A low δ^{7}Li lower crustal component: Evidence from an alkalic intraplate volcanic series (Chaîne des Puys, French Massif Central)

Cédric Hamelin, Hans-Michael Seitz, Jean-Alix Barrat, Laure Dosso, René Maury, Marc Chaussidon

To cite this version:
A low δ^7Li lower crustal component: evidence from an alkalic intraplate volcanic series (Chaîne des Puys, French Massif Central).

Cédric Hamelina, Hans-Michael Seitzb, Jean-Alix Barrata, Laure Dossoc,
René C. Maurya and Marc Chaussidond

a UEB, Université de Brest, CNRS UMR 6538, I.U.E.M., place N. Copernic, 29280 Plouzané Cedex, France.
b Institut für Geowissenschaften, Universität Frankfurt, 1 Altenhöferallee, 60438 Frankfurt, Germany.
c CNRS UMR 6538, IFREMER, BP70, 29280 Plouzané, France
d CRPG-CNRS UPR 2300, 15 rue Notre-Dame des Pauvres, 54501 Vandoeuvre-les-Nancy Cedex, France.

Submitted to Chemical Geology
Abstract

The intraplate volcanic suite of the Chaîne des Puys (French Massif Central) shows a complete petrologic range, from alkali basalts to trachytes. The significant variations of trace elements and radiogenic isotopes along the series strongly support the occurrence of crustal assimilation associated with fractional crystallization (AFC). The least contaminated basalts are clearly related to a HIMU-type reservoir ($^{206}\text{Pb}/^{204}\text{Pb} > 19.6; {^{87}\text{Sr}}/{^{86}\text{Sr}} < 0.7037; \varepsilon_{\text{Nd}} > +4$). The behavior of radiogenic isotopes suggests that the most likely crustal contaminants are meta-sediments located in the lower crust.

The Li isotopic compositions of the lavas range from high $\delta^7\text{Li} (> +7\%)$ in basalts to lighter values in more evolved lavas (down to $\delta^7\text{Li} \approx 0\%$). The mantle component, expressed in the least evolved lavas, has a heavy Li isotopic signature, in good agreement with previous $\delta^7\text{Li}$ measurements of OIB lavas with HIMU affinities. The evolution of Li isotopic compositions throughout the volcanic series is in agreement with the AFC model suggested by the Sr-Nd-Pb isotopic systems. Although the behavior of Li isotopes during assimilation processes is currently poorly constrained, our calculations suggest that at least a portion of the lower crust beneath the Chaîne des Puys is characterized by a light Li isotopic composition ($\delta^7\text{Li} < -5\%$).

Keywords: Li, Sr, Nd and Pb isotopes, lower crust, assimilation and fractional crystallization (AFC), HIMU, basalts, trachytes.
The geochemistry of lithium isotopes has proven useful for a new look at a variety of Earth sciences problems in recent years. This alkali element has two stable isotopes, ^6Li and ^7Li, with a large relative mass difference (17%). Therefore, temperature-dependent isotopic fractionations, either equilibrium or kinetic, are anticipated for Li during natural processes. This property makes Li and its isotopes interesting for Earth science applications including the study of hydrothermal processes (Chan et al., 1992; Foustoukos et al., 2004), continental weathering rates (Huh et al., 1998; Huh et al., 2001; Rudnick et al., 2004), degassing events (Lentz et al., 2001; Beck et al., 2004), diffusion (Barrat et al., 2005; Lundstrom et al., 2005; Beck et al., 2006; Teng et al., 2006; Hamelin et al., 2007), metasomatic processes in peridotites (Wagner and Deloule, 2007; Rudnick and Ionov, 2007) and as a tracer of subducted oceanic crust in the mantle (Nishio et al., 2005; Elliot et al., 2006; Chan et al., 2009).

Although our understanding of Li isotope behavior has improved, our knowledge of the Li isotopic system within deep Earth reservoirs still remains quite rudimentary. In the case of the mantle reservoir, the end-members that have been identified using radiogenic isotopes are poorly constrained for the Li isotopic system. Most of the Ocean Island Basalts (OIB) show a range of $\delta^7\text{Li}$ that overlap the Mid Oceanic Ridge Basalts (MORB) range ($\delta^7\text{Li} \approx +3.4 \pm 1.4\%$; Tomascak et al., 2008). However, recent studies have reported significantly heavier Li isotopic composition for HIMU end-members ($\delta^7\text{Li} \approx +7\%$; Ryan and Kyle, 2004; Nishio et al., 2005; Aulbach et al., 2008; Chan et al., 2009). The Li isotopic signature of continental crust is also a matter of debate. This reservoir is vertically stratified in terms of its chemical composition and lithology. The upper part of the continental crust is well-known and exhibits a lighter Li isotopic composition ($\approx 0\%$; Teng et al., 2004) than the upper mantle (e.g., Seitz et al., 2004). This isotopic signature is explained by ^7Li enrichment of river water relative to the original bed-rock and suspended load (Huh et al., 2001; Kisakurek et al., 2004). In contrast to the uppermost continental crust, the Li signature of the deeper crust (below 15 km depth) remains less-constrained. This reservoir has recently been investigated using samples from high-grade metamorphic
terranes and granulites-facies xenoliths carried in lavas (Teng et al., 2008). According to this study, the middle crust is estimated to be relatively homogeneous with δ7Li average of +4.0‰ ± 1.4 (1σ). Li isotopic composition of lower crustal xenoliths samples range from −17.9 to +15.7. However, direct comparisons of separate minerals and whole rock measurements for these samples provided strong evidence for diffusion-driven kinetic isotopic fractionation during the interactions of xenoliths with the host magma. Only the isotopically equilibrated xenoliths are likely to preserve the initial Li isotopic signature of the lower crust and were selected by Teng et al. (2008) as useful for this purpose. Based on these eight samples, the lower crust appears extremely heterogeneous, with δ7Li ranging from -14‰ to +14.3‰ and a δ7Li average of +1.6‰ ± 8.9 (1σ) (Teng et al., 2008).

In order to constrain the Li isotopic characteristics of the lower continental crust as well as the HIMU mantle end-member, we studied a suite of volcanic rocks from Chaîne des Puys. This alkaline series was chosen because it is an archetype of a continental volcanic suite. It shows a complete petrologic range from basalts to trachytes (e.g., Maury et al., 1980), and geochemical variations within the series are remarkably coherent. Our goal is to model the geochemical evolution of the Chaîne des Puys series in order to constrain the mantle and crustal Li isotopic compositions of the involved reservoirs.

2. Geological setting and previous work.

The Chaîne des Puys is the youngest volcanic province of the French Massif Central (FMC), and the study of its well preserved volcanoes and lava flows has contributed to the development of volcanology in western Europe since the 18th century, following the pioneering work of Guettard (1752). It was emplaced between 100 ka and 8 ka over a deep N-S trending crustal fracture parallel to the nearby aborted Oligocene rift of the Limagne (Fig. 1). Most of its eruptive vents are clustered within a ca. 30 km long and 3 to 4 km wide volcanic axis, west of the town of Clermont-Ferrand.
The Chaîne des Puys lavas represent a typical mildly alkalic intraplate volcanic suite ranging from alkali basalts and basanites to hawaiites, mugearites, and silica-oversaturated benmoreites and trachytes. Alkali basalts, basanites and hawaiites form over a hundred strombolian cones up to 350 m high with associated lava flows, as well as a dozen maars. Mugearites and benmoreites occur as ash and scoria cones emitted as short and thick lava flows. The trachytes and a few benmoreites form four domes (among which the eponymous Puy de Dôme), three protrusions, and several associated pyroclastic flow deposits. The relative abundances of these petrological types roughly decrease from basalts to mugearites and trachytes. Geochronological data (summarized in Boivin et al., 2004) suggest that the emplacement of mafic magmas (basalts and hawaiites), which started around 100 ka, was successively followed by that of mugearites and benmoreites (after 40 ka), and finally of trachytes (mostly between 14 and 9 ka). Primitive mafic lavas are uncommon within the Massif, and most Mg-rich compositions are those of basanitic melt inclusions trapped within olivine phenocrysts, which might represent the parental magma of the suite (Jannot et al., 2005).

Petrographic and mineralogical data (summarized in Boivin et al., 2004) as well as major and trace element data are consistent with a magmatic evolution mainly controlled by the fractional crystallization of mafic melts, and involves separation of kaersutitic amphibole in intermediate magmas (Maury et al., 1980; Villemant et al., 1980, 1981). In addition, the common occurrence of partially melted continental crust xenoliths, together with the progressive increase of Sr and decrease of Nd isotopic ratios from basalts to trachytes (Condomines et al., 1982; Chauvel and Jahn, 1984) suggest the occurrence of crustal assimilation. The occurrence of deep-seated amphibole, clinopyroxene, potassic oligoclase and scapolite megacrysts in mafic lavas (Boivin and Camus, 1981) and of mixed trachybasaltic and trachytic pumices (Gourgaud and Camus, 1984) suggests that magmas started their differentiation within deep reservoirs, probably located near the base of the French Massif Central continental crust. Based on petrographical arguments, Boivin et al. (2004) proposed that intermediate and residual liquids were generated within the continental crust.
Geophysical studies have shown that the Neogene and Quaternary volcanic activity in the FMC is associated with the upwelling of hot asthenospheric material (Lucazeau et al., 1984; Zeyen et al., 1997). This anomaly has been linked to a possible mantle plume located beneath the Massif Central (Granet et al., 1995, 2000; Sobolev et al., 1997). However, the lack of evidence for such a plume within the lower mantle has been interpreted as an indication of asthenospheric flow induced either by the delamination of the Alpine lithospheric root (Merle and Michon, 2001), or the retreat and sinking of the Apenninic slab (Barruol and Granet, 2002; Barruol et al., 2004).

