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[1] A salient feature of the rheology of isotropic polycrystalline ices is the decrease of the
strain rate by more than 2 orders of magnitude during transient creep tests to reach a
secondary creep regime at a strain which is systematically of �1%. We use a recent (so-
called ‘‘affine’’) version of the self-consistent mean-field theory to model the
elastoviscoplastic behavior of ice. The model aims at bridging scales between the rheology
of single grain and the one of polycrystals by evaluating the intergranular interactions. It
takes into account the long-term memory effects, which manifests itself by the fact that
local stress and strain rate in grains depend on the whole mechanical history of the
polycrystal. It is shown that the strong hardening amplitude during the transient creep is
entirely explained by the stress redistribution within the specimen, from an almost uniform
stress distribution upon instantaneous loading (purely elastic response) to strong
interphase and intraphase heterogeneities in the stationary regime (purely viscoplastic
response). The experimental hardening kinetic is much too slow to be explained by the
same process; it is attributed to the hardening of hard glide slip systems (prismatic slip) in
the transient regime. Moreover, the model very well reproduces the permanent creep rate
of several highly anisotropic specimens of the Greenland Ice Core Project ice core
(pronounced crystallographic textures), when accounting for a single-grain rheology that
well matches the experimental one. Our results are consistent with recent findings
concerning dislocation dynamics in ice.

Citation: Castelnau, O., P. Duval, M. Montagnat, and R. Brenner (2008), Elastoviscoplastic micromechanical modeling of the

transient creep of ice, J. Geophys. Res., 113, B11203, doi:10.1029/2008JB005751.

1. Introduction

[2] There are significant issues in Geophysics related to
the elastoviscoplastic behavior of polycrystalline materials
such as ice and minerals. One can evoke for example the
postseismic deformations in fault regions due to the visco-
elastic behavior of the lower crust and/or the upper mantle
[Kenner and Segall, 2000; Barbot et al., 2008], the uplift of
continents associated to postglacial rebound [Yuen et al.,
1986], the size-dependent relaxation of impact basin on the
Moon and on Mars [Mohit, 2008], the attenuation of seismic
waves associated to viscous dissipation along the travel path
of the wave [Karato and Spetzler, 1990], and more gener-
ally all situations in which the mechanical response of the
material involves both elasticity and viscoplasticity. For ice,
transient effects associated to the elastoviscoplastic behavior
should be encountered when ice flow changes direction
rapidly, such as for glaciers flowing above irregular bed

rocks or for sea ice coming up against an offshore rig.
Besides geophysical issues, the transient creep response of
ice is highly valuable for the understanding of the elemen-
tary deformation mechanisms, such as glide and climb of
dislocations, as it will be shown here.
[3] During the last two decades, significant efforts have

been made for the development of physically based micro-
mechanical models, aiming at estimating the overall behav-
ior of polycrystalline materials from the knowledge of their
microstructure (such as the lattice preferred orientation,
LPO) and the elementary deformation mechanisms at the
grain scale. However, these models have been applied in
Geophysics to predict independently the overall purely
elastic or the overall purely viscoplastic behaviors. In the
purely elastic domain, applications include for example
predictions of the seismic wave anisotropy as function of
the strength of the LPO, with implications for the upper
mantle structure [Mainprice, 1997; Blackman, 2007]. As for
the purely viscoplastic regimes, applications include the
predictions of LPO development and associated viscoplastic
anisotropy in minerals [Dawson and Wenk, 2000] and ice
[Castelnau et al., 1996] when the material is subjected to
large plastic strain, with implications for the large-scale
flow in the mantle or in ice sheets [Mangeney et al., 1996;
Mangeney and Califano, 1998]. But, it is emphasized that
the elastoviscoplastic case (i.e., when elastic and visco-
plastic strain rates are present simultaneously in the mate-
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rial) has received much less attention owing to some
specific difficulties, as we will detail here.
[4] Transient creep of polycrystalline ice has been the

object of extensive experimental studies. For deformations
at constant stress and temperature, it can be reasonably well
described by the phenomenological relation [Andrade,
1910]

e ¼ e0 þ bt1=3 þ kt; ð1Þ

where e0 is the instantaneous elastic strain, bt1/3 gives the
time development of the transient (also called ‘‘primary’’)
creep regime, and k represents the steady state (viscoplastic)
strain rate associated to the secondary (or ‘‘permanent’’, or
‘‘stationary’’) regime. This behavior has been observed in
many other materials including noncrystalline ones [Cottrell,
1996; Dysthe et al., 2002]. Andrade creep has not been yet
adequately explained, despite its general nature. It is
associated with the collective dislocation motion in a
long-range internal stress field and seems to be related to
the existence of the critical point behavior [Cottrell, 1996,
1997]. In polycrystalline ice, strain rate decreases by more
than 2 orders of magnitude during the transient regime
[Jacka, 1984], and, at relatively low temperature, the
secondary creep regime corresponds to a true steady state
as soon as dynamic discontinuous (also called ‘‘migration’’)
recrystallization is prevented [Jacka and Jun, 2000]. A
striking feature of the deformation of ice is that a significant
part of this transient creep is recoverable, i.e., an elongation
of initially compressed specimens is observed when the
macroscopic stress is suppressed (Figure 1). This reverse
strain gives evidence for a kinematic hardening, directly
caused by the development of long-range internal stress
field in the specimen [Ashby and Duval, 1985].
[5] In ice as in most polycrystalline materials, individual

grains exhibit anisotropic mechanical behaviors. Each grain
thus reacts differently to the imposed stress, depending on
its lattice orientation, but since the cohesion of the poly-
crystalline material has to be maintained, strong mechanical
interactions between grains must build up, leading to highly
heterogeneous stress and strain rate distributions inside
grains and between different grains. This heterogeneity
has a strong influence on the overall behavior of the
material [Castelnau et al., 2006], since elementary defor-
mation mechanisms such as dislocation glide are activated
with respect to the local stress level. In ice, individual
crystals exhibit a relatively low elastic anisotropy, but a
very large viscoplastic anisotropy owing to the presence of
only two independent easy slip systems (basal plane) for the
dislocations. Therefore, the stress distribution is expected to
be significantly different for purely elastic and purely
viscoplastic regimes, with a much higher stress heterogene-
ity for the latter. During transient creep experiments, a
strong evolution of the stress field must thus occur since
the material evolves from a purely elastic response at t = 0
to a purely viscoplastic one as t ! 1, as in equation (1).
This redistribution of stress may be at the origin of the very
large decrease of strain rate during the transient creep
[Duval et al., 1983; Ashby and Duval, 1985].
[6] The objective of this work is to obtain an accurate and

physically based description of the creep behavior of

polycrystalline ice. Emphasis is placed on the evolution of
the intergranular interactions in the transient regime, and
subsequent stress and strain rate heterogeneities inside and
between grains. For doing this, we apply a micromechanical
model based on a mean-field homogenization approach, that
accounts for the elastoviscoplastic behavior of individual
grains (including the observed slip systems for the disloca-
tions) and for the coupling between elasticity and visco-
plasticity that gives rises to the so-called ‘‘long-term
memory effect’’ as explained below. Therefore, after a
description of the elastic and viscoplastic behavior of ice
single crystals and polycrystals (section 2), the constitutive
relation for single crystals is specified (section 3). The very
general features of the micromechanical model are intro-
duced in section 4, with some more details given in the
appendix. Results concerning the effective behavior during
transient creep are given in section 5, and later discussed
with emphasis on field statistics at the level of grains.
Prediction for overall anisotropy in the permanent creep
regime will also be discussed.

