shows nearly
linear cooling of 0.5 ◦C and the third, Partition3, shows the oppo-
site trend to Partition1. The temperature profiles were calculated at
2.5 m depth intervals, to a maximum depth of 500 m, with 600 ×
1 yr time steps, using the finite element model of Section 2. Each
profile was degraded with normally distributed random noise, with
a standard deviation of 0.1 K. The model setup (Fig. 2) shows how
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Figure 3. The posterior values and number of Voronoi centres with RJ-
MCMC iterations for the synthetic test case.

the three different GST histories have been applied to the 10 syn-
thetic profiles. For simplicity, all of the profiles were initialized with
a heat flux of 60 mW m−2 and an equilibrium surface temperature
of 9.0 ◦C.

The BPM algorithm was run for 80 000 iterations, with 3500
iterations in each run of the secondary RJ-MCMC algorithm, the
first 500 of which were discarded each time as burn-in. The model
was initialized with one partition, and the secondary algorithm was
used to generate an initial GST history for this partition, with the
q0 and Teq values initialized to the secondary RJ-MCMC sample
means. The algorithm then progresses as described in the previous
section.

The resulting samples of all of the model parameters are used
to generate posterior probability distributions. The algorithm was
found to converge on the true partition structure (i.e. profiles were
correctly grouped together) after an initial 872 iterations, and for
the analysis of the posterior, the first 5000 iterations were discarded
as burn-in. This relatively short period of burn-in is most likely due
to the small number of partitions in the true model.

In Fig. 3, the evolution of the number of partitions with RJ-
MCMC iterations together with the likelihood × prior value (pro-
portional to the posterior probability value) is shown. Although the
algorithm has sampled four partitions, the preferred model has three
partitions (with a high probability). This is because the introduction
of extra partitions results in lower values for the posterior. This is
the natural parsimony feature of Bayesian inference as described
in Section 4, such that the improved data fit (greater likelihood) is

Figure 4. Left-hand panel: the posterior probability distribution of the partition boundaries conditioned on the borehole profiles, their locations and the prior
for the first synthetic test case. Right-hand panel: Reconstructed GST histories for the mode partition setup. Posterior mean and true GST histories are shown
by the black and grey lines, respectively, and the posterior 95 per cent credible intervals are indicated by the grey shaded areas.

counteracted by the reduction in the value of the prior term as the
number of parameters increases. In Fig. 4, the 2-D posterior distri-
bution of the inferred partition boundaries is shown. It is clear that
this distribution is concentrated around the boundaries of the true
partition model (Fig. 2). Fig. 3 also shows the conditional posterior
distributions for the three temperature histories derived from the
mode partition structure, which, in this case, is equal to the true
model setup. The true GST histories are shown for comparison by
the grey lines. For each partition, the posterior mean GST (black
lines), as inferred by the secondary algorithm, matches well with
the true GST history. We have thus shown that the BPM method
is able to distinguish between applied GST histories in the pres-
ence of considerable data noise. The second case now described has
been designed to test how the BPM method performs with synthetic
data, forced with realistic air temperature histories as derived from
a global climate model simulation.

6.2 Synthetic data derived from a global climate model

In this second example, the reconstruction method is tested
by using a set of temperature series extracted from a coupled
ocean–atmosphere general circulation model (GCM) simulation
(e.g. González-Rouco et al. 2003, 2006; Mann & Schmidt 2003).
The aim of using the BPM methodology is to assess how much
of realistic spatial temperature variation can be inferred from such
borehole data and whether realistic variations in air temperatures
can be distinguished by the BPM algorithm. To approach this, the
simulated air temperature series at a set of gridpoints of a GCM
simulation are used to calculate a set of realistic synthetic bore-
hole temperature–depth profiles. These profiles are then subject to
random noise before using the BPM algorithm.

The GCM model simulations used here have been described in
Tett et al. (2007) and constitute three climate simulation runs of the
UK Met Office HadCM3 model. This model has been described in
detail elsewhere (see Tett et al. 2007, and references therein). Briefly,
however, HadCM3 is a GCM, which is able to simulate a stable cli-
mate with no flux adjustments and includes 3-D atmospheric and
oceanic components, a comprehensive radiation scheme, a land sur-
face scheme, a sea ice model and a cloud scheme. The experiments
described by Tett et al. (2007) were designed to simulate the global
climate evolution since 1550, as forced by changes in solar forcing,
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Spatial climate signals from boreholes 657

volcanic aerosol forcing and greenhouse gas and ozone variations.
Additionally, the surface vegetation was prescribed according to
vegetation reconstructions (from 1750 to 1999). Because of the
complexity of the HadCM3 model and the experimental setup, the
simulation should produce a physically plausible global climate
evolution, which provides an ideal test for the BPM methodology.