Based on Sr, Nd, and Pb isotopic data on lavas, it has been proposed that the geochemical signature of the Neogene and Quaternary FMC volcanic provinces, including the Chaîne des Puys, is closely related to the HIMU reservoir. Indeed, it is characterized by low $^{87}\text{Sr}/^{86}\text{Sr}$ (< 0.7038) and high $^{206}\text{Pb}/^{204}\text{Pb}$ (> 19.5) ratios (Chauvel and Jahn, 1984; Downes, 1984; Wilson and Downes, 1991, 1992; Wilson et al., 1995). The origin of this geochemical signature is still a matter of debate (Downes, 2001; Wilson and Downes, 2006). Hoernle et al. (1995) have shown that it is shared by most Cenozoic volcanic provinces of Western and Central Europe, the Western Mediterranean domain, Northwestern Africa and the Canary islands. They have attributed its origin to the interactions between the European and Mediterranean lithospheric mantle and a large-scale asthenospheric plume linked to the opening of the Central Atlantic during the early Tertiary.

3. Samples and Analytical techniques

3.1. Samples.

Based on the detailed geochemical investigations undertaken by Villemant (1979) and Maury et al. (1980), 15 samples were selected (located in Fig. 1), which are representative of the entire Chaîne des Puys series. All samples were collected from fresh exposures of the Quaternary volcanics. Petrographic examinations reveal no evidences of secondary alteration, a conclusion that is supported by the low loss on ignition (LOI).
3.2 Major and trace element analyses.

Major element analyses were performed by ICP-AES at Centre de Recherches Pétrographiques et Géochimiques, Nancy following the method described in Carignan et al. (2001). The precision of the data, based on relative standard deviations, is better than 2%. Trace element analyses were performed by ICP-MS at Grenoble following the procedure described in Barrat et al. (1996). The results obtained for internationals standards (JB2, BHVO1, WSE and IFG) are reported in Barrat et al. (2000). Based on standard measurements and sample duplicates, trace element concentration reproducibility is generally better than 5%.

3.3. Sr, Nd and Pb analyses.

3.3.1. Sr measurements.

Isotopic compositions of Sr were determined at Géosciences Rennes. For Sr, rock powders were leached for 3 hours in hot (150°C) 6N HCl, and rinsed in deionized water prior to dissolution. Conventional ion exchange techniques were used for the separation of Sr and isotope ratio measurements were carried out by thermal ionization mass spectrometry using a Finnigan Mat 262 equipped with seven collectors in static mode. Compositions are normalized for instrumental mass fractionation relative to $^{86}\text{Sr}/^{88}\text{Sr} = 0.1194$. $^{87}\text{Sr}/^{86}\text{Sr}$ of the NBS 987 Sr standard yielded 0.710213±0.000022 (2σ, n=14) and the sample Sr isotopic compositions are reported relative to $^{87}\text{Sr}/^{86}\text{Sr} = 0.71024$.

3.3.2. Nd measurements.

Isotopic compositions of Nd were measured at Institut Universitaire Européen de la Mer, Brest, using a Thermo Finnigan, Triton. The measurements were carried out in static mode. The Nd purification was done according to the procedure described in Dosso et al. (1993). TRU.Spec chromatographic resins from Eichrom were used to separate the REE fraction from the sample matrix. The separation and elution of Nd and other REE were realized on Ln.Spec. resin. During the course of the study, analyses of the La Jolla standard were performed and give an average of $^{143}\text{Nd}/^{144}\text{Nd} = 0.511845±0.000006$ (n = 15). All Nd data are fractionation corrected to $^{146}\text{Nd}/^{144}\text{Nd} = 0.7219$ and normalized.
to a value of $^{143}\text{Nd}/^{144}\text{Nd} = 0.511860$ for the La Jolla standard. Nd blanks measured using this procedure were < 0.5ng.

3.3.3. High-resolution Pb analyses.

Powdered samples were leached with 6 M HCl at 140°C for an hour and then rinsed up to six times with ultrapure water prior to dissolution. Lead separation was then performed on an anionic exchange resin. Pb analyses were carried out in static mode at Ifremer (Centre de Brest) on a Finnigan MAT 261 multi collector instrument upgraded by Spectromat, using the double spike technique with the calibrated Southampton-Brest 207/204 spike (Ishizuka et al., 2003). Replicate analyses of the Pb isotope standard NBS981 gave an average of 16.9432 ±0.0027 and 15.5004 ±0.0029 and 36.7326 ±0.0086 for $^{206}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$, respectively (2$\sigma$, n=7). Pb blanks measured using this procedure were < 100pg, and thus negligible relative to the amount of sample analyzed.

3.4. Li analyses.

3.4.1. Whole rock Li isotopic measurements.

Li isotope chemistry and measurements were carried out at the Institut für Geowissenschaften, FE: Mineralogie, J.W. Goethe Universität Frankfurt. Rock digestion and column chemistry were completed following the procedure of Seitz et al. (2004). Powdered rock samples (15–25mg) were digested in a mixture of 1 ml 6 M HNO$_3$ and 1 ml concentrated HF. Subsequently, samples were dissolved in 6 M HCl and reconstituted in 6 M HNO$_3$ followed by chromatographic Li purification (see Seitz et al., 2004 for more detail). For Li-chromatography clear sample solutions of 0.18ml 5 M HNO$_3$ and 0.72ml 100% methanol (analytical grade) were passed through single, small 1.4ml exchange columns filled to height of 6 cm with BioRad AG50W-X8 (200–400 mesh) resin. With the collection of 10 ml of the eluate, all Li is recovered. To ensure 100% recovery we randomly checked pre and after cuts; Li was never detected in these. Measurements were performed using a Multi Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS, Neptune ThermoFinnigan) at dry plasma conditions using a Cetac Aridus® nebuliser fitted with a PFA-spray chamber and an ESI microconcentric-nebuliser. The analytical blank (chemistry blank and background signal on double
distilled 2% HNO\textsubscript{3} was usually 30-20 pg, \~12-20 mV on 7Li. Sample analysis is carried out sequentially by ‘bracketing’ the sample with the L-SVEC standard (Flesch et al., 1973). Isotope compositions are expressed as per mil deviations from the NIST L-SVEC standard: (\(\delta^{7}\text{Li} = \frac{1000 \times (\text{7Li/6Li})_{\text{sample}}}{(\text{7Li/6Li})_{\text{L-SVEC}} - 1)}\). Internal precision is typically between 0.2–0.6‰ (2\(\sigma\)). The best measure for the external precision is the long term reproducibility, determined by replicate dissolutions of the geological basalt standard JB-2 (\(\delta^{7}\text{Li} \text{ of } +5.1‰\)), which is about 1.2‰ (2\(\sigma\)).

3.4.2. In situ Li isotopic measurements.

In situ Li isotopic compositions were measured in olivine from sample Puy21 by the small radius (Cameca ims 3f) ion microprobe at Centre de Recherches Pétrographiques et Géochimiques (CRPG-CNRS, Nancy), using the analytical procedure previously described (Chaussidon and Robert, 1998; Beck et al., 2004, 2006; Barrat et al., 2005). Gold-coated polished samples were sputtered with an O-beam of approximately 25 \(\mu\text{m}\) size. The secondary 6Li+ and 7Li+ ions were accelerated at 4.5 kV and were counted in mono-collection mode with an electron multiplier using magnetic peak switching. The background on the two multipliers was monitored during the different sessions: it was below 0.05 cps (count per second). Recently, Bell et al. (2009) have shown a significant effect of the olivine composition on the Li isotope ratio measured by SIMS. This matrix effect is related to the Mg\# of the olivine. In order to calibrate the instrumental mass fractionation for Li, it is important to select a standard with a forsterite component comparable to our sample. In our case, our sample presents a %Fo = 86.8 and the olivine standard (Olivine BZ29), presents a %Fo = 88.8. The instrumental mass fractionation (\(\alpha_{\text{inst, Li}} = \frac{(\text{7Li/6Li})_{\text{measured}}}{(\text{7Li/6Li})_{\text{true}}\})\) ranged from ~1.020 to ~1.035 for our standard.

Duplicate measurements made at different times in the same spot gave an estimate of reproducibility better than 2.5‰ (2\(\sigma\)).

4. Results

4.1. Major and trace elements variations

All samples have a very low loss of ignition (L.O.I. < 1.5%) reflecting the lack of alteration and the
pristine nature of the samples. Among the most primitive samples (with high Fe content), several show negative L.O.I. results. This indicates that the weight increases arising from oxidation of Fe$^{2+}$ to Fe$^{3+}$ (FeO to Fe$_2$O$_3$) is greater than the weight loss caused by removing volatiles from the mineral structures. New data from this study are shown along with published analyses in the total alkali-SiO$_2$ diagram (Fig. 2). Our samples define a continuous suite, ranging from basalts (Na$_2$O+K$_2$O= 5.6wt%; SiO$_2$ = 46.0wt%) with a MgO of 6.9wt% to trachytes (Na$_2$O+K$_2$O= 11.1wt%; SiO$_2$= 64.9wt%) with a MgO of 0.5 wt%. This suite shows major element characteristics that are typical of mildly alkaline rocks: high contents of Na$_2$O (from 3.3 to 6.6wt%) and K$_2$O (from 1.7 to 4.9wt%) increasing with SiO$_2$ while total iron (as Fe$_2$O$_3$), MgO and CaO decrease (Maury et al., 1980; Boivin et al., 2004).

