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ABSTRACT

This study investigates the accuracy of various precipitation products for the Sahel. A first set of products
is made of three ground-based precipitation estimates elaborated regionally from the gauge data collected
by Centre Regional Agrometeorologie–Hydrologie–Meteorologie (AGRHYMET). The second set is made
of four global products elaborated by various international data centers. The comparison between these two
sets covers the period of 1986–2000. The evaluation of the entire operational network of the Sahelian
countries indicates that on average the monthly estimation error for the July–September period is around
12% at a spatial scale of 2.5° � 2.5°. The estimation error increases from south to north and remains below
10% for the area south of 15°N and west of 11°E (representing 42% of the region studied). In the southern
Sahel (south of 15°N), the rain gauge density needs to be at least 10 gauges per 2.5° � 2.5° grid cell for a
monthly error of less than 10%. In the northern Sahel, this density increases to more than 20 gauges because
of the large intermittency of rainfall. In contrast, for other continental regions outside Africa, some authors
have found that only five gauges per 2.5° � 2.5° grid cell are needed to give a monthly error of less than
10%. The global products considered in this comparison are the Climate Prediction Center (CPC) merged
analysis of precipitation (CMAP), Global Precipitation Climatology Project (GPCP), Global Precipitation
Climatology Center (GPCC), and Geostationary Operational Environmental Satellite (GOES) precipita-
tion index (GPI). Several methods (scatterplots, distribution comparisons, root-mean-square error, bias,
Nash index, significance test for the mean, variance, and distribution function, and the standard deviation
approach for the kriging interval) are first used for the intercomparison. All of these methods lead to the
same conclusion that CMAP is slightly the better product overall, followed by GPCC, GPCP, and GPI, with
large errors for GPI. However, based on the root-mean-square error, it is found that the regional rainfall
product obtained from the synoptic network is better than the four global products. Based on the error
function developed in a companion paper, an approach is proposed to take into account the uncertainty
resulting from the fact that the reference values are not the real ground truth. This method was applied to
the most densely sampled region in the Sahel and led to a significant decrease of the raw evaluation errors.
The reevaluated error is independent of the gauge references.

1. Introduction

Various rainfall products, widely available through
the Internet, are increasingly used as standard input to
run hydrological and crop models or to validate atmo-

spheric model outputs. In general, these products com-
bine information from satellites—infrared imagers
(IR), microwave imagers [such as the Special Sensor
Microwave Imager (SSM/I)], radars [i.e., Tropical Rain-
fall Measuring Mission (TRMM)]—and/or rain gauges.
In recognition of the necessity to evaluate these rainfall
products as rigorously as possible, several studies (e.g.,
Morrissey and Greene 1993; Chiu et al. 1993; Xie and
Arkin 1995; Ebert and Manton 1998; Bell et al. 2001;

Corresponding author address: Abdou Ali, B.P. 11416, IRD,
Niamey, Niger.
E-mail: a.ali@agrhymet.ne

NOVEMBER 2005 A L I E T A L . 1707

© 2005 American Meteorological Society

JAM2305

Unauthenticated | Downloaded 02/19/21 11:05 AM UTC



Adler et al. 2001; Ha et al. 2002) have assessed the
quality of products from different parts of the world
and have shown that the performance of algorithms and
the added value of rainfall products may depend on the
region concerned (Kummerow et al. 2004).

For at least three main reasons, such a validation is
especially needed in West Africa: 1) the severe drought
that started in the beginning of the 1970s has made
precipitation more irregular and more difficult to esti-
mate, 2) after reaching a peak in the early 1980s, in situ
networks are now becoming less dense, and 3) West
Africa is one of the world’s most sensitive regions in
terms of precipitation variability because its economy is
still largely dependent on rain-fed agriculture.

Several papers that address rainfall estimation in Af-
rica were published in recent years, such as those of
Thorne et al. (2001) for South Africa and McCollum et
al. (2000) in equatorial Africa. In West Africa, Laurent
et al. (1998) compared and discussed the validation of
estimates resulting from five satellite methods, and Ra-
mage et al. (2000) compared rainfall products with dif-
ferent resolutions in Niger. Jobard (2001) reviewed sat-
ellite-based rainfall retrieval using multisource data.
However, a comprehensive evaluation of various rain-
fall products remains to be undertaken for Africa. The
work presented here may be considered as one step in
that direction. Focusing on the Sahel, it adds to previ-
ous work in several ways. First, it explicitly addresses
the problem that the reference values are not the real
ground truth (section 2). Second, as explained in sec-
tion 3, this study covers a longer period (1986–2000)
than any previous work carried out in West Africa and
thus addresses a much larger range of climatological
conditions. Third, based on the error function devel-
oped in a companion paper (Ali et al. 2005), this study
examines both regional products—three products
elaborated regionally from the gauge data collected by
Centre Regional Agrometeorologie–Hydrologie–
Meteorologie (AGRHYMET)—and global products—
elaborated by various international data centers (sec-
tions 4 and 5). Last, a way of incorporating the uncer-
tainty associated with reference rain fields into the
assessment of the quality of rainfall estimates is tested
in section 6.

2. Problem statement and method

a. Generalities

Satellite-based rainfall estimates have been an im-
portant research topic since the first operational meth-
ods were proposed in the early 1980s [e.g., from the
initial review of Barrett and Martin (1981) to the more
recent analyses of Petty (1995) that address satellite

rainfall estimation over land and Levizzani et al. (2001)
that look at future perspectives]. Two important points
must be considered with respect to satellite-based esti-
mate evaluation and intercomparison. First, satellite-
based estimates are areal values whereas ground-based
references are point values, raising the question of the
significance of statistics computed using a reference es-
timate instead of the unknown true value. The second
concern is linked to the objectives of the evaluation and
intercomparison, raising the question of which statistics
should be used—in other words, which products give
the best estimates and in what ways are these estimates
better? Several statistics will be used here to substan-
tiate this analysis. Estimate evaluation has traditionally
laid emphasis on bias (correspondence between mean
values), cofluctuation (the strength of the linear rela-
tionship between the estimate and a reference value),
and accuracy (the point-by-point level of agreement be-
tween the estimate and the reference). However, other
performance characteristics are important in assessing
the quality of an estimate. For example, a difference in
the frequency of low values for two products having
similar mean statistics is of great importance for agri-
cultural applications. On the other hand, the high ex-
treme values are of greater importance in hydrology.