2. Experimental Deformation Behavior of Ice

2.1. Elastic Behavior of Ice Crystals

[7] Ice 1h belongs to the space group P63/mmc. Owing to
its transverse isotropy, the elastic behavior of ice single
crystals is described by a set of five elastic moduli. Values
of these moduli have been determined on several artificial
and natural single crystals by Gammon et al. [1983]. The
elastic anisotropy of single crystals is small, the Young’s
modulus E varying by about 30% depending on the direc-
tion of loading with respect to the c axis. The highest value
is along the c axis with E = 11.8 GPa at �16�C. Variation
with temperature is unimportant for conditions prevailing in
ice sheets and glaciers, with elastic constants varying
typically by about 1.5% for a temperature variation of 5�C.

2.2. Viscoplastic Behavior of Ice Crystals

[8] The main feature of the plasticity of the ice crystal is
its anisotropy. For shear stresses of the order of 0.1–1 MPa,
ice deforms easily by shear on the basal plane, on the
systems {0001}h1120i, which provide two independent
deformation systems. The creep curves of single crystals
oriented for basal slip show an accelerating creep up to a
strain higher than 10% [Griggs and Coles, 1954], which is
explained by the multiplication of dislocations during tran-
sient creep [Higashi et al., 1964]. Although there is no
evidence that a real steady state was reached in laboratory
creep tests, a stress sensitivity (or stress exponent) n � 2 is
generally adopted, with an activation energy close to 60 kJmol�1

[Duval et al., 1983].
[9] When ice crystals are loaded such that there is no

resolved shear stress on the basal plane, creep rate are so
small that it is doubtful that they have ever been measured.
Any slight misorientation of the c axis with respect to the
direction of the applied stress results in the activation of
basal slip. The resistance to shear on nonbasal planes can be
60 times higher than resistance on the basal plane [Duval et
al., 1983].
[10] Multiplication of dislocations during transient creep

was explained by the climb of 60o basal dislocations on the
{1�100} prismatic planes [Ahmad and Whitworth, 1988].
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The cross slip of basal screw dislocations was recently
invoked to explain dislocation multiplication and the scale-
invariant character of the dislocation arrangement observed
in single crystals deformed under torsion [Montagnat et al.,
2006]. The dissociation of screw dislocations on the basal
plane [Hondoh et al., 1990] would not prevent this cross slip
since the constriction of partial dislocations close to jogs
should preexist [Friedel, 1964].
[11] Then, the glide of nonbasal edge dislocations on

prismatic planes, which would be produced through the
climb of basal dislocations as well as the cross slip of basal
dislocations on prismatic and pyramidal planes, give some
consistency to the introduction of these deformation slip
systems in the constitutive relation that will be used to
simulate the behavior of the polycrystal (section 3). Obvi-
ously, considering the large viscoplastic anisotropy of the
ice crystal, the contribution of the nonbasal slip systems to
the deformation of the ice crystal must be very low.

2.3. Viscoplastic Behavior of Polycrystals

[12] The creep behavior of isotropic (i.e., with random
LPO) polycrystalline ice is well documented [e.g., see
Jacka, 1984; Alley, 1992]. During the primary or transient
creep, strain rate decreases with time by a factor that can be
higher than 100 to reach a minimum value corresponding to
the secondary creep for a strain of about 1% [Jacka, 1984].
According to Ashby and Duval [1985], the stress state
within the polycrystal may be close to uniform on first
loading. But, as grain boundaries act as obstacles to basal
slip, creep relaxes the resolved stress on the basal plane on
each grain and the load is transferred to the harder nonbasal
slip systems. Transient creep is therefore associated with the
development of a long-range internal stress field, which is at
the origin of a significant time-dependent recoverable strain
when the load is removed [Duval, 1978].
[13] For deviatoric stresses higher than 0.2 MPa, the

stress exponent of the secondary creep, corresponding to

the minimum creep rate, is close to 3 [Duval et al., 1983].
Deformation is essentially produced by basal slip, which
contributes to the total deformation by more than 80%
[Castelnau et al., 1997; Lebensohn et al., 2007]. It is worth
noting that polycrystalline ice cannot be deformed to large
strains by basal slip only. Although five independent slip
systems may be required to accommodate any arbitrary
viscoplastic deformation, it has been shown that four
independent systems are in fact sufficient for polycrystalline
ice [Hutchinson, 1977; Nebozhyn et al., 2000; Lebensohn et
al., 2007]. Basal slip could be accommodated by prismatic
slip, the climb of edge segments of basal dislocations, and/
or pyramidal slip, as evoked in section 2.2. It is worth
noting that intracrystalline strain heterogeneities, associated
with the long-range internal stress field, should contribute to
reduce the activity of nonbasal slip systems.
[14] The increase of the strain rate in the tertiary creep

regime initiated for a strain higher than 1% is explained by
the occurrence of dynamic migration recrystallization
[Steinemann, 1958]. This recrystallization regime is gener-
ally observed in glaciers at high temperature as well as in
most laboratory experiments [Gow and Williamson, 1976;
Duval and Castelnau, 1995; Jacka and Jun, 2000] and is
associated with the development of recrystallization LPOs.
The stress exponent for the tertiary creep regime is higher
than 3 [Steinemann, 1958]. A value of �4 was obtained by
Kirby et al. [1987].
[15] For conditions prevailing in polar ice sheets with

deviatoric stresses lower than 0.1 MPa, laboratory and field
observations support a stress sensitivity n lower than 2
[Mellor and Testa, 1969; Dahl-Jensen and Gundestrup,
1987; Duval and Castelnau, 1995]. Furthermore, a new-
tonian viscosity was also deduced from densification data
on glacier bubbly ice [Lipenkov et al., 1997]. According to
Goldsby and Kohlstedt [2001], grain boundary sliding
would be the dominant deformation mode in this stress
regime and could accommodate basal slip. However, from
observations of the evolution of the grain microstructure
and LPOs along deep ice cores, the relatively low value of n
at low deviatoric stresses would be rather the result of the
occurrence of dynamic rotation recrystallization as an ac-
commodation process of basal slip [Montagnat and Duval,
2000]. With this recrystallization mechanism, grain bound-
aries migrate in the same low-velocity regime as the one
associated with normal grain growth [Alley, 1992] and LPOs
develop by the lattice rotation due to intracrystalline slip
[Castelnau et al., 1996].