The issue of air–ground coupling is beyond the scope of this
work, and so, we use air temperatures (rather than soil temperatures
as in González-Rouco et al. 2006) as the forcing for calculating the
synthetic borehole profiles. The case study is set up at 10 locations,
drawn from across the Northern Hemisphere in the HadCM3 model.
These 10 locations are shown in Fig. 6(a) by stars. The mean annual
surface-air temperature series (at 2 m) at each site from HadCM3
ALL simulation (which is 250 yr long) are each used to drive a
1-D FE model (Section 2). For simplicity, the thermal conductivity,
basal heat flux and equilibrium surface temperatures are the same
as used in the previous example and take values of 2.0 W m−1 K−1,
60 mW m−2 and 9.0 ◦C, respectively. The air temperature series have
then been calculated as deviations from their respective initial 30 yr
mean, and the equilibrium surface temperature value for each site
has then been added to each air temperature series. Although using
the same reference temperature at each site is unrealistic, its value
has no effect on determination of the spatial and temporal surface
temperature changes. The resultant synthetic borehole profiles have
been degraded with Gaussian random noise of standard deviation
σd = 0.05 K to mimic real data.

The evolution of the RJ-MCMC algorithm likelihood × prior
and the number of partitions for the 130 000 iterations are shown
in Fig. 5, and the posterior distribution of the partition bound-
aries is shown in Fig. 6(a). The inferred temperature histories are
compared with the true models in Figs 6(b)–(f). These show the
inferred temperature histories in terms of the posterior means and
95 per cent credible intervals in each partition compared with the
original input series. The largest grouping has five boreholes and
relates to five input series with less long-term variability. The re-
maining four partitions show stronger departures over the same time
period, which are all faithfully recovered by the algorithm. The tem-
perature trends in partitions II and IV are similar, and so, it might
be expected that they fall in the same partition. However, the phys-
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Figure 5. The evolution of the posterior and the number of partitions for the
GCM derived synthetic case. The burn-in period is assumed to end at 30 000
iterations and is shown by the vertical dashed line. Note that the posterior
is generally lower when the algorithm samples six partitions rather than
five, again demonstrating the parsimonious nature of the Bayesian partition
model used here.

ical spacing of the boreholes means that it is difficult for a Voronoi
tessellation to encompass all of the data without including other
boreholes that show differing trends (this could be remedied in this
case by using a spherical space rather than the flat Cartesian space).
The issue of the flexibility of the Voronoi tessellation is discussed
further in Section 8.

The applied temperature histories at the 10 synthetic borehole
profiles are all different; however, the BPM algorithm posterior dis-
tribution indicates that the 10 synthetic temperature-depth profiles
can be robustly fit using five GST histories. The inferred tempera-
ture histories for these five partitions are reliable reconstructions of
the 10 GCM air temperature series. The BPM method has therefore
allowed a simple overall spatial parametrization to be automatically
constructed, which reflects the underlying spatial climate trends, as
can be best inferred from borehole data. This example also demon-
strates that borehole data can be useful in determining realistic
spatial variations in the surface temperature response over the past
few centuries, in agreement with previous studies (Majorowicz et al.
2002; Beltrami et al. 2003; Stevens et al. 2008).

Since only 10 locations from across the Northern Hemisphere
have been used, the variations in the surface temperature histories,
as reconstructed by the BPM algorithm, cannot be interpreted as
representative of either natural variability or the GCM simulation
variability. An expanded test, perhaps using the GCM gridpoints
corresponding to the locations in the Huang & Pollack (1998)
database (as in González-Rouco et al. 2006), could be used re-
quired for this purpose. Furthermore, the real benefit of the BPM
algorithm would be more apparent in a larger data set where actual
spatial variations in climate can be more clearly defined because of
the denser spatial coverage of the borehole data.

7 U K B O R E H O L E DATA S E T

7.1 Data

In this real data case, 22 boreholes have been taken from the Huang
& Pollack (1998) database, and one other has been provided by the
British Geological Survey (Rollin 1987). The locations and relative
depths are shown in Fig. 7. Previous GST reconstructions from the
22 boreholes have been derived by Huang et al. (2000) and are
used in hemispheric and global estimates of surface temperature
changes. The 22 individual reconstructions are shown in Fig. 8(a).
The authors emphasize that these individual reconstructions are not
necessarily optimal, as the methods employed have been designed
for consistency in analysing 837 borehole profiles rather than for de-
riving optimal individual reconstructions. However, there is clearly
a large spread in the GST reconstructions, which is inconsistent
with what is known regarding palaeoclimate for the region.

In Fig. 8(b), the average reconstruction for this ensemble is com-
pared with the CET record (Manley 1974; Parker et al. 1992). The
Huang et al. (2000) average appears to underestimate the long term
variations in the CET record. Jones (1999) showed that the av-
erage of 26 borehole GST reconstructions from the British Isles
(from Pollack et al. 1998 using an earlier compilation of Huang &
Pollack (1998)) shows excellent agreement with the CET record.
However, these 26 sites also include four located in Ireland, all of
which show much larger warming over the 500 yr (up to 3.5 ◦C
in one case). Including these four reconstructions reduces the pre-
1750 average reconstructed temperatures (see Fig. 8b). However,
3.5 ◦C of warming over 500 yr may be unrealistically large, and the
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658 P. O. Hopcroft, K. Gallagher and C. C. Pain

Figure 6. (a) The posterior distribution of the partition boundaries as sampled by the BPM algorithm for the GCM derived synthetic case after 130 000
iterations. (b) The posterior mean and 95 per cent credible limits (solid line and shaded region respectively) for the five partitions in the mode setup of
(a). The dashed lines are 30 yr smoothed temperature histories from the GCM data used for the true model.

variability between the two averages shown provides evidence that
this averaging process may be inappropriate.