b. Relationship between statistics computed using a
reference value and those of the unknown true
value

The most usual statistics used in rainfall product
evaluation relate to the bias b, the root-mean-square
error (rmse), and the correlation coefficient r. For more
details and discussion of these standard statistics, see,
for example, Stanski et al. (1989). These statistics are, in
general, computed from an estimated reference value
(bSR, rmseSR, and rSR). In the following, the bias and the
root-mean-square error are computed using the true
reference value (bST and rmseST). Because this true ref-
erence is unknown, the statistics will be expressed as a
function of those derived from the estimated reference
value.

Considering that RS is the estimate under evaluation,
RT is the unknown true reference value, and RR is the
estimated reference value, bST will be the bias of RS

with respect to RT, bSR will be the bias of RS with re-
spect to RR, and bRT will be the bias of RR with respect
to RT. Also, rmseST, rmseSR, and rmseRT will be the
respective root-mean-square errors. Thus,

bST � E�RS � RT� � E�RS � RR�
� E�RR � RT� � bSR � bRT. �1�
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So, if the reference value is unbiased, the bias of the
estimate RS with respect to this reference value is the
true bias. One can denote the following to express
rmseST:

�SR � RS � RR,

�ST � RS � RT,

�RT � RR � RT,

��SR
2 � E�RS � RR�2 � �rmseSR�2,

��ST
2 � E�RS � RT�2 � �rmseST�2, and

��RT
2 � E�RR � RT�2 � �rmseRT�2.

Also, because RS � RR � (RS � RT) � (RR � RT), we
have

��SR
2 � E�RS � RT�2 � 2 Cov�RS � RT, RR � RT�

� E�RR � RT�2 � 2E�RS � RT�E�RR � RT�

�2�

or

��ST
2 � ��SR

2 � ��RT
2 � 2 Cov��ST, �RT� � 2bSTbRT.

�3�

The relationships above show how the bias and the
random error of the reference value can have a signifi-
cant influence on the computation of the raw statistics.
The evaluation of the reference value is thus a crucial
part of any objective validation and intercomparison
exercise.

Using these relationships, two approaches are pos-
sible. First, one can directly base the analysis on the
raw statistics computed using the estimated reference
values, without taking into account their uncertainty.
This means that more confidence is given to the refer-
ence value than to the evaluated products. This condi-
tion is acceptable if the reference value error is much
smaller than the expected error of the evaluated prod-
uct.

This is, for example, the implicit assumption of
Nicholson et al. (2003) in their comparison of rain prod-
ucts, which does not include a quantification of the pos-
sible error of the reference. This makes it difficult to
assess the degree of significance of the statistics ob-
tained. Thorne et al. (2001), on the other hand, evaluate
the reference uncertainty to draw attention to the sig-
nificance of their statistics but do not use it directly in
their calculation.

The second approach is more objective but also more
complicated. The statistics (bST, rmseST) are related to
the true unknown values. With consideration of Eqs.
(1) and (3), this approach first requires estimation of

the following associated statistics: bRT, rmseRT, and
Cov(�ST, �RT). Correction of the raw rmse (rmseSR)
has been attempted by some authors. Barnston (1991),
Ciach and Krajewski (1999), and Gebremichael et al.
(2003), for instance, have used Eq. (3) in which they
assume Cov(�ST, �RT), bST and bRT to be equal to zero.
The method has been called error variance separation
(EVS), and Eq. (3) becomes

��ST
2 � ��SR

2 � ��RT
2 . �4�

In others words, the estimate product errors and refer-
ence product errors are assumed to be independent.
Because the products under evaluation here often
consist of a merging of rain gauge data and satellite
information, the reference rain gauge and regional/glo-
bal products have some common information, which
implies that Cov(�ST, �RT) may not be equal to zero
and its influence may be significant in Eq. (3). The
importance of Cov(�ST, �RT) may depend on the rela-
tion between the gauges used for validation and the
gauges that are included in the regional and global
products. This situation is a critical point for large-scale
validation exercises of global products in West Africa,
because the available rain gauge network generally
used to create the reference value is often not dense
and is not very different from the network used to cre-
ate the global products. Moreover, the non-Gaussianity
of rain fields accentuates the effects of the computing
bias. The application of the assumption that the error
covariance is equal to zero must be considered with
much attention. We analyze below how to account for
ground-based sampling error in the evaluation error
of rainfall products, that is, how rmseST can be com-
puted by application of Eq. (3) without neglecting the
covariance. The results obtained with and without tak-
ing into account the reference uncertainty will be com-
pared.

c. Estimation of the terms of Eq. (3)

To assess the rmseST from Eq. (3), the terms bRT,
rmseRT, and Cov(�ST, �RT) are estimated as follows.

1) ESTIMATION OF THE TERM RMSERT

The question of computing rmseRT has been treated
in Ali et al. (2005, hereinafter Part I). A cross-
validation procedure has been used to investigate dif-
ferent kriging methods designed to improve the calcu-
lation of the ground-based error (rmseRT). A relative
error function [Eq. (5) below] has been established and
will be used here for the computation of rmseRT:
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e�A, Ng, KT, PT� �
1.05

�Ng�KT

�PT

KT
��0.2

� �0.28 � 0.17 log� A

Ng
��,

�5�

where A is the grid area in square kilometers, Ng is
the number of rain gauges in A, KT is the number of
events during the considered period, PT is the cumula-
tive rainfall in millimeters over the same period, and e
is the relative estimation error of the mean areal rain-
fall.

A major variable concerning the error variability in
this error model is the number of events, which is the
most important explanatory factor of the Sahelian rain-
fall variability (Le Barbé et al. 2002). Several ap-
proaches to determine the number of events on a re-
gional scale, where only daily data are available, are
discussed and validated in Part I.