Corresponding trace element characteristics are also typical of mildly alkaline basaltic suites, with high concentrations of incompatible elements such as Rb, Ba and Th (more than 150 times concentration in the primitive mantle – Table 1). Chondrite-normalized Rare Earth Elements (REE) show highly fractionated REE patterns (La/Yb)$_N$ > 13, along with significant changes in the trace element patterns as a consequence of differentiation. The light REE enrichment increases from basalts to trachytes, as evidenced by the variation of (La/Sm)$_N$ = 3.8 to 7.2. In contrast, over the same suite the slopes of the heavy REE decrease from (Gd/Yb)$_N$ = 2.8 to 1.4. Therefore, intermediate and evolved lavas display a progressively more concave REE pattern, which is linked to a medium REE depletion attributed to amphibole fractionation (Villemant et al., 1980, 1981). Binary plots of trace elements vs Th (see supplementary materials and Fig. 5) reveal three distinct stages, which correspond to successive fractional crystallization during the magmatic evolution of the Chaîne des Puys melts. These differentiation steps have been previously discussed in detail (e.g., Maury et al., 1980; Villemant et al., 1980, 1981) and for our purpose only their major characteristics are recalled here. The first two stages are linked to abundant crystallization of plagioclase and clinopyroxene. They differ from each other by the disappearance of olivine and appearance of hornblende, apatite and Fe-Ti oxides in the second stage. During the last differentiation step, the mineral assemblage changed significantly with the crystallization of a great abundance of biotite, alkali feldspar, apatite and Fe-Ti oxide.
4.2. Sr, Nd, Pb and Li isotopes

The Sr, Nd, Pb and Li isotopic compositions of the Chaîne des Puys samples show significant variations (Table 2). These variations are strongly linked to progressive differentiation. Basaltic lavas have low $^{87}\text{Sr}/^{86}\text{Sr}$ (≈ 0.7037), high $^{206}\text{Pb}/^{204}\text{Pb}$ (≈ 19.6), high ε_{Nd} (≈ 3.9) and heavy $\delta^7\text{Li}$ ($\approx +7 \text{‰}$) signatures, whereas the evolved volcanic rocks display higher $^{87}\text{Sr}/^{86}\text{Sr}$ (≈ 0.7043), lower $^{206}\text{Pb}/^{204}\text{Pb}$ (≈ 19.3), lower ε_{Nd} (≈ 2.5) and lighter $\delta^7\text{Li}$ ($\approx 0\text{‰}$).

5. Discussion

5.1. AFC modeling based on Sr-Nd-Pb isotopes

Based on major and trace element data, it was suggested that the Chaîne des Puys alkalic basaltic suite is the result of fractional crystallization processes (Maury et al., 1980; Villemant et al. 1980, 1981). However, strong variations in radiogenic isotope compositions within the cogenetic alkalic series rule out a model of closed magmatic system evolution (Fig. 3) (Condomines et al., 1982; Downes, 1984; Wilson et al., 1995). When taking together the incompatible trace element ratios and the Sr, Nd, Pb, Li isotopic data, the chemical variations shown in Fig. 5 can be explained by the involvement of two distinct reservoirs:

(i) The first component is expressed in the least evolved volcanic rocks and is characterized by an HIMU-like isotopic signature (Wilson and Downes, 1991, 1992) with high Pb isotopic ratio ($^{206}\text{Pb}/^{204}\text{Pb} \approx 19.6$) and low $^{87}\text{Sr}/^{86}\text{Sr}$ ratio (< 0.7037).

(ii) The second component displays a slightly more radiogenic Sr isotopic compositions ($^{87}\text{Sr}/^{86}\text{Sr} > 0.7043$), lower ε_{Nd} and lower Pb isotopic ratios ($^{206}\text{Pb}/^{204}\text{Pb} < 19.3$), features that indicate unambiguously a continental crust component.
Clearly, the coherent variations of Sr, Nd and Pb isotopic compositions with the concentration of an incompatible trace element, such as Th (or any differentiation index, e.g. FeO/MgO) indicate the assimilation of crustal rocks coupled with fractional crystallization (AFC: DePaolo, 1981). This interpretation is strongly supported by field and petrographic observations (e.g., Maury and Bizouard, 1974) as well as radioactive disequilibrium data (Condomines et al., 1982). Our goal is to quantitatively model the range in concentrations and variations in isotope compositions for Sr, Nd, Pb and Li, using an AFC process (equations 6a and 15b from DePaolo, 1981). All parameters of the model are presented in Table 3.

The first step in the AFC modeling is to identify the components involved in the process. In our data set, none of the basalts is sufficiently primitive to be the direct result of mantle melting. Therefore, we have selected the average of samples Puy21 and Puy16 to represent the initial liquid (l_0) in our modeling. These samples are the most primitive samples studied here given their MgO and compatible trace element contents (Mg# > 50 and Ni > 75 µg/g, Table 1). Constraining the composition of the crustal contaminant involved in the AFC process is generally quite difficult. The continental crust beneath the Chaîne des Puys volcanoes is very heterogeneous due to its complex evolution during the Variscan orogeny. In this particular context, a possible contaminant is the upper continental crust, which is mainly composed of Variscan granitoïds. However, their Pb isotopic ratios are too low to represent the crustal component involved in the AFC process, as illustrated in Fig. 4. Another possible contaminant is the lower crust. The nature of the FMC lower crust and lithospheric mantle is mostly known from the study of xenoliths brought to the surface by Cenozoic alkaline volcanic activity (Leyreloup et al., 1977; Downes and Dupuy, 1987; Downes, 1993). Three main types of xenoliths have been identified: (i) mantle-derived ultramafic xenoliths (ii) meta-igneous granulites and (iii) meta-sedimentary granulites. In order to find the most likely crustal contaminant, the available analyses of all these types of lithologies are shown together with those of volcanic samples of the Chaîne des Puys (Fig. 4). Based on Pb isotopes, which provide the best constraints on crustal contamination, it appears that the meta-sedimentary granulites represent the main contaminant. In the following section, the average composition of the meta-sedimentary granulites has been used in the
calculations (Downes et al., 1990; 1991). In contrast to the two-stage fractionation/assimilation process suggested by Boivin et al. (2004), all geochemical variations of the Chaîne des Puys samples presented here (Table 2 and supplementary materials) are satisfactorily explained by a single lower crustal contaminant.

Several parameters must be assumed in order to model the evolution of the volcanic series by the AFC process (DePaolo, 1981). Bulk distribution coefficients for each element \(D_{Sr}, D_{Nd}, D_{Pb}, D_{Li}\) have been evaluated using log \(C_a\) vs log \(C_b\) diagrams (a and b are two different trace elements). In these diagrams, if one element is highly incompatible (for example \(D_b \approx 0\)), the bulk distribution coefficient of the other element is directly estimated by the slope of the linear trend formed by the data (slope = 1- \(D_a\)). This method is adapted for fractionation in a closed magmatic system but is at first glance not suitable for AFC process because concentrations of trace elements do not directly depend on the fraction of residual liquid in the reservoir \(F\). Nevertheless, there is not much difference if \(D\) is calculated from a perfect Rayleigh fractionation process, except when AFC curves show marked inflection (Defant and Nielsen, 1990). In two element plots (Fig. 5 and supplementary materials), three distinct stages of the bulk distribution coefficients are noticeable, each one is associated with changes in the modal composition of cumulates. Calculated values of \(D_{Sr}, D_{Nd}, D_{Pb}\), for these steps are presented in Table 3. We assumed an initial \(D_{Th} \approx 0\), changing to \(D_{Th} = 0.2\) in order to account late stage crystallization of zircon.

Another important parameter in the AFC modeling is the ratio between the assimilation and the crystallization mass \(r\). There is no simple way to evaluate the absolute value of this ratio. For calculation purpose, however, we have initially considered a range for \(r\) from 0 (perfect fractional crystallization) to 0.3. The best fit is obtained for all three isotope systems for \(r \approx 0.10\). As a first approximation in our model, this parameter is taken to be constant during the crystallization. The fact that the results are coherent for all three isotope systems indicates that the evolution of the Chaîne des Puys volcanics is the result of AFC processes that most likely occurred in lower crustal magma chambers. From basalts and hawaiites to trachytes, nearly 70% of the initial volume of liquid has
crystallized (Fig. 5). Similar results have been reported for other Quaternary alkaline series in the FMC (Wilson et al., 1995).

5.2 High δ^7Li in basaltic samples: a characteristic of the HIMU mantle end-member.

Because the least evolved lavas of the Chaîne des Puys are expected to have been least affected by crustal contamination effects, basaltic samples (Puy16, Puy21) are likely to resemble the isotopic composition of their mantle reservoirs. Based on Sr, Nd, and Pb radiogenic isotopic data, Wilson and Downes (1991) proposed that the FMC Cenozoic basaltic lavas have HIMU affinities (low $^{87}\text{Sr}/^{86}\text{Sr}$ (< 0.7038) and high $^{206}\text{Pb}/^{204}\text{Pb}$ (> 19.5)). However, the origin of this geochemical signature is still a matter of debate. The Li isotopic compositions (up to $\delta^7\text{Li} = +7\%$) in FMC basalts are relatively heavy, compared to average fresh N-MORB ($\delta^7\text{Li} \approx +3.4\% \pm 1.4$, Tomascak et al., 2008) and also differ from those of enriched mantle reservoirs (EM1 and EM2, Nishio et al., 2005) (Fig.6). Such heavy $\delta^7\text{Li}$ compositions have previously been reported in basaltic samples derived from HIMU mantle environment: lavas from the Austral Islands (Nishio et al., 2005; Chan et al., 2009) as well as from St Helena (Ryan and Kyle, 2004) and from peridotite xenoliths from the East African Rift (Aulbach et al., 2008). All these studies suggest that the heavy Li isotopes signature might reflect a typical feature of HIMU lavas.