3. Constitutive Relation for Ice Crystals

[16] Our aim is to introduce the above mentioned ele-
mentary deformation mechanisms in the local constitutive
relation of the model, in view of reaching a physically based
model for the polycrystal behavior. Thus, to describe the
transient effects in polycrystals, both the elastic and visco-
plastic responses of ice crystals need to be accounted for.
The total strain rate tensor _e(x, t) at the spatial position x
(i.e., inside a grain) and time t expresses

_e x; tð Þ ¼ _eel x; tð Þ þ _evp x; tð Þ: ð2Þ

Figure 1. Elastoviscoplastic response of an isotropic
specimen of ice (grain size 5 mm) deformed at �1.5�C. A
uniaxial constant stress (0.36 MPa) is applied for 0� t < 8 h.
When suppressing the load at t = 8 h, a significant recovery
creep is observed. For comparison, the purely elastic
deformation for this stress level is �3.8 
 10�5. Data are
from Duval [1976].
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The elastic part is related to the stress rate

_eel x; tð Þ ¼ S rð Þ : _s x; tð Þ ð3Þ

with S(r) the elastic compliance tensor, and the colon
denoting the double contracted product (for example, the
tensor _e = S: _s has components _eij =

P
kl Sijkl _skl). The

subscript (r) refers to the lattice orientation of the grain
present at the spatial position x. Concerning the viscoplastic
response, we consider that deformation occurs only by
dislocation glide on a given number of slip systems. Note
that climb and cross slip of basal dislocations are not
introduced here, since this would require theoretical and
numerical developments far beyond the scope of this paper.
The resolved shear stress t(k) acting on a slip system (k) is
given by a projection of the local deviatoric stress tensor s0

t kð Þ x; tð Þ ¼ m rð Þ
kð Þ : s

0 x; tð Þ ð4Þ

with m(k)
(r) the Schmid tensor expressing the orientation of the

slip system with respect to a laboratory reference frame. The
slip rate _g on system (k) is further expressed by a standard
power law

_g kð Þ x; tð Þ ¼ _g0
t kð Þ x; tð Þ
t0 rð Þ

kð Þ tð Þ

������
������
n kð Þ�1

t kð Þ x; tð Þ
t0 rð Þ

kð Þ tð Þ
ð5Þ

with t(k)
0(r) a reference shear stress that expresses the

resistance of system (k) in the lattice orientation (r) at time
t, n(k) the stress sensitivity, and _g0 a reference slip rate taken
here equal to 10�6 s�1. Combining all available slip
systems, the viscoplastic strain rate thus reads

_evp x; tð Þ ¼
XK
k¼1

m rð Þ
kð Þ _g kð Þ x; tð Þ ð6Þ

with K the total number of slip systems. As deformation
proceeds, the reference shear stresses evolve owing to the
evolution of the dislocation density (typically, t(k)

0(r) is
considered to be proportional to the square root of the
dislocation density [e.g., see Kocks, 1976], although we will
not go that deep in the physical interpretation here). We
consider a simple and standard form for the hardening/

softening law [Bronkhorst et al., 1992; Castelnau et al.,
2001]

_t0 rð Þ
kð Þ ¼

X
l

H kð Þ
tsta

lð Þ � t0 rð Þ
lð Þ

tsta
lð Þ � tinit

lð Þ
jh _g lð Þi

rð Þj ð7Þ

with h.i(r) denoting the average over the volume of grains
with lattice orientation (r). The coefficient H(k) expresses the
bulk hardening rate. Starting with an initial value t(k)

init before
loading (i.e., t = 0), the reference shear stress of a system (k)
evolves with strain to reach the final value t(k)

sta in the
stationary regime (permanent creep, t ! 1). Equation (7)
allows the reference stress of each slip system and each
grain orientation to evolve independently, depending on the
local pattern of plastic deformation.
[17] The slip systems considered here are indicated in

Table 1. Besides the easy basal glide, prismatic slip is
considered according to experimental observations of dis-
location structures. Although these four independent slip
systems are theoretically sufficient to allow general defor-
mation, we introduce a third slip mode (pyramidal slip) for
the sake of allowing axial deformation along the c axes. The
relevance of this last system will be discussed later in this
paper.
[18] Part of the local constitutive relation can be identified

by considering experimental data on single crystals. The
elastic constants used in this work are those given by
Gammon et al. [1983]. Concerning the viscoplastic regime,
only experimental data promoting the activation of basal
slip are really reliable. The stress sensitivity n(Ba) and the
stationary reference stress t(Ba)

sta for basal slip have been
determined at �10�C based on the experimental data in
permanent creep regime compiled by Duval et al. [1983]
and reproduced in Figure 10. The two remaining coeffi-
cients, t(Ba)

init and H, have been identified on the transient
creep response of ice single crystal given by Weertman
[1973]. The obtained values are reported in Table 1. We
obtained a negative value for H(Ba) (�25 MPa) owing to the
softening of basal creep during the transient regime. The
obtained creep behavior is compared to experimental data in
Figure 2, for a wide range of applied strain rates (3 orders of
magnitude). It is observed that in spite of its simple form,
the evolution law (7) matches the data reasonably well, with
the stress peak characteristic of the softening of basal slip.

4. Micromechanical Modeling

[19] To estimate the intergranular interactions during
transient creep, and their impact on the effective behavior
of polycrystalline ice, a micromechanical model is required.
The mechanical problem to be solved is that of a continuous
material (polycrystalline ice), with different elastovisco-
plastic behavior in the different grains (since they exhibit
different lattice orientation), and submitted to a constant and
uniform macroscopic stress. Furthermore, the physical de-
formation mechanisms at the grains scale (dislocation
glide), introduced above, and the arrangement of grains in
the specimen (in particular, the LPO), have to be taken into
account. A convenient way to tackle the problem is to make
use of mean-field homogenization methods, which provide
a solution of the problem based on a statistical description