2) ESTIMATION OF THE TERMS bRT AND COV(�ST,
�RT)

(i) The bias: bRT

Geostatistical analysis is an unbiased interpolation
method. The evaluation procedure in the companion
paper shows that the bias is practically equal to zero.
So, if the point measurement is assumed to represent
the “true” rainfall, the areal rainfall bias can be as-
sumed to be equal to zero. Otherwise the bias of the
areal rainfall is equal to the point bias.

(ii) Cov(�ST, �RT)

Because a direct computation is not possible here,
we analyze on the one hand the possibility of neglect-
ing this term. This option consists of an application
of EVS [Eq. (4)]. On the other hand, an area with
dense network coverage D will be chosen for the as-
sessment of this covariance. The estimation RD from
this dense network can be assimilated to RT; then
Cov(�ST, �RT) will be estimated as Cov(�SD, �RD). In
section 6 the importance of the estimated covariance
will be analyzed and the two approaches will be com-
pared.

3. Sahelian rainfall products: Regional and global

a. Regional products

The AGRHYMET rain gauge database (see Part I
for details) is used here to study various regional
ground-based products. Three kinds of networks (Fig.

1) are considered: 1) the whole operational network
(Comité Inter-Etats de Lutte Contre la Sécheresse au
Sahel; average of 650 rain gauges with data available at
the end of the rainy season), hereinafter referred to
as “CILSS,” 2) the monitoring network (about 250
rain gauges with data available on a 10-day basis at the
AGRHYMET Regional Center), hereinafter referred
to as “CRA,” and 3) the synoptic network [80 rain
gauges with data available on a daily basis through the
Global Telecommunications System (GTS)], hereinaf-
ter referred to as “SYNOP.” The CRA network is in-
cluded in the CILSS network, and the SYNOP network
is included in the CRA network. In accordance with the
resolution of the global products presented below, re-
gression kriging is used to create a regional rainfall
product based on a 2.5° � 2.5° grid for these three
networks over the period of 1950–2002.

b. Global products

1) THE GPCC AND GPCP OPERATIONAL

DATASETS

The Global Precipitation Climatology Center
(GPCC) produces monthly gridded 2.5° � 2.5° rainfall
estimates based on gauge-only data from the GTS and
other records (Rudolf 1993); this product is referred to
as GPCC. The Global Precipitation Climatology Proj-
ect (GPCP) rainfall product combines different infor-
mation (gauges and satellite IR and microwave obser-
vations). The GPCP product is described in Huffman et
al. (1997). The primary GPCP product is a monthly
analysis based on a global 2.5° latitude � 2.5° longitude
grid spanning the period from January 1979 up to the
present date. A second product is a 5-day global analy-

FIG. 1. The operational networks for the Sahelian region. The
CILSS network (650 gauges on average) is available at the end of
the rainy season at the AGRHYMET Center, the CRA network
(280 gauges) is available every 10 days, and the SYNOP network
(80 gauges) is available daily.
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sis (Xie et al. 2003), and a third is a daily 1° latitude �
1° longitude analysis from January 1997 to the present
date (Huffman et al. 2001).

2) THE CMAP DATASET

The Climate Prediction Center merged analysis of
precipitation (CMAP) was constructed by Xie and Ar-
kin (1997). The temporal and spatial scales are similar
to those of GPCP, except that there is no daily CMAP
product. The first step is to combine the various satel-
lite estimates based on IR, SSM/I, and Microwave
Sounding Unit data using a maximum likelihood ap-
proach in which weighting coefficients are inversely
proportional to the squares of the individual random
errors. The resulting satellite-based analyses provide
the field shape, which is then adjusted to the rain gauge
data (where available).

3) THE GPI

The Geostationary Operational Environmental Sat-
ellite precipitation index (GPI; Arkin et al. 1994) as-
sumes that a 3-mm rainfall occurs every hour of cold-
cloud duration over a pixel. Because of its simplicity,
GPI is still widely used for climatological studies of
global precipitation. This is the only pure satellite prod-
uct among the four global products studied here.

4. Evaluation of the CILSS rain gauge networks

a. Sahelian operational network error analysis

Several authors (e.g., Rudolf et al. 1994; Morrissey et
al. 1995; Xie and Arkin 1995) suggest that five rain
gauges over a 2.5° � 2.5° cell are sufficient to guaran-
tee an estimation error of less than 10% (percentage
error is calculated with respect to the mean of the vari-
able considered) for the areal monthly rainfall over
the cell. This result does not hold for the Sahelian re-
gion, as may be seen from the study of Lebel and
Amani (1999). In fact, as clearly shown in Eq. (5), the
estimation error depends both on the monthly total and
the number of recorded rain events in this total. The
greater the number of events for a given total is, the
greater is the smoothing of the event-scale spatial vari-
ability and, consequently, the smaller is the estimation
error.

This is illustrated well in Fig. 2a, showing the disper-
sion of estimation errors computed for the same num-
ber of gauges available over a 2.5° � 2.5° cell using Eq.
(5). For five gauges over a 2.5° � 2.5° grid, the error
varies from 5% to 30%, depending on the area and
month considered. The error is maximum for dry
months in the northern part of the domain and is mini-

mum in the south of the domain where, on average, a
larger number of rain events are recorded. This disper-
sion factor is amplified by the fact that, as seen in Fig.
1, the network is far from being homogeneous in terms
of density. Even when limiting the computation to the
3 months of the core of the rainy season [July–Septem-
ber (JAS)] so as to obtain a more homogenous sample,
the dispersion of errors over a total sample of 1287
values (39 cells � 3 months � 11 yr) is still significant,
with 80% of the 2.5° � 2.5° errors in the range of
5%–22%. Averaged over the whole period of study
and JAS, the mean monthly error is 12% for the entire
Sahel but only 9% for latitudes below 15°N. A simi-
lar computation performed for 1° � 1° grids shows
that 80% of the errors at that resolution range from 8%
to 28%.