Recently, Chan et al. (2009) reported a discrepancy between Li isotope data for whole rocks and mineral separates from Cook-Austral HIMU samples. These authors argued that the narrower range of $\delta^7\text{Li}$ values in olivine phenocrysts compared to the lavas is due to their lower susceptibility to post-magmatic alteration. Their work suggests that the heavy Li isotopes composition in HIMU basalts could be partially an artifact of sample alteration. Although our samples are much younger (< 100ka) than the samples used by Chan et al. (2009) (~ 20Ma), it is important to consider the potential effect of weathering. In order to compare whole rock and in situ Li measurements, an isotopic profile was measured on a single chemically homogeneous olivine phenocryst from the alkali basalt Puy21 (Fig. 7). Excluding extreme light $\delta^7\text{Li}$ values found near the crystal boundary and likely related to diffusion-induced Li isotopic fractionation (e.g., Barrat et al., 2005; Beck et al., 2006; Halama et al., 2007,
Hamelin et al., 2007), this phenocryst displays a homogeneous Li isotopic composition of +7.2‰.

Assuming an analytical error (2σ) of ±2.5‰ for in situ data and ±1.2‰ for whole rock data, this value is indistinguishable from the whole rock analysis of this sample (δ7Li = +6.7‰). Therefore, the Li isotopic composition of this crystal is in equilibrium with the melt. Our in situ data support the assumption that the heavy δ7Li in the most primitive lavas from the Chaîne des Puys are genuine. In agreement with the final statement of Chan et al. (2009), our results suggest that the HIMU mantle is characterized by a significant enrichment in 7Li.

Because the origin of the HIMU mantle is commonly assumed to be derived from recycled oceanic crust (Hofman and White, 1982), the hypothesis for the generation of the heavy Li-isotope signature has been influenced by the observation of a dramatically low δ7Li value in eclogites (Zack et al., 2003). Jeffcoate and Elliott (2003) proposed that the source of HIMU magmas is initiated not from the dehydrated slab, but in the overlying mantle wedge. In their model, the heavy signature is produced by high δ7Li fluids, which are released from the slab to the mantle wedge during dehydration. However, because fluids are enriched in Pb comparatively to U, this model fails to explain the high U/Pb ratio required to produce the high 206Pb/204Pb ratio in HIMU basalts. Nishio et al. (2005) proposed that, in contrast to the upper part of the oceanic crust, the moderately altered portion of the crust is preserved from the dehydration-induced Li isotopic fractionation during the subduction process and is therefore a potential source of the high δ7Li HIMU signature. Based on experimental determination of mineral/fluid Li isotopic fractionation factors (Wunder et al., 2006; 2007), Marschall et al. (2007) called into question the assumption that altered oceanic crust will produce a light eclogitic residue during dehydration and deep subduction. These authors argued that a great portion of Li could be retained in a deeply subducted slab. According to their model, the high δ7Li produced by low-temperature alteration is not totally erased by subduction zone dehydration and therefore can be a source of HIMU geochemical signature. This hypothesis has been reexamined by Halama et al. (2008) by modeling Li diffusion at mantle temperatures. Their calculations predict that Li homogenization in the mantle is sufficiently effective to attenuate and erase heterogeneities over the time that is required to create the HIMU Pb isotopic signature. However, our results, which are in agreement with Chan et
al. (2009), suggest that the heavy Li isotopic signature of the altered oceanic crust is partially preserved during subduction and is not completely erased by diffusion processes in the mantle.

5.3. Application of the AFC model to the Li isotopes of the lower continental crust.

Samples from the Chaîne des Puys volcanic suite show a very good correlation between Li concentration and Li isotope composition (Fig. 8), ranging from low Li concentration (5.5 µg/g) and relatively heavy isotopic compositions (δ⁷Li ≈ +7 ‰) in basalts, to high concentrations (20 µg/g) and lighter δ⁷Li values (δ⁷Li ≈ +0.5 ‰) in highly evolved melts. This trend is consistent with the contamination of mantle-derived high δ⁷Li melts with a low δ⁷Li component. The Li content and isotopic composition of the lower continental crust underlying the Quaternary volcanoes of the Chaîne des Puys remains unknown. Because meta-sedimentary granulitic xenoliths are of a small size (commonly less than 5 cm), their Li characteristics have potentially been corrupted by magma-xenolith interdiffusion processes (e.g., Rudnick and Ionov, 2007; Ionov and Seitz, 2008). Recently, direct comparison of δ⁷Li in mineral separates and whole rock in granulite-facies xenoliths from China and Australia have shown diffusion-driven kinetic isotopic fractionation during the interactions of xenoliths with the host magma (Teng et al., 2008). The xenolith samples showing Li isotopic equilibrium between mineral phases are likely to preserve the initial Li isotopic signatures of the lower crust. Eight such granulite xenoliths measured by Teng et al. (2008) have δ⁷Li value extending from -14 ‰ to +14.3 ‰, with a concentration weighted average of +2.5 ‰ and a simple average of +1.6 ‰ ±8.9 (1σ). The lavas from the Chaîne des Puys provide a different approach to estimating the δ⁷Li of the lower crust. Our purpose is to use the AFC parameters determined with radiogenic isotopes in order to constrain the Li characteristics of the contaminant component.

Solving the AFC equation for Li concentration and isotopic composition requires knowing (i) the bulk solid/liquid distribution coefficient of Li during the fractional crystallization process (D_Li), (ii) the Li content of the crustal component ([Li]_c), and finally (iii) the isotopic composition of the crustal component (δ⁷Li_c). It is important to note that any assumption made for one of these parameters allows the calculation of the other two parameters by fitting the evolution in the liquid of the Li
concentrations and isotopic compositions. In order to fit the data, we use an iterative least squares method. It consists of adjusting the parameters of the AFC model function (equations 6a and 15b from DePaolo, 1981) so as to minimize the error with the data. This error (traditionally named χ) is defined as the sum of squared residuals, which are the difference between the observed values and values given by the model. This calculation has been performed for D_{Li} ranging from the unrealistic case where Li is seen as a perfectly incompatible element ($D_{\text{Li}} = 0$) to a moderately incompatible behavior ($D_{\text{Li}} = 0.4$). This range covers the value commonly accepted for D_{Li} during low pressure crystallization, which is found to be close to 0.2–0.3 (Ryan and Langmuir, 1987). We assume that the ratio between the assimilation and the crystallization mass (r) for Li is coherent with the results found for the 3 radiogenic isotopes systems ($r = 0.10$). Nevertheless, to illustrate the influence of this parameter on the calculated Li characteristics in the contaminant, we repeated our calculation for $r = 0.06$ and $r = 0.14$ (Fig. 9).

The Li isotopic composition and abundance of the calculated crustal contaminant are illustrated in Fig. 9. Each solution represents a best-fitting curve of the evolution of the Li abundance and isotopic composition in the Chaîne des Puys volcanic suite. All together, the candidate solutions define the solution space of our model. If Li is seen as a perfectly incompatible element, the calculated [Li]$_{c}$ is in accordance with the previously estimated value in the lower continental crust (5-14 µg/g see Teng et al., 2008 and references therein). In this particular instance, a dramatically low δ^{7}Li$_{c}$ value ($<$ -20 ‰) is needed to reproduce the Li isotopic variation observed within the magmatic suite (Fig. 8). A more realistic (i.e. less incompatible) behavior of Li during the fractional crystallization process requires a higher Li content in the contaminant and therefore a less drastically low δ^{7}Li$_{c}$ value. Ryan and Langmuir (1987) have shown that during low pressure crystallization, D_{Li} is closed to 0.2–0.3 and is broadly independent of the proportions of mineral phases involved. Therefore, using $D_{\text{Li}} = 0.3$ as a reasonable value, it is necessary to assume that [Li]$_{c} = 40$ µg/g in order to account for the evolution of Li concentration and a δ^{7}Li$_{c}$ value of -5‰ is needed to reproduce the Li isotopic variation observed within the magmatic suite (Fig. 8). Because of the significant change in the mineral assemblage, limited variations of the Li bulk distribution coefficient during the differentiation sequence are
possible. This hypothesis implies a combined evolution of D_{Li} with another AFC parameter (r or $[Li]_f$) in order to explain the constant slope on the plot of Li vs Th (Fig. 8). Therefore, a realistic model in our solution space is defined by a trajectory along the differentiation sequence rather than a single point.

5.4 Low $\delta^7\text{Li}$ component: a lower continental crust characteristic or a consequence of kinetic fractionation processes?