Table 1. Single Crystal Rheology Considered in the Modela

Slip System n tinit tsta H

Ba 0001f gh11�20i 2.00 0.125 0.035 �25

Pr 1�100f gh11�20i 2.85 0.21 1.30 120

Pyr 11�22f gh11�2�3i 4.00 3.0 3.10 120

aSlip plane {hkil} and orientation of the Burgers vector huvtwi of the
basal (Ba), prismatic (Pr), and pyramidal (Pyr) slip systems. The stress
sensitivity n, the initial (init) and stationary (sta) values of the reference
shear stresses t(0), and the hardening coefficient H have been obtained by
identification on experimental data; see text for details. Values of t and H
are given in MPa, for a temperature of �10�C.
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of the material microstructure. In this context, the self-
consistent (SC) scheme, initially proposed to deal with the
elasticity of polycrystals [Hershey, 1954; Kröner, 1958,
1978; Willis, 1981], has been further extended (in different
ways) to deal with purely viscoplastic responses. For
example, the ‘‘tangent’’ extension of the SC scheme
[Molinari et al., 1987; Lebensohn and Tomé, 1993] has been
applied to describe the viscoplastic anisotropy of polar ices
with pronounced LPO by Castelnau et al. [1996, 1997,
1998].
[20] The treatment with the same method of the elasto-

viscoplasticity of polycrystals is somehow more complicated,
see for instance [Laws and McLaughlin, 1978]. In short, it
can be shown that even in the simple case of a polycrystal
comprising grains whose behavior exhibits a single relaxa-
tion time (so-called ‘‘short term memory’’), the effective
behavior exhibits a continuous spectrum of relaxation time
(‘‘long memory effect’’) [Sanchez-Hubert and Sanchez-
Palencia, 1978; Suquet, 1987]. A consequence of this
feature is that the overall strain rate of the polycrystal
(and that of the grains inside) at a given time t depends
on the whole strain history of the specimen between times 0
and t. To obtain the exact effective mechanical response at
time t, it is thus required to keep track of an infinite number
of information (or internal variables) corresponding to the
overall strains at all previous times, and therefore the
problem is not simple. Within mean-field approaches, some
approximations (with hopefully limited effects on the accu-
racy of the solution) are thus necessary. Basically, two
approaches have been proposed to deal with this problem.
The recent method proposed by Lahellec and Suquet [2006,
2007a], based on an incremental variational procedure, is
worth mentioning, but it has been applied up to now only to
simple two-phases composite materials. The approach used
in the sequel, which provides a good compromise between
accuracy of the solution and simplicity of the formalism, is
the so-called ‘‘affine’’ Self-consistent method due toMasson
and Zaoui [1999]. It is based on the correspondence principle
[Mandel, 1966] which indicates that the elastoviscoplastic

problem can be reduced to a simpler homogenization
problem if solved in the Laplace space. This approach has
already given promising results as for the creep behavior of
zirconium alloys [Letouzé et al., 2002; Brenner et al.,
2002a], since it retains the long-term memory effect asso-
ciated with the elastoviscoplastic coupling. We recall in the
Appendix, for completeness of this paper, the main ingre-
dients of this model.

5. Results and Discussion

[21] The affine SC micromechanical model is now ap-
plied to ice polycrystals. Results presented below are
obtained for a temperature of �10�C. There are few
parameters (t(.)

init, t(.)
sta, n(.), H(.)) in the model that needs to

be determined. All of these are associated with the elemen-
tary deformation mechanisms at the local (grain) scale.
Since we expect the model to provide a physically based
mechanical description of polycrystalline ice, i.e., a correct
bridging between the effective behavior of the polycrystal
and the deformation mechanisms at the grain scale, the
model should be able not only to reproduce transient
regimes, but also to provide accurate results for permanent
creep rates. In particular, it should estimate correctly the
anisotropy of polar ices with pronounced LPO.
[22] For this first application, we choose to proceed in

two steps. First, we identify the four parameters involved in
the secondary creep (purely viscoplastic) regime. To obtain
reliable values, we need to use data for specimens exhibit-
ing different microstructures and deformed under different
conditions, such as those available for polar ices with
various LPO. Then, transient regimes of isotropic speci-
mens will be investigated, and results will be discussed in
terms of active deformation mechanisms and stress/strain
heterogeneities inside and between grain orientations.

5.1. Rheology and Anisotropy for Secondary Creep

[23] The stationary reference shear stresses t(Pr)
sta and

t(Pyr)
sta and stress sensitivities n(Pr) and n(Pyr) of the prismatic

and pyramidal systems have been identified to reproduce
the purely viscoplastic response of various isotropic and
anisotropic specimens. For isotropic ice, we considered the
data compiled by Duval et al. [1983] which lead, for
stresses between 0.2 and 2 MPa, to the generally adopted
value n = 3 for the macroscopic stress sensitivity (Figure 3).
As for the anisotropic specimens, we used the data of
Castelnau et al. [1998] obtained on specimens from the
Greenland Ice Core Project (GRIP) ice core (central Green-
land). With increasing depth, randomly oriented c axis at the
surface of the ice sheet tend to concentrate toward the in situ
vertical direction up to a depth of �2600 m. Beneath this
depth, less pronounced LPOs are observed because of the
initiation of migration recrystallization [Thorsteinsson et al.,
1997]. Castelnau et al. [1998] obtained the experimental
stationary creep behavior of GRIP ices for two loading
conditions, reported in Figure 3. The first one corresponds
to an in situ vertical compression, showing an increasing
flow stress (decreasing strain rate) with increasing depth,
since the activation of secondary slip systems is favored for
pronounced LPO. The second loading condition corre-
sponds to in situ horizontal shear, promoting basal slip

Figure 2. Behavior of ice single crystal given by
equations (2)–(7) for a deformation by basal glide and
compared to the experimental data given by Weertman
[1973]. The c axis is oriented at 45� from the uniaxial
compression direction. Applied axial strain rates are
indicated. The temperature is �10�C.
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and resulting in a softening of the ice with increasing LPO
strength.
[24] Values for the reference shear stresses and stress

sensitivities for the secondary slip systems, identified using
this data set, are given in Table 1. Pyramidal slip is found to
be much more difficult than prismatic slip, a result which
seems in qualitative agreement with the known dislocation
structure in ice. In Figure 3, the effective behavior deduced
by the model is compared to the experimental data. For
isotropic specimens, the overall flow stress is perfectly
reproduced. It is also remarkable that a constant macro-
scopic stress sensitivity n = 3 is obtained for a relatively
wide range of stress, even with significantly different values
at the slip system level (Table 1). The agreement is also
excellent with the anisotropic specimens of the GRIP ice
core, meaning that the relation between LPO and effective
rheology is very well captured. The model nicely reprodu-
ces the increasing anisotropy from the surface down to
2600 m depth, and the decreasing one below. The differ-
ence by more than 2 orders of magnitude between the
vertical and shear strain rates at �2600 m is also perfectly
reproduced, although this was a challenging feature for the
model. On the basis of the large variety of LPO and loading
conditions used for this identification, it is expected that the
obtained parameters are physically relevant for the visco-
plastic response at the scale of grains.