The overall performance of the CILSS network is
presently decreasing, as shown in Fig. 2b. This decrease
is the result of both the decrease in the number of

FIG. 2. (a) Relationship between the estimation error and the
number of operational gauges. There is a significant dispersion for
the same number of gauges (e.g., for five gauges over 2.5° � 2.5°,
the error varies from 5% to 30%). (b) Mean number of gauges
and the performance (percentage of cells for which the monthly
estimation error over 2.5° � 2.5° is less than 20%) of the network
for the period of 1950–2002. Note that the rapid increase in the
number of gauges during the dry period (1970–90) did not involve
a better performance (smaller estimation error), because in dry
years rainfall is more variable in space and thus requires a com-
paratively larger number of gauges to guarantee a given level of
accuracy.
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gauges since the optimum of the mid-1980s and the
decrease in the monthly rainfall of August and Septem-
ber that characterize the drought.

b. Optimal networks

One application of the error function is the determi-
nation of optimal networks. The optimal network con-
cept depends on the scale of interest [time KT and space
A in Eq. (5)]. The criterion of optimality corresponds to
the accepted error threshold. For a fixed error, the in-
version of Eq. (5) makes it possible to compute the
minimum number N*g of stations needed to remain be-
low the error threshold. The error threshold e consid-
ered here is 10%. The analysis will focus on the 2.5° �
2.5° resolution [A � 75 000 km2 in Eq. (5)] and monthly
rainfall corresponding to the resolution of the most
widely used operational rainfall products.

For the JAS period, it is found that for the period of

1990–2000 the mean optimal number of rain gauges
over a 2.5° � 2.5° cell is 14.6, corresponding to a total
of 569 gauges (Fig. 3a). By comparison, the network
available over this whole period (shown in Fig. 3b)
comprises 561 gauges. However, this rough comparison
is not really meaningful given the strong heterogeneity
in the statistics. The optimal number of gauges per 2.5°
� 2.5° cell is six in the southwest (south of 13°N and
west to 5°W), 15 for the central part, and 35 in the north
(north of 16°N). This variability in the optimal number
of rain gauges is linked to the variability in the number
of events KT as may be seen in Table 1. The network
evaluation of Fig. 3c shows that the only area that is in
fact optimally covered is the one located south of 15°N
and west of 11°E, representing 42% of the CILSS re-
gion. For example, at 11°N, the mean optimal number
of rain gauges is 8.3, with the actual number being 18.3.
At 16°N, the optimal number is 20.6 and the actual
number is 5.9.

FIG. 3. (a) Mean optimal number of gauges per grid cell (2.5° � 2.5°), which provide the estimation error of less than 10% at the
monthly scale for the period 1990–2000. (b) Actual mean number of gauges of the CILSS operational network for the same period. (c)
The difference between (a) and (b). The CILSS operational network guarantees a monthly error smaller than 10% for 42% of the grid
cells, located south to 15°N and west of 11°E.
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At the smaller scales of 10 days and 1° � 1°, the
number of required stations over the whole region in-
creases to 3559. To comply with the 10% error criterion
only for the area located south of 15°N, one would need
1736 stations. Only 1.5% of the cells have a number of
rain gauges above the optimum number (see also the
Table 1 for details).

A rough rule of thumb concerning times scales can be
proposed: on average, a network producing a 20% er-
ror on a monthly basis provides estimates with a 30%
error on a 10-day basis and a 10% error on a seasonal
basis at 1° � 1° scale.

5. Global product evaluation: The CILSS product
as a reference value

This section uses the classical approach to evaluate
global products. The optimal estimates from the CILSS
network are used as reference values, not taking into
account their uncertainty. The scale considered is
monthly and has a 2.5° � 2.5° spatial resolution.

a. Interannual and intraseasonal homogeneity
analysis

Before combining any monthly or annual data for
global analysis, we carry out a systematic trend analysis

to check for homogeneity. This section aims at deter-
mining whether there is a seasonal cycle in the various
statistics used for the evaluation and also whether there
are systematic differences between wet and dry years.
The period of 1986–99 is considered, that is, the period
over which the GPCC product was available. Figures
4a(1), 4a(2), and 4a(3) show that there is indeed a sea-
sonal cycle for all three indicators. The rmse and the
bias are minimum in the middle of the rainy season
and, inversely, the correlation is maximum in the
middle of the season. These results show that, for the
sake of homogeneity, the core and the margin of the
season must be separated. Figures 4a(1), 4a(2), and
4a(3) also show that CMAP has a good score in the
core of the season whereas GPCC and GPCP are best
in the margins. GPI has the poorest score for the whole
season. In view of these results, the analysis will be
restricted to the months of JAS. Figures 4b(1), 4b(2),
and 4b(3) show that there are no systematic differences
between wet and dry years, which indicates that wet
and dry years can be mixed in a global analysis covering
the whole 1990–99 period. Another result of this analy-
sis is that the rmse has increased in recent years for
all products. The nonexistence of this trend for the
bias suggests that this deterioration is due to an in-
creased sampling error. The decrease of the network
density observed in Fig. 2 for recent years supports this
assumption. We can also note a degrading trend in the
correlation coefficient after 1992 for all products, which
can be explained by the same reason as that for the
rmse.

b. Global analysis of the JAS period

1) SCATTERPLOTS AND HISTOGRAMS

Figure 5 is a joint representation of the linear rela-
tionship between the global products and the CILSS
product and the experimental distribution of monthly
areal rainfall for different products. Note that for all
products, the regression line is under the bisecting line
for high values, suggesting an underestimation with re-
spect to the ground estimate. Also, the regression line
tends to be over the bisecting line for low values, sug-
gesting an overestimation. Note that the GPI distribu-
tion is far less asymmetric than the other distributions
because of the way it is computed.