Table 1 summarizes the 23 data sets (Rollin 1987) used in this
final example, giving the maximum depth of temperature measure-
ments, the range of depths of thermal conductivity measurements,
the borehole longitude and latitude and the date of logging. The
heat flux and equilibrium surface temperatures given in the table
are the starting values used in the algorithm. As shown in Table 1,
there is a reasonable amount of thermal conductivity data from
each borehole. However, for most of the boreholes, the conductivity
measurements have been made at different depths than the tempera-
ture measurements. In this case, the thermal conductivity data have
been interpolated to 1 m depth intervals. In the forward model, the
1 m interpolated values are then interpolated onto the temperature
depth grid. For depth ranges where no conductivity measurements
are available, the nearest 20-m-average value (from the same bore-
hole) has been used. This then reflects a best estimate of a suitable
value. More detailed geological investigation of each site may also
yield suitable conductivity values, but this is beyond the scope of
the present work. Since the range of dates at which the 23 boreholes
have been logged is small (1979–1987), we do not take account of

this in our model; thus, all boreholes are assumed to be logged at
1987. Due to the low resolution of the GST reconstructions, this
assumption should have a small overall effect on the reconstructed
temperatures.

The noise values for the UK data are again assumed to be Gaus-
sian uncorrelated and with a standard deviation of 0.1 K. This corre-
sponds to fairly high level of data noise. The spatial domain chosen
for the BPM algorithm is a square with southwest and northeast
vertices at (longitude, latitude) (−6.6◦, 1.78◦) and (50.4◦, 58.16◦),
respectively. The starting values given in Table 1 were found by run-
ning the BPM algorithm, starting with one partition and updating
only the heat flow and equilibrium temperature values at each site
and taking the average values of the resultant samples.

7.2 Sampling and posterior results

The BPM algorithm was run for 1 million iterations using the 23 UK
data sets. The starting values for the GST histories and equilibrium
surface temperature and basal heat fluxes are found by an initial run
of the secondary RJ-MCMC algorithm for each borehole data set. To
save on computation, the algorithm was initialized arbitrarily with
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Figure 7. Locations of the 23 boreholes used in this study as labelled in
table 1. The maximum temperature measurement depth at each borehole is
indicated proportionally by the diameter of the circle marker. The deepest
is J (Morley) at 823 m and the shallowest is U (Mount) at 261 m.
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Figure 8. (a) Ground surface temperature reconstructions from Huang et al.
(2000) derived from 22 UK boreholes from (Huang & Pollack 1998), lo-
cations shown in Fig. 7. (b) The average GST reconstruction of the 22 UK
GST histories compared with the Central England temperature series and
the average GST reconstruction for 26 UK and Ireland boreholes as in Jones
(1999). The series have been shifted to match the CET record average for
the years 1900–2000.

four partitions. The algorithm quickly loses memory of this initial
state and moves to a different configuration, eventually converging
on 10 or 11 partitions. Fig. 9 shows the posterior probability and
the number of partitions with iterations. The vertical dashed line
indicates where burn-in is assumed to end and is placed at 600 000

iterations. We note that all of the larger partitions in the model
are present by 350 000 iterations (see below). The evolution of
the number of partitions shows that the model eventually settles
on 10 or 11 partitions with a slight preference for the latter. The
algorithm therefore infers that given the 23 borehole data sets, 10 or
11 independent GST histories are required to achieve an adequate
fit to the data, conditional on the assumption of conductive 1-D heat
transfer.

The posterior distribution of the partition boundaries as inferred
by the algorithm is shown in Fig. 10. The 11 partitions are labelled
I–XI, with the largest partition II centred on the English Midlands.
Of the 11 partitions, three are inferred to contain more than two
boreholes, with partitions II, VIII and IX containing six, three and
three boreholes, respectively. The inferred GST histories for the 11
partitions are shown in Fig. 11. The GST reconstructions are labelled
according to the partitions in Fig. 10 and show the posterior mean
(solid line) and the 95 per cent credible regions (shaded grey). The
majority of the partitions indicate warming. However, the magnitude
is variable, covering a range up to 2.25 ◦C (±0.25 including the
credible limits). Similarly, the timing of a temperature minimum
(where there is one) is inferred to occur between 1500 and 1950.
Overall, this ensemble of reconstructions shows a similar level of
variability as the equivalent reconstructions shown in Fig. 8(a). This
large range of the inferred GST histories for the past few hundred
years indicates that these data provide a poor constraint on past
climate.