5.2. Transient Creep Behavior of Isotropic Ice

[25] The affine SC model is now applied to the transient
creep behavior of isotropic specimens, involving thus both
elasticity and viscoplasticity at the grain scale. We use for
this the data set compiled by Ashby and Duval [1985]. The
original data are expressed in adimensional axes, the axial
strain rate being normalized by the minimum strain rate
obtained for the stationary creep regime, and the axial strain

being normalized by the applied stress divided by the
Young’s modulus E (E ’ 9330 MPa for polycrystalline
ice). For the sake of clarity, the same data are converted at a
temperature of �10�C and an applied stress of 1 MPa (see
Figure 4). Note in passing that the scaling proposed by
Ashby and Duval [1985] may not be completely universal
since it is not strictly followed by the SC scheme.
[26] First of all, transient creep behavior has been calcu-

lated with the affine SC model assuming that there is no

Figure 3. Stationary creep behavior at �10�C calculated by the affine SC model, and compared to
experimental data. (left) Isotropic specimens. Experimental data correspond to the mean behavior
indicated by Duval et al. [1983]. (right) Anisotropic specimens from the GRIP ice core, exhibiting a LPO
with an increasing concentration of c axes toward the vertical direction from the surface of the ice sheet
down to �2600 m depth, and a decrease below due to dynamic recrystallization. Experimental data from
Castelnau et al. [1998] are expressed for a stress of 1 MPa using a stress sensitivity n = 3. Points on the
left-hand side reflect the (hard) behavior under vertical compression, whereas data on the right
correspond to (soft) horizontal shear.

Figure 4. Transient creep response of isotropic ice under a
uniaxial compressive stress of 1 MPa. Model results are
shown with and without taking into account the softening of
basal slip during deformation. Results are compared to the
data of Ashby and Duval [1985], expressed for the same
loading conditions.
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evolution of the reference shear stresses during the defor-
mation, for all systems. That is, only the stationary values
identified above have been considered. Results are shown in
Figure 4. It can be observed that the model nicely repro-
duces the very strong overall hardening of the specimen,
with a strain rate decreasing by more than two orders of
magnitude during the transient regime. However, stationary
creep is obtained for a strain as small as �10�3, instead of
10�2 for the experimental data. Next, a second trial has been
performed, with still no evolution for the reference shear
stresses of the secondary systems, but accounting for the
softening of basal slip in the transient regime, as described
in section 3. Slight differences are obtained compared to the
previous case, but the predicted overall hardening is even
more rapid, resulting in a permanent creep regime appearing
much too early.
[27] An evolution of the reference shear stresses for

prismatic and pyramidal slip has thus to be accounted for
to reproduce the experiments. Thus, t(Pr)

init , t(Pyr)
init , and H have

been identified on the same data set, keeping t(Ba) evolving
as above. The corresponding values are reported in Table 1,
and we obtained this time positive values for H(Pr) and H(Pyr)

(+120 MPa) indicating a hardening process. As shown in
Figure 5, the predicted behavior now perfectly matches with
the data. The strain rate decreases by more than 2 orders of
magnitude during transient creep, and the stationary regime
is obtained at the correct strain of �1%. Even better is the
agreement when experimental data are plotted as strain rate
versus time. Obviously, an increasing resistance to shear of
the secondary systems is thus necessary to reproduce
correctly the hardening kinetic at the polycrystal level.
However, according to Table 1, this applies essentially to
prismatic slip which reference stress varies by a factor �6
during transient creep. As for the pyramidal systems, the
evolution of the reference stress is probably insignificant
(�3%). The same model results are shown in Figure 6 as
total strain versus time. Interestingly, it can be observed that
when plotted in logarithmic scale, an almost linear curve is
obtained in the transient regime. The slope of this section is

�0.38, i.e., very close to that of Andrade’s law (1) in which
an exponent 1/3 is generally considered.

5.3. Field Statistics

[28] Concerning transient creep, it has been shown in
section 5.2 that the correct hardening amplitude is easily
reproduced by the model as far as realistic elastic and
viscoplastic rheologies are considered at the grain level.
However, the hardening kinetic can only be explained if the
strength of the secondary slip systems evolves with strain.
The investigation of the distribution of stress and strain rate
in the different grain orientations is of interest for a deeper
understanding of this hardening process. Recall that the SC
approach does not allow to consider stress and strain
differences between individual grains; since all grains
exhibiting the same lattice orientation are regrouped within

Figure 5. Transient creep response of isotropic ice under a uniaxial compressive stress of 1 MPa. Model
results are compared to the data of Ashby and Duval [1985], expressed for the same loading conditions.
Strain hardening of prismatic and pyramidal slip systems is taken into account.

Figure 6. Same as Figure 5 but plotted in logarithmic
scale as strain versus time. In the transient regime, the
behavior is almost linear with a slope close to the one
predicted by Andrade’s law.
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a single mechanical phase, only the differences between
those different phases (i.e., different orientations) can be
investigated.
[29] In Figure 7, the distribution of the normalized

average stress �s33
(r)/�s33 and strain �e33

(r)/�e33 are plotted with
respect to the angle f between the c axis of grains and the
direction of macroscopic compression e3. Here, �s33

(r) denotes
the average axial stress in grains with orientation (r), and
�s33 the average stress for the whole polycrystal (with a
similar notation for the strain). We emphasize that �s33

(r) and
�e33
(r) are phase average values, i.e., they can be thought as an
integration over an infinite number of grains with identical
lattice orientation (r) but with different shape and surround-
ing. Results are shown at three stages: the instantaneous
response upon loading, an intermediate stage in the transient
regime, and the permanent creep regime. At t = 0 s, only
elastic deformation has occurred in grains, and the overall
axial deformation (1.1 
 10�4) only depends on the
Young’s modulus. It can be observed that both �s33

(r)/�s33
and �e33

(r)/�e33 weakly fluctuate with angle f, by not more than

�15%, indicating almost homogeneous stress and strain
fields in the polycrystal. This result is attributed to the low
elastic anisotropy of ice grains. On the other hand, results
given for the stationary regime (�e33 = 2. 
 10�2) indicate
much larger fluctuations of stress and strain. Grains with c
axis at �45� from the macroscopic compression axis are
highly deformed but support a low stress level, whereas
grains at 0� or 90� deform much less and at a high stress
level. Note also that for the permanent creep, the strain rate
distribution is (almost) identical to the strain distribution.
Here, owing to the large viscoplastic anisotropy of grains,
strong intergranular interactions build up during permanent
creep. The deformation capability of grains is essentially
driven by the possibility of soft slip systems to be activated.
Grains at f ’ 0� are found to be particularly hard to deform,
with strain (rate) of about 1 order of magnitude smaller than
the macroscopic counterpart. In those lattice orientations,