2) COMPARISON OF DISTRIBUTIONS

Apart from GPI, for which the 25% quartile is
roughly equal to the 50% quartile of the other products,
the box plots (Fig. 6a) of the different products are

TABLE 1. Details on the characteristics of optimal networks and
the evaluation of the CILSS operational network for different
areas and for two scales: monthly values over 2.5° � 2.5° grid cells
and 10-day values over 1° � 1° grid cells. The only area over
which the CILSS network is optimal everywhere for the 2.5° �
2.5° resolution is the area lying south of 15°N and west of 11°E; N*g
is the average number of gauges per cell satisfying the optimality
criterion, and Nreal

g is the average number of gauges per cell of the
CILSS network over the subarea. Optimality corresponds to grid
cells for which the error is less than 10%. Italics denote values for
which the existing network is less than the optimum number of
gauges.

Area KT N*g Ng
real

(Ng
real � N*g )/

Ng
real

No. of
optimal

cells

Monthly values (JAS) 2.5° � 2.5°
Total 11.8 14.6 14.4 �1% 42%
10°–12.5° lat 16.3 8.2 18.3 55% 72%
12.5°–15° lat 12.1 11.2 21.1 47% 69%
15°–17.5° lat 7 20.6 5.9 �248% 0%
	15° lat and

west of 11°E
11.27 9.9 27.1 82% 100%

10-day values 1° � 1°
Total 5.6 16.7 2.6 �538% 1.5%
10°–13°lat 7.33 11 3.4 �223% 2%
13°–15° lat 6 14.25 3.6 �296% 2.8%
15°–18° lat 3.9 23.4 1.2 �1900% 0%
	15° lat and

west of 11°E
6.8 12.2 4.5 �169% 3.2%
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similar. However, the 25% quartiles of CMAP, GPCC,
and GPCP are slightly higher than that for CILSS. The
interquartile intervals (25%–75%) of CILSS and
CMAP are very close and that of GPCC is close to that
of GPCP. For the empirical distributions (Fig. 6b), all of

the products underestimate the frequency of the low
values, as compared with CILSS, and they overestimate
the frequency of medium values. The proportion of val-
ues below the 25% quartile is 17% for CMAP, 13% for
GPCC, 13% for GPCP, and 6% for GPI. This under-

FIG. 4. (a) Monthly mean values for the three statistics used to compare each global product with the CILSS reference [(a1) rmse,
(a2) correlation coefficient, and (a3) bias]. The minimum rmse and bias and the maximum correlation occur in the core of the rainy
season (i.e., Aug). All three statistics show a systematic intraseasonal pattern. (b) Annual mean values computed from JAS monthly
values only for the three statistics used to compare each global product with the CILSS reference [(b1) rmse, (b2) correlation
coefficient, and (b3) bias]. In general, the statistics do not show any systematic difference between wet and dry years. However, the rmse
shows an increase in recent years.
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estimation of the frequency of low values is due to the
inability of satellites to correctly estimate intermit-
tency. For the extremes values, apart from GPI, which
continues to be biased, the product distributions are
similar. For example, the probability of exceeding 320
mm, which is the CILSS’s 95% quartile, is 5%, 4%,
3.7%, and 3.3% for CILSS, CMAP, GPCC, and GPCP,
respectively. For GPI, 11% of its values are over the
CILSS’s 95% quartile.

Figure 7 shows that the major discrepancy between
the distribution of the global product and that of the
CILSS is observed for the northern part of the domain
(north of 15°N), with the GPI distribution being com-
pletely unrealistic. In this area the ground-based esti-
mate is also highly uncertain (theoretical kriging error
equal to 34%).

3) NUMERICAL CRITERIA: RMSESR, bSR, AND THE

NASH INDEX

For this analysis, the Nash index ISR presented below
is considered as an additional statistic to the rmse, bias,
and correlation criteria, because it is not influenced by
the bias, as is the correlation:

ISR � 1 �
rmseSR

2

�R
2 . �6�

The Nash index is equal to 1 for a perfect estimate [i.e.,
(RS)i � (RR)i for all i] and is equal to 0 if, for all i,
(RS)i � RR.

Table 2 shows that, in fact, CMAP, GPCC, and
GPCP have a very low bias (less than 5%), while GPI

FIG. 5. A joint analysis of scatterplots and histograms for the four global products (CMAP, GPCC, GPCP,
GPI) with respect to CILSS. The values represent the JAS monthly rainfall between 1990 and 1999.
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is highly biased (43%). This, of course, is related to the
fact that CMAP, GPCC, and GPCP incorporate ground
observations. Because of this low bias the other statis-
tics computed for these products give similar results,
with CMAP being slightly better, with 2% and 25% in
terms of bSR and rmseSR, followed by GPCC (4% and
27%), GPCP (5% and 28%), and GPI (43% and 55%).

In analyzing these statistics along latitudes, the con-
clusion is the same as that for the analysis of distribu-
tions: the quality of the products is far worse in the
northern part of the domain. The minimum errors
(rmseSR) are obtained for the medium strip (12.5°–
15°N): 16% for CMAP, 17% for GPCC, 21% for
GPCP, and 53% for GPI, against 24%, 22%, 23%, and
44%, respectively, for the southern strip (10°–12.5°N).
For the northern strip (15°–17.5°N), the errors are very

high: 55%, 69%, and 80% for CMAP, GPCC, and
GPCP, respectively, and 130% for GPI.

c. Significance test for the statistics

Because the statistical distribution of rain fields is not
Gaussian, nonparametrical statistical tests are used to
verify the equality of the means, variances, and cumu-
lative distribution functions (CDF) of global products
and the reference regional product (CILSS). The tests
are the Wilcoxon U test (abbreviated as W; Hollander
and Wolfe 1973) for the equality of the means, the
Ansari–Bradley (Hollander and Wolfe 1973) and Mood
(Conover 1971) tests for the equality of the variances,
and the Kolmogorov–Smirnov (KS) test for the equal-
ity of the CDFs.

A p value of 10% is used to accept or reject the

FIG. 7. The observed probability distributions as a function of latitude. At 11.25° and 13.75°N, apart from the GPI product, the other
distributions are similar and display the same mode. At 16.25°N all of the distributions become very different from the reference CILSS
distribution.