If we examine only those partitions inferred to contain three
boreholes or more (e.g. similar to Pollack & Smerdon 2004), then
the GST history becomes slightly simplified. These partitions have
been inferred to contain more data, and so, more confidence can
be placed in the signal of past climate as opposed to that of other
non-climatic heat transfer processes. This is because to within the
noise values, the boreholes can be fit using the same GST his-
tory. These three reconstructions all show the same trend of a cool
period constrained to between 1650 and 1800, followed by 0.5–
1.3 ◦C warming to 1987. The spread between the three reconstruc-
tions, however, is still large and is illustrated alongside the CET
record (Manley 1974; Parker et al. 1992) and the average UK re-
construction of Huang et al. (2000) in Fig. 12. It is evident that
two of the three BPM posterior means (VII and IX) show very poor
agreement with the CET record, with VIII indicating around three
times the CET warming magnitude at around 1.5 ◦C and IX around
double at 1.0 ◦C. Furthermore, partition VIII shows around 1.5 times
the warming rate indicated by partition X. It is encouraging that the
single largest partition (II) shows very good agreement with the
CET record. However, no variation is inferred prior to 1600–1700,
probably because of the limited depths of the boreholes used in this
study.

Previously, we have shown that the mean GST derived from the
individual reconstructions of Huang et al. (2000) is possibly not
robust for this data set, and the BPM results all indicate a differing
trend before 1900. That the algorithm infers differing amplitudes
for the inferred GST histories in the larger partitions indicates that
systematic errors in the data relating to non-climatic influence must
be present. For the boreholes in partitions VIII and IX, the GST
history has a much larger amplitude. This could be caused by some
combination of fluid flow or surface topography. Taken alongside
the divergent trends shown in Fig. 11, the BPM algorithm results
suggest that only a fraction of the data examined can provide a robust
signal of past climate, since the majority of the boreholes used here
lead to conflicting GST histories. Comparison with the Huang et al.
(2000) average also indicates that averaging of individual noisy
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660 P. O. Hopcroft, K. Gallagher and C. C. Pain

Table 1. Borehole summary information for the UK data set. For each borehole, this table gives the depth of each borehole used in the
study, the depth range of available thermal conductivity measurements, the longitude and latitude of the borehole, the year of logging
and the starting values found by the BPM algorithm for the geothermal heat flux and the equilibrium surface temperature.

Borehole Depth (m) Cond. z-range Long. (◦) Lat. (◦) Log date q0 (mW m−2) Teq(◦C)

A Withycombe 262 16–262 −3.37 50.65 1983 52.9 9.69
B Venn 307 18–305 −3.32 50.71 1984 57.1 9.85
C Chard 289 37–289 −2.93 50.85 1984 50.4 9.14
D Seabarn 420 18–415 −2.53 50.62 1979 61.2 9.41
E Worcester 298 33–298 −2.2 52.22 1984 43.4 9.60
F Chalgrove 323 91–322 −1.05 51.66 1984 51.7 10.48
G Tydd 294 51–295 0.12 52.74 1984 56.6 8.80
H Stowlangtoft 277 13–276 0.85 52.28 1984 35.9 9.25
I Crewe 296 53–296 −2.47 53.09 1984 58.6 9.15
J Morley 823 10–830 −1.29 52.76 1987 56.6 8.94
K Cleethorpes 290 80–290 −0.03 53.54 1985 72.2 9.28
L Shipton 549 9–547 −1.17 54.02 1987 59.9 8.71
M Thornton 287 42–288 −3.02 53.89 1984 52.2 9.07
N Clitheroe 341 81–301 −2.37 53.86 1985 45.1 9.06
O Wray* 303 100–301 −2.56 54.09 1986 40.2 7.61
P Shap 301 10–300 −2.68 54.47 1983 73.5 6.19
Q Skiddaw 265 10–281 −3.06 54.67 1983 125.4 7.55
R Silloth 340 48–340 −3.37 54.88 1982 53.1 8.48
S Cairngorn 282 10–296 −3.67 57.14 1983 75.9 4.86
T Ballater 290 10–298 −2.99 57.07 1983 75.6 7.25
U Mount 261 10−260 −2.75 57.0 1983 69.9 6.74
V Bennachie 282 10–294 −2.55 57.28 1983 81.5 6.46
W Ballymacilroy 493 61–500 −6.33 54.79 1980 59.5 9.02

*Not previously selected by Huang & Pollack (1998).
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Figure 9. The evolution with RJ-MCMC iterations of the posterior and the
number of partitions. The algorithm eventually converges on a model with
10 or 11 partitions. The three largest partitions (II, VIII, IX) are present in
all of samples from iteration number 350 000 to the end.

reconstructions does not necessarily produce the same result as
joint inversion of a smaller (plausibly more robust) subset drawn
from the same profiles. This is important since the hemispheric
and global borehole temperature estimates are derived in this way,
although the borehole data used may be more suitable for climatic
reconstructions than the small set of 23 examined here.

8 D I S C U S S I O N A N D C O N C LU S I O N S

In this work, we have demonstrated how spatial and temporal trends
in GSTs can be jointly inferred from collections of borehole tem-
perature profiles. We have demonstrated the efficacy of the BPM
algorithm with realistic synthetic data and have shown how the al-

Figure 10. The posterior probability distribution of the partition bound-
aries for the UK real data case, shown on the model space rather than in
longitude/latitude coordinates. Borehole locations are given by crosses. The
algorithm infers 10–11 partitions in the data, which are labelled I to XI.

gorithm is able to correctly group borehole profiles according to
the applied GST history. This method therefore allows the data to
determine the optimum grouping for joint inversion, which takes
account of the relative locations of the profiles.