The Li abundance required in our modeling is much higher than the average content in the lower continental crust, ranging between 5 and 14 µg/g (Taylor and McLennan, 1985; Rudnick and Presper, 1990; Shaw et al., 1994; Rudnick and Fountain, 1995; Wedepohl, 1995; Gao et al. 1998). The high Li concentration could be related to the sedimentary origin of the lower crustal parts beneath the Chaîne des Puys, since shales have relatively high Li (25-110 ppm, Teng et al., 2004, Chan et al., 2006) and metamorphic dehydration accounts for less than 50% loss (Teng et al., 2007). Concerning Li isotopes, the low $\delta^7\text{Li}$ values calculated in the crustal component are within the range of $\delta^7\text{Li}$ measured in equilibrated xenoliths (Teng et al., 2008). In the following sections, we discuss potential interpretations to explain the Li composition of our calculated contaminant.

5.4.1. Li isotopic composition of lower continental crust.

Taking the assumption that the calculated contaminant is a direct estimation of the Li composition of the meta-sedimentary part of the lower crust, it is interesting to address the question of the Li isotopic composition of the protolith. Analysis of various types of sedimentary rocks from different continents leads to a range of $\delta^7\text{Li}$ from -3.4 to +4.8‰ (Teng et al., 2004; Chan et al., 2006). The low $\delta^7\text{Li}$ values calculated for the crustal component inferred from our AFC modeling are significantly lower than any data from sedimentary rocks published so far (Teng et al., 2004). It seems therefore unlikely that the low $\delta^7\text{Li}$ values are simply inherited from their protolith.

High-grade metamorphic rocks from the lower continental crust have undergone a complex thermal and fluid history. Among the multitude of processes that may have affected their Li concentrations and
isotopic compositions, the first to be considered is progressive metamorphism during burial. Although
a majority of major and trace element contents in meta-sedimentary xenoliths are consistent with those
in greywacke-pelitic rocks, high grade metamorphism has significantly modified their large ion
lithophile element concentrations (e.g., Rb, Sr, Li) (Leyreloup et al., 1977). These xenoliths display
mineralogical characteristics that are typical for almost anhydrous granulite facies rocks (Downes and
Leyreloup, 1986). Therefore, it is likely that meta-sediments have released significant amounts of
water during their metamorphic evolution towards the granulite facies. Numerous studies have
demonstrated the high mobility of Li during fluid/rock interactions (e.g., Seyfried et al., 1998; Brenan
et al., 1998; Huh et al., 2001), and the elemental partitioning of Li between mineral and hydrous-fluids
($D_{Min/Fluid}$) has been investigated experimentally under a variety of physical conditions (Berger et al.,
1988; Chan et al., 1994; Brenan al., 1998). During metamorphism, the Li partition coefficients
between crystals and aqueous fluid ($D_{Min/Fluid}$) drop from relatively high values for clays at low
temperature (0.35 for chlorites and 1.9 for smectites at 260°C, Berger et al., 1988), to very low values
for mineralogical assemblages under high grade metamorphic condition (0.16 for pyroxene and 0.008
for garnet at 900°C and 2 GPa, Brenan al., 1998). Because $D_{Min/Fluid}$ changes as a function of increasing
pressure and temperature, Li is released into the hydrous fluids during prograde metamorphic
evolution. Fractionation of Li isotopes during this dehydration process is explained by the preferential
affinity of the lighter isotope for the most highly coordinated site (Oi et al., 1989). Because Li often
substitutes for Mg, most silicate minerals contain eight-coordinated Li while in aqueous fluids, Li is
found in four-coordinate position (Wenger and Armbruster, 1991). Consequently, throughout the
dehydration process, equilibrium exchange between aqueous-fluids and Mg-silicates should lead to a
lower δ^7Li in the granulitic rocks. The amount of Li depletion and isotopic alteration depends of the
fractionation factor α ($[\text{Li}^7/\text{Li}]_{\text{fluid}}/[\text{Li}^7/\text{Li}]_{\text{mineral}}$) and the elemental partition coefficient $D_{Min/Fluid}$.

Recent experimental studies have shown that α is closely related to temperature, with greater isotope
fractionation during low temperature dehydration (Wunder et al., 2006, 2007). Therefore, the effects
of dehydration on Li isotopic fractionation are directly related to the evolution of temperature and
pressure conditions during prograde metamorphism. In agreement with this conclusion, negligible
effects of thermal metamorphism on δ^7Li were found for metapelites surrounding the Onawa granite
(Teng et al., 2007). The extent of δ²⁷Li modification during regional prograde metamorphism is less clear, but is likely related to the amount of dehydration that takes place at low temperatures (Wunder et al., 2006, 2007; Marschall et al., 2007). The role of this process to produce the light Li isotopic signature in the lower crust is restricted by the limited isotopic fractionation occurring at temperatures higher than 300°C (Wunder et al., 2006, 2007; Marschall et al., 2007).

5.4.2. Isotopic fractionation during magmatic processes.

Given the atypical Li characteristics of the contaminant involved in our modeling, we will examine here whether this signature could be the result of isotopic fractionation either during fractional crystallization or during anatexis of the assimilated crust.

The first potential process to be considered to explain the significant δ²⁷Li variations concomitant with the progressive differentiation is that Li isotopes could be affected by mineral-melt fractionation. Tomascak et al. (1999) were the first to address the question of mass-depandan equilibrium isotopic fractionation process by studying samples from the Kilauea lava lake. The absence of per mil-level variations of δ²⁷Li in their samples during olivine fractionation has shown the inefficiency of this process at temperatures greater than 1050°C. More recently, direct comparison of olivine phenocrysts and whole rock Li isotopes compositions in Hawaiian, Icelandic and Polynesian basalts have confirmed the absence of isotopic fractionation (Chan and Frey, 2003; Jeffcoate et al., 2007; Chan et al., 2009). The isotopic equilibrium seen between the olivine phenocryst and the whole rock in Puy 21 clearly supports this conclusion (Fig. 7). Because equilibrium isotope fractionation is temperature dependant, this process could be more efficient during the last steps of the fractional crystallization. However, in a recent study, Teng et al. (2009) have shown that δ²⁷Li does not correlate with any index of granite differentiation, suggesting that Li isotope fractionation during crystallization is insignificant. Given that Li is moderately incompatible in most mineral phases along a magmatic suite, it seems unlikely that the large variations observed in our samples could be the result of equilibrium isotopic fractionation between melt and minerals.
Another process capable of modifying Li isotopes is kinetic fractionation due to mass transport processes during melting of the lower crust. At high temperatures, equilibrium isotopic fractionations become negligible. Physical kinetic fractionations, on the other hand, are independent of temperature and thus can occur during these particular conditions and be preserved as long as the samples cool relatively quickly. During the differentiation of basaltic magma within deep reservoirs, Li diffusion from host granulites rocks into the magma could fractionate 6Li and 7Li by several per mil. Due to the higher diffusivity of the lighter isotope, melting of lower crustal granulites concomitant with the differentiation could therefore lead to an enrichment of 6Li in the more evolved lavas, precluding the need for an exceptionally light Li isotope composition in the calculated contaminant. Whether or not these kinetic fractionations are significant will depend upon the time and length scale of the anatexis, the diffusion mechanisms, and the initial Li abundance ratio between meta-sedimentary granulites and the magma. During the initial steps of the magmatic evolution, Li abundances in the liquids are relatively low and the ratio with the estimated concentration in the surrounding lower crust is favorable for diffusion of Li from the lower crust into the melt. Because of the incompatible behavior of Li, the abundance ratio decreases with continuous differentiation and the amount of the kinetic fractionation should largely decrease for the more evolved liquids. Since many parameters are yet unknown, it is impossible to estimate unambiguously the extent of Li isotope fractionation that occurs during this process. Nevertheless, physical kinetic fractionation during the assimilation of lower crust is clearly an alternative process to explain the range of δ^{7}Li values determined for the Chaîne des Puys volcanic suite.

6. Conclusion

The intraplate volcanic series of the Chaîne des Puys shows large variations of Sr, Nd, Pb and Li isotopic ratios associated with progressive differentiation. These data suggest a magmatic evolution related to assimilation processes that occurred within magma chambers located in the lower crust. Using Sr, Nd and Pb isotopic composition of granulitic xenoliths, we have calculated input parameters
for the AFC modeling. We applied these parameters to characterize Li compositions of various reservoirs involved in the AFC process:

(i) The mantle end-member: Expressed in the least evolved lavas, the isotopic composition of the mantle component has clearly an HIMU affinity. The Li isotope composition of this reservoir has a relatively heavy signature ($\delta^{7}\text{Li} \geq +7\%$). This result is in good agreement with previous $\delta^{7}\text{Li}$ measurements of OIB lavas with HIMU affinities (Ryan and Kyle, 2004; Nishio et al., 2005; Chan et al., 2009) (Fig. 7). Along with our observations, these results suggest that heavy Li isotope compositions of altered oceanic crust can be reintroduced and partially preserved in deeper mantle regimes.