FIG. 6. Comparison of (a) box plots and (b) observed probability distribution function for the CILSS reference and the four global
products for the JAS period over the entire CILSS region. The global products overestimate the frequency of the median while the
frequency of low values is underestimated.
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hypothesis tested. The calculations are performed so as
to test the homogeneity of statistics with respect to time
[the means are computed over 3 (months) � 14 (years)
samples with 39 cells both for CILSS and the product
under consideration] and with respect to space [the
means are computed over 39 (cells) samples of 3
(months) � 14 (years)].

The results, summarized in Table 3, show that the
temporal fields are more homogeneous than the spatial
fields. The percentage of cases accepted is larger for the
temporal fields than for the spatial fields, except for the
variance. The equality of means and CDFs is accepted
for more than 95% of the temporal fields for CMAP,
GPCC, and GPCP. CMAP also performs very well for
the equality of variances, both in time and space, con-
firming that it is the closest product to the CILSS ref-
erence. Except for the variance, it can be concluded
that the global products do a better job in reproducing
the seasonal cycle than in accounting for the spatial
variability of the monthly rainfall. GPI is an interesting
case to analyze because, as already seen previously, its
CDF and mean are very different from the CILSS ref-
erences. However, GPI performs as well as the other
products—and even better than GPCC and GPCP—in
terms of the equality of the variances. This means that
products using only the satellite information may cor-
rectly estimate the rain field variances at the scale
tested here, confirming the finding of Mathon et al.
(2002), that satellite is able to distinguish rain events;
because in the Sahelian region the variability of rain
fields is mainly due to the variability in the number of
events.

d. Interval of kriging standard deviation for
performing the analysis: Nonlinear correlation

The computation performed here counts the number
of times the estimate of a given rainfall product falls
into the theoretical one or two standard deviation in-
terval. The theoretical standard deviation considered is
the kriging standard deviation (ksd) of estimation error
of the reference. The probability of belonging to this
interval must be found experimentally because rain
fields are not Gaussian. A cross-validation procedure
performed on the reference CILSS fields shows that
this probability is 73% on a monthly basis. This ap-
proach has already been used by Thorne et al. (2001)
and is a useful complement to linear statistics because it
makes it possible to quantify the nonlinear cofluctua-
tion between the products and the rain gauge–based
reference:

P � the number of times that �ksd � RS � RR

� �ksd or �2ksd � RS � RR � �2ksd.

In accordance with this criterion P, Table 4 shows that
CMAP is still the best product, followed by GPCC,
GPCP, and GPI. These results indicate some consis-
tency between the different criteria used in this study
and show the robustness of the statistics used. Figure 8
also shows that the distribution of the discrepancy be-
tween CMAP and CILSS is very close to the discrep-
ancy between GPCC and CILSS.

6. Taking into account the ground-based error
in statistics

This section addresses the implementation of a solu-
tion to the problem that was theoretically addressed in
sections 2b and 2c. The objective is to analyze the de-
gree of uncertainty associated with the classical ap-
proach used in section 5 and to obtain a supposedly
closer to reality estimation of rmseST. Three analyses
are performed: 1) the whole CILSS network is the ref-
erence and the gridded estimates from the two other

TABLE 2. Average statistics over the entire Sahel when using
the CILSS rainfall as a reference, not taking into account its
uncertainty.

CMAP GPCC GPCP GPI

Rmse (%) 25 27 28 55
Bias (%) 2 4 5 43
I 0.88 0.86 0.76 0.42
R2 0.88 0.86 0.85 0.77

TABLE 3. Percentage of null hypothesis H0 assumption accepted with regard to the tests applied month by month or cell by cell for
a 10% acceptance level.

Equality of the variances:

Equality of the CDF: KS test Equality of the means: W test Ansari–Bradley test Mood test

Products Months Cell Months Cell Months Cell Months Cell

CMAP 100 76 100 72 98 98 98 95
GPCC 95 71 100 74 74 93 70 88
GPI 5 9 2 2 90 88 92 90
GPCP 95 67 97 62 74 90 71 90
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networks (CRA, SYNOP) are considered as opera-
tional ground-based products to be compared with the
global products (CMAP, GPCC, GPI, and GPCP), 2)
the CRA and SYNOP networks are considered as pos-
sible alternate references and the fluctuation of rmseSR

as a function of the reference used is analyzed, and 3),
using a densely instrumented subregion, an empirical
study is done to estimate the different terms of Eq. (3)
to assess rmseST as compared with rmseSR.

a. Comparing regional and global products with
respect to CILSS

In this section, for stationarity and homogeneity pur-
poses, only the area south of 15°N (southern Sahel) is
considered, representing 23 grid cells with an average
density of 19.2 gauges per cell. As may be seen from the
CILSS column of Table 5, CRA and SYNOP have a
smaller error than the global products when the optimal
CILSS rain fields are taken as the references. On the
other hand, when neglecting the drift in the computa-
tion of the ground products (the “no drift” subcolumn

in Table 5), SYNOP performs worse than CMAP. This
result means that 1) a blended satellite–ground prod-
uct, because of the continuous space coverage of the
satellite information, is able to restitute better the lati-
tudinal gradients than can a nonoptimally interpolated
ground product and 2) it is necessary to use interpola-
tion algorithms incorporating the drift in their interpo-
lation scheme. In terms of the best spatialization
method, the ranking of the different products is thus
CRA, SYNOP, CMAP, GPCC, GPCP, and GPI.

b. Comparing global products with CRA and
SYNOP as references

Changing the reference to either CRA or SYNOP
(columns CRA or SYNOP in Table 5) produces con-
trasted results. On the one hand, the CRA reference is
associated with larger rmseSR values of the global prod-
ucts, indicating that references obtained from less
dense networks will tend to produce larger values of
rmseSR. On the other hand, for CMAP and GPCC, the
rmseSR values decrease when shifting from the CRA
reference to the SYNOP reference (for CMAP, rmseSR

� 15.9% when CILSS is used as reference, 18% when
CRA is considered to be the reference, and 16% when
the reference is SYNOP). A likely explanation is that
CMAP and GPCC include ground data provided by
synoptic stations only (not all the synoptic stations,
however). This clearly illustrates how the choice of the
reference (both the network used and the interpolation
algorithm) may influence the results of an intercom-
parison exercise.

c. Assessment of rmseST

The sensitivity of rmseSR to the reference used un-
derlines the necessity to evaluate the neglected terms of
Eq. (3) to obtain a more credible assessment of the

FIG. 8. Probability distributions of the percentage difference
between the four global products and the CILSS reference. The
distributions for CMAP and GPCC are very similar, whereas the
distribution of GPCP is more dispersed. GPI shows significant
differences from the other products.