In the first synthetic case, the Bayesian Partition algorithm
demonstrates the natural parsimony, which allows the RJ-MCMC
algorithm to preferentially sample simple models, which, in this
case, correspond well with the true model used. In other synthetic
experiments (not shown), the algorithm has converged on structures
for which partitions present in the true model have been merged with
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Figure 11. The posterior distributions of the GST histories as inferred by the secondary RJ-MCMC algorithm for the mode setup shown in Fig. 10, which has
11 partitions. Note that many of the partitions show warming over the last few centuries but the magnitude of this warming is variable.

neighbouring partitions, where the data can be reasonably fit by the
same GST history. The tendency toward simpler models is a cru-
cial feature for this work, as it allows more useful models of the
underlying trends in past GST rather than simply optimizing the fit
separately at each borehole, which can lead to a more confusing and
possibly misleading set of GST reconstructions.

A second case study using surface air temperatures from 10 grid-
points of an GCM simulation of the last 250 yr provides a more
realistic test for the BPM method. This example demonstrated that
realistic variations in air temperature variations from across the
globe can be distinguished from each other by the BPM algorithm
when the data are artificially degraded with moderate measurement
errors. This implies that analysis of an expanded set of real bore-
hole data from across the globe could reveal variations in warming
magnitude from region to region. The algorithm leads to a posterior
partition structure that accurately reflects the applied temperature

series, and the inferred GST histories for each partition agree well
with these true models in each case.

A first case study with real data has been made using a data set of
23 boreholes located in the United Kingdom. We have demonstrated
that an average of 22 original reconstructions is inappropriate and
that including four extra reconstructions from Ireland leads to a
different average GST history. This latter average reconstruction
compares favourably with the CET record but includes temperature
histories with up to 3.5 ◦C warming since 1500. Using the BPM,
we have shown that a previously large range of GST histories can
be somewhat reduced by examining the support from the data for
independent temperature histories. This is also aided by the use
of measured thermal conductivity data (Rollin 1987). However,
the preliminary results for this data set indicate a posterior on the
partition structure with high probability of 10 or 11 independent
GST trends, whereas examination of instrumental data covering
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Figure 12. Comparison of the posterior mean GST histories for the three
largest partitions (II, VIII and IX) compared with the Central England tem-
perature record and the average GST reconstruction for the UK derived from
Huang et al. (2000). The CET and BPM GST histories are shown as devi-
ations from the 1950–1979 mean whereas the Huang et al. (2000) average
has been shifted to have the same 20th Century mean as the CET record
as plotted here. The GST reconstructions for the three partitions show poor
agreement with each other. The largest partition (II) shows good agreement
with the CET record. The Huang et al. (2000) average shows a contrasting
temperature trend before 1900 compared with all of the other temperature
series.

the period 1850–present from the Meteorological Office Historical
Instrumental Station data set (UKMO 2006) indicates that the long
term changes in surface temperature are very similar across the
study area. The posterior mean GST histories for the three largest
partitions, which would be expected to be more robust indicators
of past climate, show a large range in the amplitude and timing
of the inferred GST histories, with the amplitude of the posterior
means ranging over 0.5–1.3 ◦C warming by AD 1987 and with
a temperature minimum somewhere between 1650 and 1800. The
largest partition agrees very well with the CET instrumental record,
but the remaining partitions demonstrate that other thermal effects,
which could not be accounted for in the 1-D models used here, are
present. The mismatch between the ensemble average GST history
derived from Huang et al. (2000) and those derived in the largest
partitions in this work indicates that for this data set, averaging
does not always cancel non-climatic errors. Overall, we have found
that the majority of the 23 temperature–depth profiles examined
(including those in two of the three larger partitions) are sufficiently
affected by these other heat transfer processes so that extracting
a meaningful climatic signal is difficult. The majority of the UK
data set therefore requires geophysical site analysis and the use of
a more advanced forward modelling scheme before it can be used
for climatic reconstruction purposes.

8.1 Future work

The Bayesian Partitioning algorithm is fairly computationally bur-
densome, as it relies on two different RJ-MCMC samplers. For
example, in the GCM case, 788 groupings of the data were evalu-
ated during the 130 000 RJ-MCMC iterations. Multiplying this by
the number of secondary sampler iterations (=5000) amounts to
4 million secondary sampler forward model evaluations. The total
number of individual forward evaluations will be larger since many
of these configurations that have been evaluated, contain more than

one profile. In the real data case, the number of data groupings eval-
uated by the BPM model is of the order of 2000, meaning that the
total number of forward evaluations is of the order of 10 million,
and again the total number of forward evaluations will be larger, as
there are 23 data sets in the UK case compared with 10 in the two
synthetic cases. The computational cost of reading data from a pre-
viously sampled configuration is not negligible compared with the
cost of running the secondary sampler, but the computation speed
of the model does gradually increase, as more of the model space is
sampled and stored for future iterations. The real data case example
took 2 weeks on a Linux 3.3 GHz Pentium 4 for 1 000 000 itera-
tions. To apply this method to a larger data set, this algorithm would
therefore benefit from parallelization: where proposal choices lead
to more than one partition being updated in a single iteration, the
calculations for each partition could be sent to separate processors
and calculated simultaneously.