one may expect pyramidal slip to be significantly activated,
but, as shown by Castelnau et al. [2006, 2008b], local stress
concentrations in strongly anisotropic polycrystals make the
deformation pattern extremely dependent on the local grain
configuration; soft slip systems (here basal slip) can be
locally significantly activated even in grains exhibiting a
vanishing Schmid factor (at f = 0�). This tendency is also
confirmed by full-field computations [Lebensohn et al.,
2007, 2008]. Grains at f ’ 90� are in average slightly
softer than those at f ’ 0� due to smaller resistance
prismatic slip as compared to pyramidal slip. Finally, results
are further shown at t = 15 s, i.e., for �e33 = 3. 
 10�4 which
is about three times the purely elastic strain. Now, although
the deformation is much smaller than that for stationary
creep, the overall stress and strain distributions in the
polycrystal obey very similar features as in the purely
viscoplastic regime, i.e., a very large heterogeneity through-
out the material with soft orientations at �45� and hard
ones at 0� and 90�. The elastic behavior of grains has in fact
a negligible influence still at such small strain. Indeed, as
shown in Figure 4, creep would be almost in the stationary
regime at �e33 = 3. 
 10�4 if the reference stress of the
secondary system would not increase with strain. This
result can be also established directly since, in the definition
(A3) of the elastoviscoplastic compliance Q(r), the visco-
plastic part M(r) t (M(r) is of the order of 10�4 MPa�1 s�1)
quickly dominates over the elastic part S(r) (�10�4 MPa�1),
say for t � 10 s. The difference between the two distribu-
tions at �e33 = 3. 
 10�4 and �e33 = 2. 
 10�2 is therefore
essentially attributed to the strain hardening of the reference
shear stresses of prismatic slip. A similar feature has been
observed for the creep of zirconium alloys [Brenner et al.,
2002a] which are made, as ice, from hexagonal grains with
high viscoplastic anisotropy.
[30] The distribution of deformation in the different

grain orientations can be further clarified by the inves-
tigation of the intraphase strain heterogeneities. Figure 8

Figure 7. Distribution of the (normalized) phase average axial stress �s33
(r)/�s33 and strain �e33

(r)/�e33 with
respect to the angle f between the macroscopic compression direction and the c axis, for times 0 s, 15 s,
and 1.5 
 105 s, corresponding to macroscopic strains of 1.1 
 10�4 (elastic response), 3 
 10�4, and
2. 
 10�2 (stationary creep) respectively.
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shows the distribution of the standard deviation of e33,
defined as

SD rð Þ e33ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he233 xð Þi rð Þ � he33 xð Þi rð Þ

h i2r
ð8Þ

and normalized by the phase average deformation �e33
(r) =

he33i(r). This quantity reflects the fluctuations of the strain
component e33 within the orientation (r). Since it is an
average over grains with lattice orientation (r), it accounts
for the strain fluctuation inside each of those grains, such as
the strain localization at grain boundaries often observed in
numerical and experimental studies. Recall that within
homogenization scheme, an orientation (r) comprises an
infinite number of grains with different surrounding and
different shape. The standard deviation calculated here thus
takes into account the complete intergranular interaction. It
must be made clear, however, that long-range interactions
associated with spatial correlations between dislocation
avalanches are not considered owing to the simplicity of the
adopted local constitutive relation (5). For purely elastic and
purely viscoplastic regime, the standard deviations (8) can
be calculated by an appropriate differentiation of the
corresponding effective potential [Brenner et al., 2004].
[31] Results are thus shown at t = 0 s (instantaneous

loading, elastic response) and at t ! 1 (steady state,
viscoplastic response). According to Figure 8, the normal-
ized strain fluctuation SD(r) (e33)/�e33

(r) in the purely elastic
regime is almost independent on f, and exhibits a low level
of �0.07. Again, this is attributed to the low elastic
anisotropy of grains leading to a weak grain interaction,
and an almost uniform strain (and stress) state throughout
the material. Results in the viscoplastic regime depart
significantly from the elastic one. First of all, the overall
level is very high, about 0.8. This means that at some
specific locations, the local strain e33(x) can be as high as
2–3 times larger than the phase average one �e33

(r), and

sometimes, it may even be of opposite sign, in agreement
with full-field computations on 2-D ice [Lebensohn et al.,
2008]. Moreover, it can be observed that the normalized
standard deviation SD(r) (e33)/�e33

(r) presents a minimum at
f ’ 45�, which corresponds to the soft grain orientation.
Those grains thus not only deform more rapidly, but also
more homogeneously (for a given level of local strain), than
the rest of the polycrystal. However, since the average strain
�e33
(r) is far larger in those lattice orientations, the unnormal-
ized value SD(r)(e33) is maximal at f ’ 45�. Strain gradient,
and thus probably also intragranular lattice misorientation
and strain energy, are thus expected to be larger at f ’ 45�.
Interestingly, these are the only orientations that remain
after migration recrystallization has occurred, probably as-
sociated to the preferential nucleation and also the preferen-
tial growth of grains of that orientation in the presence of
long-range internal stress field. Finally, in the transient
regime, it is expected that strain distribution obeys a distri-
bution close to the one obtained in the permanent creep
regime, even at small overall strain, as discussed above. The
large and rapid decrease of the overall strain rate in the
transient regime is thus associated with the strong build up of
grain interaction and intergranular and intragranular stress
and strain heterogeneities.

5.4. Implications for Slip Systems

[32] The approach followed in this work relies on the
assumption that ice deforms by slip on basal and nonbasal
planes. Prismatic slip is in accordance with the presence of
short edge segments of dislocations on the prismatic plane,
as seen in ice single crystals [Higashi et al., 1985].
Deformation along the c axis requires other slip systems
such as the pyramidal slip. Dislocations observed in ice
single crystals are not glissile on this slip plane [Hondoh,
2000]. Other deformation modes associated with basal slip
can be invoked. As mentioned above, grain boundary
migration and grain boundary sliding could accommodate
basal slip by making compatible the deformation between
grains. But these mechanisms appear to be efficient only at
low stress level corresponding to a stress exponent lower
than 2 for the polycrystal. Another possibility is the role of
deformation inhomogeneities within grains as observed by
X-ray diffraction on single crystal [Montagnat et al., 2003a,
2003b]. The interactions between grains at the origin of the
large geometric transient creep are obviously dependent on
the development of strain heterogeneities within grains. On
the other hand, the bending of basal planes associated with
basal edge dislocations could contribute to the necessary
small deformation along the c axis. Concerning the hard-
ening of prismatic slip systems introduced to reproduce the
transient creep, it could be related to the interaction at short
distance between nonbasal edge dislocations produced by
cross slip or the climb of basal dislocations. Indeed, X-ray
diffraction experiments [Montagnat et al., 2006] together
with finite element modeling [Taupin et al., 2007] have
demonstrated that internal stresses can initiate nonbasal slip
in single crystal well oriented for basal slip. In such
configurations, the nonbasal slip allows a softening of the
basal system, and acts as an efficient mechanism of basal
dislocation multiplication, while the nonbasal system is
hardened by jog interactions with dislocations.