(ii) The lower crust end-member: Mixing relationships throughout the AFC process along the Chaîne des Puys volcanic suite allow us to place constraints on the Li signature of the lower crustal end-member. Hence, this calculation gives an indirect method to assess the in situ value of $\delta^{7}\text{Li}$ in a portion of the lower crust beneath the FMC. Using $D_{\text{Li}} = 0.3$ as a reasonable value, it is necessary to assume that $[\text{Li}]_{c} = 40\mu\text{g/g}$ in order to account for the evolution of Li concentration within the magmatic suite. In this particular case a $\delta^{7}\text{Li}_{c}$ value of -5$\%$ is needed to reproduce the Li isotopic variation observed within the magmatic suite (Fig. 9). The Li abundance of the calculated contaminant is higher than previous estimations of the lower continental crust (5 to 14$\mu\text{g/g}$, Teng et al., 2008 and references therein), but consistent with a metapelitic contaminant. The low $\delta^{7}\text{Li}$ signature in the calculated contaminant falls in the range defined by equilibrated lower crustal xenoliths (Teng et al., 2008). However, it is important to note that the behavior of Li isotopes during assimilation process is not yet known and that alternative interpretations cannot entirely be ruled out.
Acknowledgments

We gratefully acknowledge the Programme Dyeti (CNRS-INSU) for financial support. We thank R. Rudnick for the editorial handling and two anonymous reviewers for constructive comments. Li isotopes in situ data would not have been obtained without the assistance of Denis Mangin, Michel Champenois and Claire Rollion-Bard during the SIMS analyses. We acknowledge Marion Thomas, Claire Waller and Kristin Bergmann for their valuable comments and Marcel Bohn for his help with the electron microprobe. The hospitality of Francis Barrat and his family during the sampling expedition has been highly appreciated.
References

weathering: the Bidar laterite profile, India. Chem. Geol. 212, 27–44.

Figure 1: Simplified geological map showing major features of the Chaîne des Puys volcanic activity, as well as sample numbers.
Figure 2: Alkalis versus SiO₂ diagram (supplementary data are from Villemant, 1979). Chaîne des Puys shows a complete compositional range from basalts to trachytes.
Figure 3: Binary plot of $^{206}\text{Pb}/^{204}\text{Pb}$ versus $^{87}\text{Sr}/^{86}\text{Sr}$ (symbols as in Fig. 2). Chaîne des Puys samples are shown superimposed on AFC models, which are calculated using a meta-sedimentary derived lower crustal contaminant and with 3 different values of the ratio between the assimilation and the crystallization mass (r).
Figure 4: A) Variation of Pb isotopic composition of the Chaîne des Puys series compared to different types of granulites xenoliths exhumed from the lower crust (Downes et al. 1990, 1991) and to upper crustal hercynian granitoids (Downes et al., 1997). B) zoom on the Pb isotopic variation of the Chaîne des Puys series (symbols as in Fig. 2).
Figure 5: Radiogenic isotope compositions plotted vs Th concentration which is used as a differentiation index. AFC mod-
sions are in Table 3. All parameters used for these calcula-
tions are shown with different values of the ratio between the assimilation and the crystallization mass: r = 0.0,'
else for these systems are shown with different values of the ratio between the assimilation and the crystallization mass: r = 0.14.'
Figure 6: Li isotopes histogram for Mid Oceanic Ridge Basalts (MORB, includes data: Chan et al., 1992; Elliott et al., 2006; Moriguti and Nakamura, 1998; Nishio et al., 2007; Tomascak et al., 2008) and Oceanic Island Basalts (OIB, includes data: Chan and Frey, 2003; Ryan and Kyle, 2004; Nishio et al, 2005; Chan et al., 2009 and basaltic lavas from the Chaîne des Puys).
Figure 7: Comparison of whole rock and olivine phenocryst $\delta^7\text{Li}$ values for the sample Puy 21. Locations of in situ measurements of Li isotopes are shown on a chemical distribution map of Fe.
Figure 8: Evolution of Li concentration and isotopic composition along the volcanic suite (symbols as in Fig. 2). The gray line is an example of AFC model showing a minimal residual error. The set of AFC parameters chosen for this model: $D_{Li} = 0.3$; $\delta^{7}Li_c = -5.3\%$; $[Li]_c = 39.75\mu g/g$; $r = 0.10$ (see the text and figure 9 for more details).
Figure 9: Plot of candidate solutions for the AFC parameters ($\delta^7\text{Li}_c$, $[\text{Li}]_c$, r and D_{Li}) calculated using an iterative least-squared method. Each solution represents a best-fitting curve of the evolution of the Li abundance and isotopic composition in the Chaîne des Puys volcanic suite. All together, the candidate solutions define the solution space of our model. In this space, our favorite set of AFC parameters is illustrated in figure 8.
Supplementary Figure: Plot of La, Tb and Co concentrations versus Th concentration, used as a differentiation index (supplementary data are from Villemant (1979)). Arrows point to the important changes due to crystal fractionation. 1st step: plagioclase, clinopyroxene and olivine; 2nd step: plagioclase, clinopyroxene, hornblende, apatite and Fe-Ti oxides. 3rd step: biotite, alkali feldspar, apatite and Fe-Ti oxides.
Table 1: Major and trace element analyses of Chaîne des Puys samples. BH: basalts and hawaiites; Mu: mugearites; Ben: benmoreites; T: Trachytes.