The Voronoi tessellation method provides a convenient math-
ematical method of dividing the data into separate geographical
regions. However, there are drawbacks due to its simplicity. For ex-
ample, for geometrical reasons, more partitions or tessellations can
be required than there are independent trends in the data. Ander-
sen et al. (2003) provide a method for avoiding these problems by
parametrizing the vertices of the tessellations and using the notion
of coloured polygons, that is, similarly coloured polygons, which
can be geographically separate, would contain data with the same
inferred GST history. Future work involving the methods presented
here could benefit from such a formulation.

The methods presented here could be developed to incorporate
proxy palaeoclimate data together with the borehole temperatures.
For example, by implementing a Bayesian calibration method for
the proxy data, the borehole data could serve as a prior constraint
(through the heat conduction forward model) on low-frequency
variations of the climate reconstructions from proxy data.
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González-Rouco, J.F., Beltrami, H., Zorita, E. & von Storch, H., 2006.
Simulation and inversion of borehole temperature profiles in surrogate
climates: spatial distribution and surface coupling, Geophys. Res. Lett.,
33, L01703.
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A P P E N D I X A : B P M S A M P L I N G
A L G O R I T H M

A1 Prior information

In any Bayesian formulation, prior information for all model param-
eters must be specified. In inverse problems, the prior information
acts to ensure that the solutions have acceptable or physically rea-
sonable values (Scales & Tenorio 2001; Curtis & Wood 2004). In
this work, the prior information is chosen to correspond with what
is usually known in a general case.

Treating the prior probability hierarchically, the terms in θ (the
GST histories in each partition) can be separated from those in C
(the partition centres):

p(C, θ | ℘) = p(θ | C, ℘)p(C | ℘). (A1)

Here a continuous uniform prior is employed for the positions of the
Voronoi centres, and a discrete uniform prior is used for the number
of the Voronoi centres (Denison et al. 2002):

p(C) = nc!

(	x	y)nc
× p(nc), (A2)

where 	x = xmax − xmin and 	y = ymax − ymin are the dimensions
of the spatial domain (rectangular) and are both equal to 1.0 in all
the examples presented. A uniform probability distribution over the
range (1, nb) is used as the prior on the number of partitions, that
is, p(nc) = 1/nb. A more conservative choice would be a Poisson
distribution with an expected value. However, to demonstrate the
efficacy of the partition modelling method, the more general prior
term is used.

The prior information on the GST model parameters θi is the
same as used by Hopcroft et al. (2007). The prior distribution on
the past temperature values is given by

p(Ti | ℘) = 1[
(2π )ki detC℘

]1/2
exp

[
−1

2

(
TGST

i − T℘
)T

C−1
℘

× (
TGST

i − T℘
)]

, (A3)

where T℘

i ∈ IRki gives the most likely values at each of the ki time
points. In this work, T℘ takes the same value at all time points
so that the prior is biased towards temperatures histories with no
change (Huang et al. 2000). The values used for T℘ and C℘ are
given alongside the specific examples described in Sections 6 and 7.
When combining the prior for multiple partitions, the GST histories
in each partition are assumed to be independent so that the prior
term for the GST for the nc partitions is given by the product of the
individual prior terms:

p(T | ℘) =
nc∏

i=1

p(Ti | ℘), (A4)

where there are nc partitions or independent GST histories.
The prior distribution for the time positions of the nodes used

to parametrize the GST histories is a uniform order statistic distri-
bution (e.g. Green 1995; Hopcroft et al. 2007), which introduces
a gentle bias toward equal spacing of the nodes over the given

reconstruction length. The prior on the time points of the past tem-
peratures in region i is

p(ti | ℘) =
ki ! × t1

i × (
t2
i − t1

i

) × · · · ×
(

L − t ki
i

)
Lki

. (A5)

Note that we have tested the effect of this prior term (not shown)
using, instead, a uniform constraint on the locations of the GST
time points. This showed that the prior in eq. (A5) has little effect
on the posterior distribution of the GST history. As before, the terms
for each partition are independent and, so, can be combined as a
product:

p(t | ℘) =
nc∏

i=1

p(ti | ℘). (A6)

The prior on the number of points in the GST history is uniform
over the range (2–20), hence the prior probability of a GST model
of dimension k is p(k) = 1/19, the combined prior for nc partitions
is p(k) = ∏nc

i=1 p(ki ).
Combining the prior terms for the temperatures Ti , the time

points Ti and the number of (t , T ) points in each partition k, gives
us the prior used in the acceptance term α. This then takes the form

π (θ | ℘) =
nc∏

i=1

p(Ti | ℘)p(ti | ℘)p(ki ). (A7)

The prior distributions for the heat flow and equilibrium surface
temperatures (q0, Teq) are set to uniform over the range (5, 150)
mW m−2 and (−5, 15) ◦C. The prior terms relating to these two
quantities will always cancel in the acceptance term α (provided no
values outside of the specified ranges are accepted), and so, these
terms are omitted in subsequent equations.