Figure 8. Distribution of the normalized standard devia-
tion SD(r) (e33)/�e33

(r) of the axial strain with respect to the
angle f between the macroscopic compression direction and
the c axis upon loading (t = 0) and for the permanent creep
regime (t!1).
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[33] As discussed above, the physical relevance of pyra-
midal slip that had to be introduced here to reproduce the
correct anisotropy of GRIP specimen may be addressed. We
have plotted in Figure 9 the relative contribution to the
overall strain of the different slip families, during transient
regime. Basal slip is clearly dominant, in agreement with
experimental observations. At low strain, only basal slip is
activated owing to the almost uniform stress distribution in
the different lattice orientations. As deformation, proceeds,
the stress is redistributed to the harder grains, leading to an
increase activation of nonbasal slip systems. However, it is
worth noting that among nonbasal systems, only prismatic
slip contributes significantly to the overall deformation. The
activity of pyramidal slip is extremely small, less than �2%.
This latter mechanism may thus represent the effect of
secondary accommodation processes as described above,
but only shows a very minor contribution to the overall
deformation. But it is emphasized that its introduction is
necessary to obtain the correct anisotropy description for
textured specimen, as shown in Figure 3. Note also that
pyramidal slip is here the only system with a stress
sensitivity n > 3, and therefore it is of high importance to
reproduce the correct overall viscoplastic behavior. Without
this system, the overall stress sensitivity would be signifi-
cantly underestimated. A similar dependence between the
overall stress sensitivity and the rheology of the hard slip
systems has been reported for zirconium alloys [Brenner et
al., 2002a]. Finally, it is worth noting that the activity of
basal and prismatic slip does not evolve at strain larger than
�5 
 10�4, even if the overall strain rate continues
decreasing by more than 1 order of magnitude (see Figure
5). The hardening of the secondary systems thus does not
affect significantly their activity after some moderate strain,
but only contributes to the overall hardening of the
polycrystal.
[34] Finally, to assess the mechanical relevance of the

considered slip system, we compare in Figure 10 the visco-
plastic response of single crystal used here to the experi-

mental data basis on permanent creep compiled by Duval et
al. [1983]. Results are shown for crystals compressed at 45�
from the c axis, promoting thus basal slip, but also for
compression along or perpendicular to the c axis, promoting
respectively pyramidal and prismatic slip. It can be ob-
served that the considered grain rheology is qualitatively
correct, with about 4 orders of magnitude difference be-
tween basal and nonbasal strain rates. However, slip on
nonbasal plane is apparently still not hard enough, since it is
about 1–2 orders of magnitude softer than estimated from
mechanical tests on single crystals. We cannot completely
exclude that at least part of this apparent underestimation of
the nonbasal reference stresses is attributed to the affine
linearization scheme, which is known to overestimate the
effective flow stress [Bornert et al., 2001; Masson et al.,
2000; Castelnau et al., 2008a], and in particular at high
local anisotropy as considered here. But, in any case, the
cross slip of basal dislocations on prismatic planes is
associated with the long-range internal stress field produced
by basal dislocations [Montagnat et al., 2006]. Therefore,
this deformation process is made very difficult when single
crystals are deformed in compression along or perpendicular
to the c axis since basal slip is avoided. As a consequence, it
is expected that the resistance of prismatic and pyramidal
slip deduced from the deformation of single crystals must be
greater than those deduced from the response of polycrystals
as given in Table 1, in good agreement with our results.
[35] It is also worth noting that the single-crystal rheology

identified here is believed to be more reliable than the
earlier estimation used by Castelnau et al. [1996, 1997,
1998], due to some inconsistencies of the earlier ‘‘tangent’’
SC model used in those papers, already pointed out by
Masson et al. [2000], and partially corrected in the present
affine SC model. In particular, the ‘‘tangent’’ method was
limited to a unique stress sensitivity for all slip systems.
With the present affine model, we choose n(Ba) = 2, and we

Figure 9. Evolution during transient creep of the relative
contribution to the overall plastic deformation of the basal,
prismatic, and pyramidal slip systems. Pyramidal activity is
always less than 2%.

Figure 10. Stationary creep behavior of single crystals at
�10�C, given by the present model (lines) and compared to
the data set compiled by Duval et al. [1983] (points).
Results are indicated for compression at 45� from the c axis
(activation of basal slip), as well as for compression
perpendicular (activation of prismatic slip) and parallel
(activation of pyramidal systems) to the c axis.

B11203 CASTELNAU ET AL.: TRANSIENT CREEP OF ICE

10 of 14

B11203



identified larger values for n(Pr) and n(Pyr), in good agreement
with experiment data on single crystals and polycrystals.

6. Concluding Remarks

[36] We have presented the first micromechanical model-
ing of the elastoviscoplastic behavior of polycrystalline ice.
The model used here is based on the mean-field self-
consistent theory, which aims at bridging scales between
the behavior of the ice crystal and the behavior of the
polycrystal. The procedure accounts for the long-term
memory effect, characterized by the fact that the actual
stress and strain (rate) fields in the material depend on the
whole loading history of the specimen. This feature is a
consequence of the dependence of the strain rate on both
stress and stress rate. The treatment of the nonlinear
character of the viscoplastic behavior was handled with
the ‘‘affine’’ procedure, with provides a good compromise
between accuracy and simplicity. Information on intragra-
nular strain heterogeneities could be also deduced from this
model. A simple phenomenological rheological law was
adopted for the viscoplastic behavior at the local (grain)
scale, with easy (dislocation) glide on the basal planes, and
higher resistance on secondary systems, whereas strain
hardening/softening was introduced at the slip system level
depending on the local strain rate configuration. This local
constitutive relation was identified on experimental data on
single and poly crystal data (transient and permanent creep
regimes).
[37] One salient conclusion coming out from the pre-

sented results is the ability of the model, in spite of its
relative simplicity, to reproduce the essential features of ice
rheology. In the steady state regime, when using single-
crystal rheology that lies close to the experimental one, the
model well reproduces the overall stress sensitivity, the
overall flow stress of isotropic specimens, and the anisot-
ropy of polar ices exhibiting a large variety of Lattice
Preferred Orientations. This shows that the mechanical
effects of the intergranular interactions are correctly treated,
and that the model lies on a robust physical basis. The
introduction of prismatic and pyramidal slip systems, which
relevance has been discussed, is required to obtain a good
agreement with experiments. It is remarkable that the
overall stress sensitivity is highly influenced by stress
sensitivity of the pyramidal system, even if this system
does not contribute by more than 2% to the total strain rate.
Concerning the transient creep of isotropic ice polycrystals,
the model accurately predicts the strong overall hardening
with a strain rate decreasing by more than 2 orders of
magnitude. This effect is attributed to the stress redistribu-
tion in the material (kinematic hardening), from an almost
uniform stress state upon loading, due to the small elastic
anisotropy of grains, to a largely heterogeneous distribution
as soon as some plastic deformation has taken place. The
importance of the transient creep in the deformation of the
polycrystal is the consequence of the very strong visco-
plastic anisotropy of the ice crystal. We have shown that
grains with c axis oriented at 45� from the macroscopic
compression axis deform more rapidly, under a lower stress
level, and exhibit a larger strain heterogeneity than other
grain orientations. The hardening rate of prismatic slip in the
transient creep, which may represent the nonbasal dislocation