TABLE 4. The number of times the discrepancy D between the
products and CILSS reference is within 1 or 2 times the standard
kriging deviation.

P CMAP GPCC GPI GPCP

Percent (�ksd � � � ksd) 40 38 8 37
Percent (�2ksd � � � 2ksd) 71 69 21 66

TABLE 5. Estimation errors (rmseSR) when using different ref-
erences for the area lying south to 15°N. Values are in percent.
The estimation error associated with each reference (rmseRT) is
8.2% for CILSS, 12% for CRA, and 13.6% for SYNOP.

Values of rmseSR for different references

CILSS
reference

Products Drift No drift
CRA

reference
SYNOP

reference

CRA 14.1 18
SYNOP 14.4 24.5
CMAP 15.9 21 18 16
GPCC 16 25 18 15.9
GPCP 18 27 19.5 19.1
GPI 42 45 44 44.5
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rainfall product errors. If one assumes that the refer-
ence rain fields are unbiased, two terms remain to be
evaluated as addressed in section 2c: rmseRT and
Cov(�ST, �RT). The theoretical computation of rmseRT

is straightforward in the statistical context used here
(the results of this computation are given in the caption
of Table 5 for the three references tested here). The
EVS method presented in Eq. (4) only makes use of
rmseRS and rmseRT to compute rmseST, assuming the
covariance to be negligible in comparison of these
terms. Because there is no straightforward way to com-
pute Cov(�ST, �RT), this assumption is rarely tested.
For the case treated here, the EVS computation leads
to surprising results, with a CMAP EVS error equal to
13.6% when CILSS is used as reference and 8.4% when
SYNOP is used. There is a clear reference dependency
in these results, pointing out the need to assess how the
neglected term Cov(�ST, �RT) could influence the value
of rmseST. Because the gauge network used in CMAP is
closer to the SYNOP network than to the CILSS net-
work, one can reasonably assume that Cov(�ST, �RT) is
larger when SYNOP is the reference than when CILSS
is the reference.

A way to test how Cov(�ST, �RT) might influence the
overall assessment of rmseST is to work on a more
densely instrumented area where it is possible to build
better proxys of RT than when considering the whole
Sahel. Over the target area delimited by the thick
dashed line in Fig. 9, a total of 217 gauges is available,

corresponding to 2 times the density of the CILSS net-
work over the southern Sahel (19.2 gauges per 2.5° �
2.5° grid cell). To study the effects of using various
references on the computation of rmseSR and rmseST, a
subsampling approach is used to create different refer-
ence networks of increasing density, by choosing ran-
domly between 5 and 217 gauges with increments of 10
gauges. For each number of gauges, 21 subsample net-
works are created. The comparison is then carried out
for the three 2.5° � 2.5°cells located at the center of this
target area.

As a first step, rmseSR is computed for the different
reference networks, leading to the results shown in Fig.
10 [the computations are made with a sample of 14
years (1986–99) � 3 cells � 3 months � 21; i.e., 2646
values]. Except for GPI, which is less dependent on the
reference used, rmseSR decreases significantly until
reaching a density of approximately 10 gauges over a
2.5° � 2.5° grid cell). This density is one-half of the
CILSS density over the southern Sahel.

The second step is to use the denser network of 217
gauges to provide a supposedly better proxy of RT to
estimate the covariance Cov(�ST, �RT) in Eq. (3). It
then becomes possible to compute rmseST for all of
the references of step 1. The computation of rmseST

taking into account an estimation of Cov(�ST, �RT)
is denoted as rmseCOV

ST ; when the covariance is ne-
glected it is denoted as rmseEVS

ST . The results of the
computation of these two rmseST are shown in Fig. 11

FIG. 9. The target area (thick dashed line) for the subsampling approach in the estimation of the covariance of errors. A total of 217
gauges are covering this area. Various subsampled networks are used to create ground references of varying accuracy over the three
central grid meshes (solid line). The objective is to evaluate the influence of the reference on the computation of both the rmseSR and
rmseST.
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for CMAP, GPCC, GPCP, and SYNOP. The com-
parison of Fig. 10 and Fig. 11 leads to three main con-
clusions. 1) The behavior of rmseEVS

ST depends on the
reference and the products under evaluation, whereas
the value of rmseCOV

ST does not depend on the gauge

density of the reference and seems to be constant for
a given product. 2) For all products, the values of
rmseEVS

ST and rmseCOV
ST are lower than those for rmseSR.

For a reference with a density of three gauges per
2.5° � 2.5°, rmseSR is approximately 18% and rmseCOV

ST

is 11% for CMAP and GPCC. These statistics are, re-
spectively, 15% and 11% for a reference network with
a density of 25 gauges per 2.5° � 2.5°. 3) The rmseEVS

ST

is highly sensitive to the density of the reference, espe-
cially when it is low. This fact leads to some incoher-
ence in the product ranking, which can change with the
density of the reference network. For example, the val-
ues of rmseEVS

ST are, respectively, 11.5% and 10% for
CMAP and GPCP for a 20-gauge reference network,
changing to, respectively, 11% and 12.5% for a 60-
gauge reference network. The behavior of rmseCOV

ST

is more stable and coherent than that of rmseEVS
ST .

For instance, when SYNOP is used as reference in this
target area, rmseSR is 12.8%, rmseEVS

ST is 4.8%, and
rmseCOV

ST is 11.4% for CMAP. When CILSS is used
as a reference, rmseSR is 15.9%, rmseEVS

ST is 14%, and
rmseCOV

ST is 11% for CMAP. This is just an illustration
of howrmseCOV

ST is less sensitive to the density of the
reference used than are the two other rmse, as may be
seen from Fig. 11.