A2 RJ-MCMC algorithm proposal distributions

Each possible proposal is selected with equal probability (=1/6),
except when the number of partitions is one or at the maximum, in
which case, we do not allow death or birth, respectively. When the
Voronoi centres are changed using one of the proposals (1)–(4) (see
Section 5), the overall structure is recalculated. Often, the majority
of the tessellation boundaries will remain unchanged relative to the
borehole locations. However, each time a new data configuration
is arrived at (i.e. a different grouping of the boreholes in one or
more Voronoi polygons) a proposal for a new GST history must be
made. In Fig. A1, this is illustrated for the case of a birth from two
partitions to three—there is no obvious choice for the GST histories
θ ′

i of the new partitions. Moreover, the proposal probability for the

Figure A1. Schematic of a birth step for a Voronoi centre, where crosses
denote borehole locations and the lines indicate partition boundaries. Ap-
propriate choices for the new GST histories θi ’ are not obvious as the new
temperature histories are now conditioned on a different set of borehole data.
A secondary RJ-MCMC algorithm is used and samples from the resultant
conditional posteriors are used to as proposals for the θi ’.
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reverse proposal (i.e. the corresponding reduction in the number of
partitions) is also required to satisfy detailed balance of the Markov
chain.

When a proposal for θi is required in this way or because
option (5) is selected, a secondary RJ-MCMC algorithm is run
(e.g. Stephenson et al. 2006) unless the proposed partition has been
previously sampled. This secondary algorithm gives an approxima-
tion to the conditional posterior of the GST history in a partition,
conditional on the set of borehole profiles enclosed by that partition.
One of the GST histories sampled by the secondary RJ-MCMC, θs

is then randomly selected and set as the proposal θ ′
i . This means that

the proposal function for θ ′
i has no dependence on the current state

of θi , and thus, the proposal term is greatly simplified. The sampled
models are all stored for cases in which the algorithm proposes to
move back to a previously sampled state, in which case a new θi is
drawn randomly from the stored samples.

The secondary RJ-MCMC algorithm is as described in Hopcroft
et al. (2007) and, so, does not need to be described in detail here.
However, many of the details of the secondary RJ-MCMC algo-
rithm are similar to those used in the main algorithm. The priors
on the GST histories and the likelihood formulation are both as
described above for the main RJ-MCMC. The only difference is
that to constrain the model space when inverting a number of bore-
hole profiles simultaneously, the prior on the GST temperatures
is modified so that the standard deviation varies linearly from 0.1
to 1.0 K over the reconstruction time length. This prior structure
prevents large changes in the GST values compensating for poor
proposals of the basal heat flux or equilibrium surface temperature.
The narrower prior range in the past also makes sense because the
model setup assumes no changes in GST prior to onset of the re-
construction, an assumption common to most GST reconstruction
methods. This problem in joint inversion has also been identified
by Chouinard & Mareschal (2007) using a singular value decompo-
sition inversion method. The authors resorted to inverting reduced
temperature profiles only (i.e. subtracting a calculated equilibrium
temperature–depth profile from the measured data).

In both the main and secondary algorithms, the heat flow and
equilibrium surface temperature are updated using a bi-variate
Gaussian proposal distribution, with an assumed correlation be-
tween the two parameters for each borehole of 75 per cent. The
standard deviations for each parameter are 4 × 10−5 W m−2 and 4
× 10−2 K, respectively. The values sampled by the secondary al-
gorithm for these two parameters are not ‘returned’ to the main
algorithm except at initialization when the initial values of θ , q0 and
Teq are found. This is to ensure adequate acceptance rates, since
perturbing too many parameters at each proposal will lead to very
low percentage of acceptances.

A3 Proposal ratio terms for the acceptance probability

The proposal ratio used in the main RJ-MCMC algorithm can be
simplified by separating out the four model parameters:

q(m | m′)
q(m′ | m)

= q(C, θ , q0, Teq | C′, θ ′, q ′
0, T ′

eq)

q(C′, θ ′, q ′
0, T ′

eq | C, θ , q0, Teq)

= q(C | C′)
q(C′ | C)

· q(θ | θ ′, C′)
q(θ ′ | θ , C)

· q(q0, Teq | q′
0, T′

eq)

q(q′
0, T′

eq | q0, Teq)
. (A8)

The proposal ratio for centres given a perturb, move or GST update
is equal to unity. For a birth step it is given by

q(C | C′)
q(C′ | C)

b = 1/(nc + 1)

[1/(	x	y)]
. (A9)

This accounts for choosing a Ci point at random on a spatial domain
size (	x × 	y). The 1/nc+1 term accounts for choosing that point
for death (following the birth, so that the proposal is reversible).