<table>
<thead>
<tr>
<th>Type</th>
<th>PUY21</th>
<th>PUY16</th>
<th>PUY13</th>
<th>PUY20</th>
<th>PUY7</th>
<th>PUY18</th>
<th>PUY1</th>
<th>PUY5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat (°N)</td>
<td>45°39'41''</td>
<td>45°52'40''</td>
<td>2°59'59''</td>
<td>2°58'20''</td>
<td>2°58'08''</td>
<td>3°03'30''</td>
<td>2°51'39''</td>
<td>2°52'42''</td>
</tr>
<tr>
<td>Long (°E)</td>
<td>3°01'39''</td>
<td>3°02'41''</td>
<td>45°39'42''</td>
<td>45°52'32''</td>
<td>45°39'41''</td>
<td>45°44'21''</td>
<td>45°41'31''</td>
<td>45°47'06''</td>
</tr>
<tr>
<td>SiO₂</td>
<td>47.16</td>
<td>46.04</td>
<td>46.61</td>
<td>47.3</td>
<td>47.57</td>
<td>47.22</td>
<td>48.45</td>
<td>48.03</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.4</td>
<td>2.53</td>
<td>2.39</td>
<td>2.29</td>
<td>2.26</td>
<td>2.32</td>
<td>2.07</td>
<td>2.42</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.53</td>
<td>16.14</td>
<td>16.76</td>
<td>16.51</td>
<td>15.95</td>
<td>17.35</td>
<td>18.22</td>
<td>17.4</td>
</tr>
<tr>
<td>FeO</td>
<td>12.13</td>
<td>12.6</td>
<td>12.5</td>
<td>11.94</td>
<td>11.84</td>
<td>12.08</td>
<td>11.51</td>
<td>11.97</td>
</tr>
<tr>
<td>MgO</td>
<td>0.19</td>
<td>0.19</td>
<td>0.21</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>MnO</td>
<td>6.3</td>
<td>6.94</td>
<td>6.19</td>
<td>6.45</td>
<td>7.09</td>
<td>5.16</td>
<td>3.77</td>
<td>4.69</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.79</td>
<td>3.57</td>
<td>3.32</td>
<td>3.58</td>
<td>3.44</td>
<td>3.79</td>
<td>4.11</td>
<td>4.48</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.77</td>
<td>1.72</td>
<td>1.77</td>
<td>1.86</td>
<td>1.66</td>
<td>1.58</td>
<td>2.17</td>
<td>2.19</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.66</td>
<td>0.55</td>
<td>0.55</td>
<td>0.56</td>
<td>0.5</td>
<td>0.66</td>
<td>0.8</td>
<td>0.79</td>
</tr>
<tr>
<td>LOI</td>
<td>-0.33</td>
<td>-0.42</td>
<td>-0.16</td>
<td>-0.41</td>
<td>-0.01</td>
<td>0.31</td>
<td>0.02</td>
<td>-0.2</td>
</tr>
<tr>
<td>Total</td>
<td>100.43</td>
<td>100.32</td>
<td>100.11</td>
<td>99.93</td>
<td>100.47</td>
<td>99.93</td>
<td>99.95</td>
<td>100.41</td>
</tr>
<tr>
<td>Mg#</td>
<td>50.7</td>
<td>52.2</td>
<td>49.5</td>
<td>51.7</td>
<td>54.3</td>
<td>45.8</td>
<td>39.3</td>
<td>43.7</td>
</tr>
<tr>
<td>Li</td>
<td>6.2</td>
<td>6.4</td>
<td>6.6</td>
<td>7.3</td>
<td>7.4</td>
<td>7.6</td>
<td>8.1</td>
<td>10.5</td>
</tr>
<tr>
<td>Be</td>
<td>1.77</td>
<td>1.81</td>
<td>1.92</td>
<td>1.76</td>
<td>1.76</td>
<td>1.94</td>
<td>2.3</td>
<td>2.48</td>
</tr>
<tr>
<td>Sc</td>
<td>21.4</td>
<td>27</td>
<td>25.5</td>
<td>25.4</td>
<td>28.2</td>
<td>21.5</td>
<td>12.2</td>
<td>15.5</td>
</tr>
<tr>
<td>Co</td>
<td>33.2</td>
<td>41.3</td>
<td>36.3</td>
<td>36.9</td>
<td>36.8</td>
<td>33.8</td>
<td>23.1</td>
<td>28.8</td>
</tr>
<tr>
<td>Ni</td>
<td>59.8</td>
<td>76</td>
<td>45.1</td>
<td>73.1</td>
<td>82</td>
<td>31.8</td>
<td>-</td>
<td>24.6</td>
</tr>
<tr>
<td>Cu</td>
<td>41.8</td>
<td>57.1</td>
<td>49.1</td>
<td>51.6</td>
<td>55.1</td>
<td>40.5</td>
<td>25.7</td>
<td>37.7</td>
</tr>
<tr>
<td>Zn</td>
<td>92</td>
<td>111</td>
<td>107</td>
<td>98</td>
<td>94</td>
<td>101</td>
<td>116</td>
<td>115</td>
</tr>
<tr>
<td>Ga</td>
<td>16.9</td>
<td>19.5</td>
<td>19.5</td>
<td>17.8</td>
<td>18.2</td>
<td>19.6</td>
<td>20.5</td>
<td>20.9</td>
</tr>
<tr>
<td>Rb</td>
<td>37.6</td>
<td>40.5</td>
<td>48.6</td>
<td>40.8</td>
<td>40.1</td>
<td>55.8</td>
<td>54.4</td>
<td>53.9</td>
</tr>
<tr>
<td>Sr</td>
<td>754</td>
<td>691</td>
<td>661</td>
<td>694</td>
<td>717</td>
<td>734</td>
<td>895</td>
<td>845</td>
</tr>
<tr>
<td>Y</td>
<td>26.6</td>
<td>26.9</td>
<td>28.9</td>
<td>27.4</td>
<td>26.7</td>
<td>28.5</td>
<td>32.2</td>
<td>34.2</td>
</tr>
<tr>
<td>Zr</td>
<td>219</td>
<td>220</td>
<td>237</td>
<td>211</td>
<td>225</td>
<td>240</td>
<td>277</td>
<td>316</td>
</tr>
<tr>
<td>Nb</td>
<td>56</td>
<td>66</td>
<td>72</td>
<td>57</td>
<td>70</td>
<td>70</td>
<td>81</td>
<td>90</td>
</tr>
<tr>
<td>Ba</td>
<td>510</td>
<td>542</td>
<td>577</td>
<td>574</td>
<td>565</td>
<td>598</td>
<td>660</td>
<td>719</td>
</tr>
<tr>
<td>La</td>
<td>44.8</td>
<td>44.7</td>
<td>47.7</td>
<td>48.3</td>
<td>47.2</td>
<td>50.9</td>
<td>59.5</td>
<td>64.6</td>
</tr>
<tr>
<td>Ce</td>
<td>90</td>
<td>90</td>
<td>98</td>
<td>90</td>
<td>87</td>
<td>103</td>
<td>118</td>
<td>126</td>
</tr>
<tr>
<td>Pr</td>
<td>10.4</td>
<td>10</td>
<td>10.7</td>
<td>10</td>
<td>9.8</td>
<td>11.5</td>
<td>12.8</td>
<td>14</td>
</tr>
<tr>
<td>Nd</td>
<td>39.6</td>
<td>37.7</td>
<td>40.5</td>
<td>36.4</td>
<td>35.1</td>
<td>42.2</td>
<td>47.9</td>
<td>52.2</td>
</tr>
<tr>
<td>Sm</td>
<td>7.11</td>
<td>7.27</td>
<td>7.65</td>
<td>6.83</td>
<td>6.66</td>
<td>7.98</td>
<td>8.8</td>
<td>9.07</td>
</tr>
<tr>
<td>Eu</td>
<td>2.28</td>
<td>2.28</td>
<td>2.33</td>
<td>2.06</td>
<td>2.01</td>
<td>2.43</td>
<td>2.6</td>
<td>2.79</td>
</tr>
<tr>
<td>Gd</td>
<td>6.48</td>
<td>6.3</td>
<td>6.24</td>
<td>5.97</td>
<td>5.92</td>
<td>6.68</td>
<td>7.15</td>
<td>7.55</td>
</tr>
<tr>
<td>Tb</td>
<td>0.91</td>
<td>0.92</td>
<td>0.94</td>
<td>0.87</td>
<td>0.87</td>
<td>0.99</td>
<td>1.08</td>
<td>1.14</td>
</tr>
<tr>
<td>Dy</td>
<td>5.2</td>
<td>5.05</td>
<td>5.36</td>
<td>5.11</td>
<td>4.98</td>
<td>5.36</td>
<td>5.7</td>
<td>6.27</td>
</tr>
<tr>
<td>Ho</td>
<td>0.98</td>
<td>0.94</td>
<td>1.01</td>
<td>0.97</td>
<td>0.88</td>
<td>1.01</td>
<td>1.1</td>
<td>1.18</td>
</tr>
<tr>
<td>Er</td>
<td>2.51</td>
<td>2.52</td>
<td>2.57</td>
<td>2.51</td>
<td>2.37</td>
<td>2.73</td>
<td>2.9</td>
<td>3.01</td>
</tr>
<tr>
<td>Yb</td>
<td>1.92</td>
<td>2.13</td>
<td>2.32</td>
<td>2.11</td>
<td>2.2</td>
<td>2.26</td>
<td>2.59</td>
<td>2.73</td>
</tr>
<tr>
<td>Lu</td>
<td>0.29</td>
<td>0.31</td>
<td>0.35</td>
<td>0.31</td>
<td>0.34</td>
<td>0.34</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>Hf</td>
<td>4.85</td>
<td>5.15</td>
<td>5.65</td>
<td>4.77</td>
<td>5.31</td>
<td>5.65</td>
<td>6.15</td>
<td>7.22</td>
</tr>
<tr>
<td>Pb</td>
<td>3.34</td>
<td>3.82</td>
<td>4.14</td>
<td>4.15</td>
<td>4.06</td>
<td>3.7</td>
<td>4.43</td>
<td>5.19</td>
</tr>
<tr>
<td>Th</td>
<td>4.89</td>
<td>5.68</td>
<td>6.06</td>
<td>6.13</td>
<td>6.19</td>
<td>6.57</td>
<td>7.27</td>
<td>8</td>
</tr>
<tr>
<td>U</td>
<td>1.36</td>
<td>1.52</td>
<td>1.56</td>
<td>1.58</td>
<td>1.73</td>
<td>1.64</td>
<td>1.88</td>
<td>2.06</td>
</tr>
</tbody>
</table>
Table 1: (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>PUY4</th>
<th>PUY8</th>
<th>PUY9</th>
<th>PUY17</th>
<th>PUY14</th>
<th>PUY11</th>
<th>PUY10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long (E)</td>
<td>Lat (N)</td>
<td>SiO₂</td>
<td>TiO₂</td>
<td>Al₂O₃</td>
<td>Fe₂O₃</td>
<td>MnO</td>
<td>MgO</td>
</tr>
<tr>
<td>2°52'05"</td>
<td>45°48'31"</td>
<td>51.41</td>
<td>1.89</td>
<td>17.85</td>
<td>10.01</td>
<td>0.22</td>
<td>3.61</td>
</tr>
<tr>
<td>3°01'39"</td>
<td>45°47'10"</td>
<td>53.88</td>
<td>1.5</td>
<td>18.28</td>
<td>8.52</td>
<td>0.22</td>
<td>2.62</td>
</tr>
<tr>
<td>2°59'15"</td>
<td>45°48'12"</td>
<td>54.31</td>
<td>1.32</td>
<td>18.49</td>
<td>7.78</td>
<td>0.21</td>
<td>2.31</td>
</tr>
<tr>
<td>3°00'21"</td>
<td>45°51'38"</td>
<td>57.47</td>
<td>1.09</td>
<td>18.55</td>
<td>6.61</td>
<td>0.21</td>
<td>1.92</td>
</tr>
<tr>
<td>3°01'08"</td>
<td>45°52'03"</td>
<td>57.21</td>
<td>1.08</td>
<td>18.4</td>
<td>6.7</td>
<td>0.19</td>
<td>2.01</td>
</tr>
<tr>
<td>2°57'26"</td>
<td>45°45'48"</td>
<td>63.53</td>
<td>0.44</td>
<td>17.71</td>
<td>2.85</td>
<td>0.22</td>
<td>0.5</td>
</tr>
<tr>
<td>2°58'56"</td>
<td>45°49'05"</td>
<td>64.91</td>
<td>0.42</td>
<td>17.67</td>
<td>3.02</td>
<td>0.21</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Li 10 12.1 15.3 16.1 16.2 20 20.3
Be 2.37 3.35 3.54 3.88 3.83 4.67 4.66
Sc 12.7 8 6.8 5 5.4 2.2 2.1
Co 19.5 12.9 10.6 6.1 6.3 1 0.7
Ni 22 10.8 8.5 5.7 6.2 - -
Cu 25.8 16.8 14.1 11.9 11.8 6.2 4.8
Zn 99 110 106 95 97 108 71
Ga 20.1 21.3 22.2 20.1 20.5 20 20.3
Rb 54.7 81.4 86.4 96.7 90.7 127.6 133.5
Sr 803 825 819 715 742 458 317
Y 33.4 37.4 38.1 36 36.9 31.5 29.5
Zr 332 431 454 466 500 702 701
Nb 107 120 123 115 135 177 178
Ba 754 950 1026 1038 1037 1410 1184
La 66.2 88.1 93.1 91.1 91.3 112.3 91.4
Ce 131 161 180 163 171 211 176
Pr 14.3 17.4 18.4 17.7 17.5 21.1 16.5
Nd 51.5 61.4 64.6 59.3 59.9 68.9 51
Sm 9.1 10.37 10.68 9.67 9.82 10.31 7.78
Eu 2.7 2.86 2.95 2.62 2.75 2.6 1.89
Gd 7.25 8.4 8.25 7.76 7.65 7.18 5.29
Tb 1.1 1.23 1.22 1.15 1.1 1.06 0.86
Dy 6.14 6.79 6.8 6.07 6.34 5.67 5.06
Ho 1.18 1.26 1.28 1.18 1.2 1.11 0.95
Er 2.94 3.37 3.33 3.42 3.31 3.29 2.7
Yb 2.87 3.24 3.38 3.22 3.25 3.61 3.03
Lu 0.42 0.48 0.52 0.47 0.5 0.59 0.45
Hf 7.49 9.02 9.78 10.22 10.76 12.85 12.89
Pb 5.58 6.18 5.78 7.86 7.68 7.26 9.16
Th 8.92 11.5 12.77 13.28 13.51 15.87 18.35
U 2.22 3.06 3.31 3.49 3.54 4.18 4.85
Table 2: concentration (ppm) and isotopic composition of Sr, Nd, Pb and Li for the Chaîne des Puys volcanic rocks. BH : basalts and hawaiites; Mu : mugearites; Ben : benmoreites; T : Trachytes. Uncertainty is the 2σ standard deviation.