It is important to note that using rmseCOV
ST does not

change the ranking of products obtained from the
simple computation of rmseSR but leads to a reevalua-
tion of the estimation error, with rmseCOV

ST being, in
our case—and this cannot be extended to other re-
gions without specific studies—significantly lower than
rmseSR.

7. Discussion and conclusions

This work presents the use of an error function de-
veloped in a companion paper (Part I) to treat three
interwoven questions: 1) the definition of an optimal
rain gauge network for the ground-based estimation of
monthly and 10-day rainfall over the Sahel, optimality
being defined as guaranteeing an estimation error be-
low 10% for grid meshes of a given size (2.5° � 2.5° for
monthly rainfall and 1° � 1° for 10-day rainfall), 2) the
intercomparison of global products, based on a refer-
ence considered as being the ground truth, and 3) the
incorporation of the uncertainty of the reference into
the quantification of the estimated error of the rainfall
products.

Over the Sahel globally (an area of roughly 3 million
km2), the total number of gauges guaranteeing an error
smaller than 10% is 568 on the monthly 2.5° � 2.5°
scale. This corresponds to a density of 14.5 gauges per
2.5° � 2.5° cell—a number significantly greater than the

FIG. 11. Correction of the raw evaluation errors shown in Fig.
10. EVS means that the error covariance is neglected (rmseEVS

ST in
the text). COV (solid line) takes into account the estimation of
this covariance (rmseCOV

ST in the text). Note that the EVS error
displays a much larger sensitivity to the gauge density (oscillations
in the curves) than does the COV error.

FIG. 10. The raw evaluation error of the global products
(rmseSR) as a function of the number of gauges used to compute
the reference value in the dense coverage area. There is a de-
crease of the evaluation error for all products when the number of
gauges increases. However, the effect on GPCP and, most no-
table, on GPI is weaker.

1720 J O U R N A L O F A P P L I E D M E T E O R O L O G Y VOLUME 44

Unauthenticated | Downloaded 02/19/21 11:05 AM UTC



value of five gauges per 2.5° � 2.5° cell given by several
authors for other regions of the world. This number of
568 gauges compares well globally to the 561 gauges
available over the region for the period of 1990–2000.
However, the density of the optimal network should
increase when moving north because of the gradient of
the average number of rain events. The distribution of
the current network does not conform to this pattern.
For instance, the “optimal” network should comprise
238 gauges south of 15°N—or 10.3 gauges per 2.5° �
2.5° cell—whereas the actual network comprises 465
gauges (19.2 per cell), meaning that the south Sahel is
covered well. Over the whole region, however, only
42% of the 39 2.5° � 2.5° meshes satisfy the optimality
criterion for monthly rainfall, with the northern and
eastern areas being undersampled. North of 15°N, the
average estimation error is 34%, which makes the vali-
dation of global products very difficult there (the den-
sity should be 20.6 gauges per cell in this area). On the
10-day 1° � 1° scale, 1736 gauges would be needed to
ensure a good coverage of the area located south of
15°N, as compared with the 465 available. Thus, it is not
surprising that the optimality criterion is satisfied for
only 3.2% of the 135 cells in this area.

In a second step, four global rainfall products
(GPCC, CMAP, GPCP, GPI) were compared, using
the rain fields produced by the entire regional rain
gauge network (CILSS) as a reference. All of these
products (CMAP and GPCP blend satellite and ground
information, GPCC is ground-based, and GPI is satel-
lite-based only) highly underestimate the frequency of
small rainfall linked to the high spatial intermittency,
which is better documented by direct point measure-
ments. Only 17% of the CMAP values, 13% of the
GPCC values and GPCP values, and 6% of the GPI
values are under the 25% CILSS quantile. Global prod-
ucts also slightly underestimate the frequency of the
high values.

Two alternate regional ground-based products were
also considered: the CRA monitoring network (about
250 gauges providing data in real time on a 10-day ba-
sis) and the synoptic network (about 80 gauges, avail-
able daily). Comparison of these two regional ground
products with global products has been carried out for
the CILSS area with latitudes less than 15°N. At the
coarser resolution (1 month, 2.5° � 2.5°), the synoptic
network performs very well, with its rmse (14.4%) with
respect to the CILSS reference being smaller than the
rmse of the four global products. CMAP, which per-
forms slightly better than the others global products,
has 15.9% rmse. This result is somewhat surprising be-
cause, in principle, the mixed global products incorpo-
rating ground information make use of the synoptic

information available on the GTS and should therefore
perform at least as well as the synoptic-only product.
An explanation may reside in the fact that mixed prod-
ucts do not use all of the synoptic stations because not
all of them transmit their data on the GTS.

The last part of the paper was devoted to assessing
how using a reference value that is not the true value
might influence the computation of evaluation errors.
This question leads us to take into account two quan-
tities that are usually neglected in the computation: the
error of the reference and the covariance between the
product-to-truth errors and the reference-to-truth er-
rors. Using a denser instrumented zone, an empirical
evaluation of these two quantities was performed, lead-
ing to an estimate that the “true” evaluation errors of
both the regional and global products might be signifi-
cantly lower than when these two terms are neglected.
For instance, the reevaluated value of rmse for CMAP
is around 11%, as compared with the above-mentioned
value of 15.9% when the simplified computation is
used. This difference is due both to the reference error
and to the nonzero covariance existing between the
product-to-truth errors and the reference-to-truth er-
rors. Note also that this reevaluation of the rmse does
not change the ranking of methods established from the
simplified computation. The ground products remain,
in this region, superior to the blended products ana-
lyzed here.

It is clear that ample room remains for improving the
quality of satellite rainfall estimates over the Sahel. The
availability of new infrared (e.g., Meteosat Second
Generation) and microwave (e.g., TRMM and Global
Precipitation Measurement) sensors will undoubtedly
lead to more accurate satellite rainfall products. This
study shows, however, that a careful and optimal use of
ground information is needed to evaluate and inter-
compare any rainfall products, especially in regions of
high rainfall variability.
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