In the proposal ratio, the choices of new temperature histories
θi must be taken into account. The proposal term can be written
as

q(θ i | θ ′
i , C′)

q(θ ′
i | θ i , C)

= p(θ i )

p(θ ′
i )

. (A10)

Therefore, the probability of selecting a particular GST model must
be quantified each time, so that detailed balance of the main RJ-
MCMC algorithm is satisfied. In the proposal a single GST history
θ ′

i is randomly selected from those sampled. The probability of
selecting each parameter (ki , t ki , T ki ) in θ ′

i is then calculated using
24 yr and 0.1 K increments for time and temperature, respectively.
This is conditional on the remaining model parameters being fixed
at the values in the selected temperature history θ ′

i . The proposal
probability p(θ ′

i ) is then given by the product of these individual
probabilities.

The third term of eq. (A8) is equal to 1, as the proposal dis-
tribution is a bivariate Gaussian centred on the current values
with a fixed covariance matrix (it does not change between it-
erations). This term can therefore be discarded in subsequent
equations.

The overall proposal ratio (eq. A8) is then given by the products
of the proposal probabilities in each partition before and after a
proposal is made, multiplied by the proposal ratio for C the Voronoi
centres and the proposal ratio for the proposal type (birth, death,
move, perturb, etc.). Thus, for a birth move, the proposal ratio is
given by

q(m | m′)
q(m′ | m)

= (	x	y)

nc + 1
× dnC +1

bnC

×
∏nc

i=0 p(θ i )∏nc+1
i=0 p(θ ′

i )
, (A11)

where there are nc partitions originally and nc+1 partitions in the
proposed model and bnc and dnc+1 both take the value 1/6 unless
the number of partitions reaches the maximum value (or minimum
in the case of a death move). To keep the number of partitions in
the model in the range (1, nb), birth (death) moves are not allowed
when the number of partitions reaches the maximum (minimum) of
this range. The proposal ratio for the move type will therefore be
different from 1. In the case that nc = 1, the move type proposal ratio
for a birth is given by d2/b1 = 1/6

1/5 , and in the case that nc = nb, the

move type proposal ratio for a death is given by bnb−1/dnb = 1/6
1/5 .

A4 Calculating the overall RJ-MCMC acceptance term

When the number of centres changes through a birth or death move,
the Jacobian needs to be calculated. However, for the choices of
birth and death used here, the Jacobian turns out to equal 1.

The prior ratios for the Voronoi centres C will cancel except in
the cases of a birth or death. For a birth proposal type the prior ratio
on the Voronoi centres is given by

p(C′)
p(C)

= nc + 1

	x	y
. (A12)

This term will then cancel with the first term of the proposal ratio
given by eq. (A11). The same terms appear inverted in the death
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move equations and will therefore cancel out in a similar manner.
Combining the prior, proposal and likelihood ratios, the acceptance
term for a birth step is

α = min

[
1,

∏nc+1
i=1 p(T′

i | ℘) · p(t′i | ℘) · p(k ′
i )∏nc

i=1 p(Ti | ℘) · p(ti | ℘) · p(ki )

×
nb∏
j=1

p(d j | m′
v( j), k ′

v( j), ℘)

p(d j | mv( j), kv( j), ℘)
· dnc+1

bnc

×
∏nc

i=1 p(θ i )∏nc+1
i=1 p(θ ′

i )

]
.

(A13)

The acceptance term for a death move is similar to that for a
birth. In general, each ratio term in the birth move acceptance term
is inverted. The proposal probabilities for a death move are different
if the algorithm reaches the maximum number of points. For the
death step in which one of the Voronoi centres is deleted (with all
the other remaining constant), the proposal ratio is given by the
inverse of that for the birth move,

q(C | C′)
q(C′ | C)

d = bnc−1

dnc

× [1/(	x	y)]

1/(nc)
. (A14)

In general, the ratio bnC −1/dnC is equal to 1 but takes the value 1/6
1/5

when the number of centres reaches the maximum. This proposal
ratio is needed to satisfy detailed balance as it takes account of not
being able to choose a birth move at this stage. The general death

move acceptance probability is given by

α = min

[
1,

∏nc−1
i=1 p(T′

i | ℘)p(t′i | ℘)p(k ′
i )∏nc

i=1 p(Ti | ℘)p(ti | ℘)p(ki )

×
nb∏
j=1

p(d j | m′
v( j), k ′

v( j), ℘)

p(d j | mv( j), kv( j), ℘)

bnc−1

dnc

×
∏nc

i=1 p(θ i )∏nc−1
i=1 p(θ ′

i )

]
. (A15)

For a move or perturb, or a GST history update, the proposal
probability ratio of eq. (A14) is always equal to 1 and, so, can be
omitted. The acceptance term is then calculated according to

α = min

[
1,

nc∏
i=1

p(T′
i | ℘)p(t′i | ℘)p(k ′

i )p(θ i )

p(Ti | ℘)p(ti | ℘)p(ki )p(θ ′
i )

×
nb∏
j=1

p(d j | m′
v( j), k ′

v( j), ℘)

p(d j | mv( j), kv( j), ℘)

]
. (A16)

For a heat flux and Teq update the prior and proposal terms dependent
on θ , T, t and k can be omitted so that the acceptance term in this
case is the ratio of the likelihood values, since the prior and proposal
terms will always cancel:

α = min

[
1,

nb∏
j=1

p(d j | m′
v( j), k ′

v( j), ℘)

p(d j | mv( j), kv( j), ℘)

]
. (A17)
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