<table>
<thead>
<tr>
<th></th>
<th>Th</th>
<th>Sr</th>
<th>Pb</th>
<th>Nd</th>
<th>Li</th>
<th>87Sr/86Sr</th>
<th>143Nd/144Nd</th>
<th>εNd</th>
<th>206Pb/204Pb</th>
<th>207Pb/204Pb</th>
<th>208Pb/204Pb</th>
<th>δ7Li</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUY21 (BH)</td>
<td>4.9</td>
<td>754</td>
<td>3.34</td>
<td>39.6</td>
<td>6.2</td>
<td>0.703817±7</td>
<td>0.512835±8</td>
<td>+ 3.85</td>
<td>19.592</td>
<td>15.651</td>
<td>39.563</td>
<td>+6.7 ±0.2</td>
</tr>
<tr>
<td>PUY16 (BH)</td>
<td>5.7</td>
<td>691</td>
<td>3.82</td>
<td>37.7</td>
<td>6.4</td>
<td>0.703750±7</td>
<td>0.512832±6</td>
<td>+ 3.79</td>
<td>19.566</td>
<td>15.635</td>
<td>39.519</td>
<td>+7.2 ±1.2</td>
</tr>
<tr>
<td>PUY13 (BH)</td>
<td>6.0</td>
<td>661</td>
<td>4.14</td>
<td>40.5</td>
<td>6.6</td>
<td>0.703882±7</td>
<td>0.512814±5</td>
<td>+ 3.44</td>
<td>19.507</td>
<td>15.641</td>
<td>39.493</td>
<td>+3.4 ±1.2</td>
</tr>
<tr>
<td>PUY20 (BH)</td>
<td>6.1</td>
<td>694</td>
<td>4.15</td>
<td>36.4</td>
<td>7.3</td>
<td>0.703967±7</td>
<td>0.512800±8</td>
<td>+ 3.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+6.3 ±0.9</td>
</tr>
<tr>
<td>PUY7 (BH)</td>
<td>6.2</td>
<td>717</td>
<td>4.06</td>
<td>35.1</td>
<td>7.4</td>
<td>0.703968±6</td>
<td>0.512798±8</td>
<td>+ 3.13</td>
<td>19.395</td>
<td>15.645</td>
<td>39.405</td>
<td>-</td>
</tr>
<tr>
<td>PUY18 (BH)</td>
<td>6.6</td>
<td>734</td>
<td>3.70</td>
<td>42.2</td>
<td>7.6</td>
<td>0.703903±7</td>
<td>0.512813±6</td>
<td>+ 3.42</td>
<td>19.437</td>
<td>15.645</td>
<td>39.478</td>
<td>+7.4 ±1.1</td>
</tr>
<tr>
<td>PUY1 (BH)</td>
<td>7.3</td>
<td>895</td>
<td>4.43</td>
<td>47.9</td>
<td>8.1</td>
<td>0.703869±7</td>
<td>0.512802±9</td>
<td>+ 3.21</td>
<td>19.494</td>
<td>15.643</td>
<td>39.501</td>
<td>+6.0 ±1.1</td>
</tr>
<tr>
<td>PUY5 (BH)</td>
<td>8.0</td>
<td>845</td>
<td>5.19</td>
<td>52.2</td>
<td>10.5</td>
<td>0.703943±7</td>
<td>0.512839±8</td>
<td>+ 3.93</td>
<td>19.398</td>
<td>15.645</td>
<td>39.384</td>
<td>+5.3 ±1.1</td>
</tr>
<tr>
<td>PUY4 (Mu)</td>
<td>8.9</td>
<td>803</td>
<td>5.58</td>
<td>51.5</td>
<td>10.0</td>
<td>0.703937±8</td>
<td>0.512811±8</td>
<td>+ 3.38</td>
<td>19.455</td>
<td>15.644</td>
<td>39.494</td>
<td>+4.1 ±0.5</td>
</tr>
<tr>
<td>PUY8 (Mu)</td>
<td>11.5</td>
<td>825</td>
<td>6.18</td>
<td>61.4</td>
<td>12.1</td>
<td>0.704083±6</td>
<td>0.512803±8</td>
<td>+ 3.23</td>
<td>19.389</td>
<td>15.655</td>
<td>39.402</td>
<td>+4.1 ±1.0</td>
</tr>
<tr>
<td>PUY9 (Ben)</td>
<td>12.8</td>
<td>819</td>
<td>5.78</td>
<td>64.6</td>
<td>15.3</td>
<td>0.704139±7</td>
<td>0.512799±6</td>
<td>+ 3.15</td>
<td>19.322</td>
<td>15.665</td>
<td>39.536</td>
<td>+1.8 ±0.6</td>
</tr>
<tr>
<td>PUY17 (Ben)</td>
<td>13.3</td>
<td>715</td>
<td>7.86</td>
<td>59.3</td>
<td>16.1</td>
<td>0.704171±7</td>
<td>0.512781±7</td>
<td>+ 2.8</td>
<td>19.364</td>
<td>15.657</td>
<td>39.387</td>
<td>+2.7 ±0.6</td>
</tr>
<tr>
<td>PUY14 (Ben)</td>
<td>13.5</td>
<td>742</td>
<td>7.68</td>
<td>59.9</td>
<td>16.2</td>
<td>0.704181±7</td>
<td>0.512779±8</td>
<td>+ 2.76</td>
<td>19.364</td>
<td>15.665</td>
<td>39.400</td>
<td>+5.3 ±0.8</td>
</tr>
<tr>
<td>PUY11 (Tr)</td>
<td>15.9</td>
<td>458</td>
<td>7.26</td>
<td>68.9</td>
<td>20.0</td>
<td>0.704180±8</td>
<td>0.512776±8</td>
<td>+ 2.70</td>
<td>19.421</td>
<td>15.663</td>
<td>39.472</td>
<td>+2.2 ±1.0</td>
</tr>
<tr>
<td>PUY10 (Tr)</td>
<td>18.3</td>
<td>317</td>
<td>9.16</td>
<td>51.0</td>
<td>20.3</td>
<td>0.704297±7</td>
<td>0.512766±8</td>
<td>+ 2.50</td>
<td>19.324</td>
<td>15.665</td>
<td>39.398</td>
<td>+0.4 ±0.7</td>
</tr>
</tbody>
</table>
Table 3a: Bulk distribution coefficients for Sr and Nd as calculated from log-log diagrams.

<table>
<thead>
<tr>
<th></th>
<th>D (1st step)</th>
<th>D (2nd Step)</th>
<th>D (3rd Step)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr</td>
<td>0.57</td>
<td>0.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Nd</td>
<td>0.25</td>
<td>0.35</td>
<td>1.1</td>
</tr>
<tr>
<td>Pb</td>
<td>0.23</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Th</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 3b: Composition of the components used for the AFC calculations. The geochemical characteristics of the crustal component are an average of meta-sedimentary xenoliths (Downes et al., 1990; 1991).

<table>
<thead>
<tr>
<th></th>
<th>Initial Liquid</th>
<th>Crustal contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr</td>
<td>680</td>
<td>236</td>
</tr>
<tr>
<td>Nd</td>
<td>35</td>
<td>32.4</td>
</tr>
<tr>
<td>Pb</td>
<td>3.2</td>
<td>16</td>
</tr>
<tr>
<td>Th</td>
<td>5.1</td>
<td>9.6</td>
</tr>
<tr>
<td>$^{87}\text{Sr}/^{86}\text{Sr}$</td>
<td>0.70378</td>
<td>0.71717</td>
</tr>
<tr>
<td>$^{143}\text{Nd}/^{144}\text{Nd}$</td>
<td>+3.84</td>
<td>-11.3</td>
</tr>
<tr>
<td>$^{206}\text{Pb}/^{204}\text{Pb}$</td>
<td>19.59</td>
<td>18.60</td>
</tr>
<tr>
<td>$^{207}\text{Pb}/^{204}\text{Pb}$</td>
<td>15.64</td>
<td>15.67</td>
</tr>
<tr>
<td>$^{208}\text{Pb}/^{204}\text{Pb}$</td>
<td>39.52</td>
<td>38.99</td>
</tr>
</tbody>
</table>

Table 3c: two different models used to obtain the best fit for the Li system (see text for more details).

<table>
<thead>
<tr>
<th></th>
<th>model 1</th>
<th>model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{Li}</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>$[\text{Li}]_c$ (ppm)</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>$\delta^{7}\text{Li}_c$ (%)</td>
<td>-50</td>
<td>-9</td>
</tr>
</tbody>
</table>