glide and the interaction of the nonbasal jogs with basal
dislocations [Taupin et al., 2007], is essential to explain that
the minimum creep rate occurs at a strain of 1%.
[38] Evidently, there is room to improve this first appli-

cation. Concerning the scale transition scheme, the used
affine method is known to provide a too stiff estimation of
the overall (nonlinear) viscoplastic behavior. More recently,
the so-called second-order procedure has been proposed for
purely viscoplastic behavior [Ponte Castañeda, 2002]. It
has been applied to several crystalline structure including
strongly anisotropic materials [Lebensohn et al., 2007] and
olivine for thermomechanical conditions relevant for the
Earth upper mantle [Castelnau et al., 2008a]. The superiority
of this procedure has been attested by comparison with
reference results obtained by full-field methods. A first
attempt to extend this method to elastoviscoplasticity has
been provided by Brenner and Masson [2005], whereas
promising and theoretically more rigorous developments
have been proposed very recently [Lahellec and Suquet,
2007b]. One may expect from an application to polar ices
that the resistance of prismatic and pyramidal slip systems
can be taken even larger than the one considered in the
present study, and therefore one may expect an even better
agreement with the experimental data. In this context and
considering the large viscoplastic anisotropy of the crystal,
ice is taken as a model material to validate micro-macro
approaches used to estimate the behavior of viscoplastic
materials [Gilormini et al., 2001; Lebensohn et al., 2004].
[39] Next, it would be of interest to test the model on

more complex loading conditions, e.g., on samples submit-
ted to successive loading and (partial) unloading sequences,
for various stress levels. Particularly interesting would be to
investigate the recoverable part of the transient creep due to
the long-range internal stress field that develops during
deformation and which is at the origin of the significant
kinematic hardening. Such a procedure would of course
provide an even stronger validation of the model, but also a
deeper understanding of ice rheology. This requires further
numerical developments of the model that will be addressed
in future work.

Appendix A: Elastoviscoplastic Micromechanical
Modeling

[40] Compared to the simpler cases of purely elastic or
purely viscoplastic polycrystals, the main difficulty for
estimating the effective behavior of elastoviscoplastic poly-
crystals comes from the fact that both stress and stress rate
enter in the constitutive relation at the grain scale. Conse-
quently, the local mechanical response at time t depends on
the entire loading history of the specimen. A specific
treatment is thus required. In the following, the main
assumptions of mean-field homogenization procedures,
and of the affine SC model from Masson and Zaoui
[1999] with some simplifications for the calculations of
the inverse Laplace transforms, are briefly recalled. For
reasons that will become evident in the sequel, we start with
the homogenization of linear elastoviscoplastic polycrystals,
i.e., for which n(k) = 1 8 k.

A1. Exact Solution for Linear Elastoviscoplasticity

[41] Exact solutions can be theoretically derived in the
case of polycrystals exhibiting a linear viscosity. The
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constitutive relation (2) can be expressed in the general
form

_e x; tð Þ ¼ S rð Þ : _s x; tð Þ þM rð Þ : s0 x; tð Þ þ _e rð Þ
0 tð Þ ðA1Þ

with M(r) and _e0(r) denoting the viscous compliance and a
stress free strain rate respectively. We emphasize that in
equation (A1), M(r) and _e0(r) are both assumed to be uniform
in grains with lattice orientation (r). Without loss of
generality, the integration of the above equation leads to
the following expression for the local total strain

e x; tð Þ ¼ Q rð Þ tð Þ � s x; tð Þ þ e rð Þ
0 tð Þ; ðA2Þ

where the asterisk denotes the Stieljes convolution product.
The time-dependent elastoviscoplastic compliance Q(r)

depends on both the elastic and viscoplastic compliances
at the grain scale

Q rð Þ tð Þ ¼ S rð Þ þM rð Þt: ðA3Þ

Note that Q(r) is also uniform in orientation (r). Now, the
homogenization problem can be solved by means of the
correspondence principle [Mandel, 1966; Laws and
McLaughlin, 1978]. Since the Laplace-Carson transform
acts on time variables t and not on space variables x, the
mechanical problem can be Laplace transformed without
loss of generality. Equation (A2) gives

ê x; pð Þ ¼ Q̂
rð Þ

pð Þ : ŝ x; pð Þ þ ê rð Þ
0 pð Þ ðA4Þ

with hat denoting Laplace-Carson transformed quantities
and p denoting the (complex) Laplace variable. The
convolution product in (A2) has become a direct product
in (A4). The local constitutive relation (A4) in the Laplace-
Carson space has thus a form similar as a standard linear
thermoelastic behavior, for which homogenization results
are well established. The effective behavior of the
polycrystal reads

�̂e pð Þ ¼ ~̂Q pð Þ : �̂s pð Þ þ ~̂e0 pð Þ ðA5Þ

with �s and �e the effective stress and strain respectively,
given by the volume average (denoted by angle brackets) of
the corresponding local quantities

�s tð Þ ¼ hs x; tð Þi; �e tð Þ ¼ he x; tð Þi: ðA6Þ

The effective elastoviscoplastic modulus ~Q and effective
stress-free strain ~e0 are given in the Laplace-Carson space
by the following exact relations

~̂Q ¼ hQ̂ rð Þ
: B̂i; ~̂e0 ¼ hê rð Þ

0 : B̂i; ðA7Þ

where B is the stress localization tensor relating the local
stress tensor to the macroscopic one. In this context, the SC
scheme provides an exact estimate for the phase average
value of B for materials exhibiting a ‘‘perfectly disordered’’
microstructure [Kröner, 1978] (exact solution means that
stress equilibrium, strain compatibility, and boundary

conditions are fulfilled in a statistical way, together with
the local constitutive relation). The SC scheme is therefore
especially appropriate for polycrystals. The expression of
the stress localization tensor in a general context of
anisotropy is given, e.g., by Brenner et al. [2004].
[42] Once the homogenization has been carried out in the

Laplace-Carson space, results have to be back-transformed
in the physical space for an easier mechanical interpretation.
This last difficulty can be quite cumbersome for the numer-
ical implementation of the method although some solutions
have been proposed and applied [Schapery, 1962; Turner
and Tomé, 1993]. Here, we use an approximate inversion
adapted by Brenner et al. [2002b] which is particularly well
suited for the investigation of the (monotone) creep behav-
ior of polycrystals. However, this approximation prevents
the model to be applied to more complex loading paths, e.g.,
for the study of recoverable strain shown in Figure 1 as also
discussed by Turner et al. [1994].
[43] It can be easily seen that upon creep test with an

instantaneous loading at t = 0, two limit regimes can be
identified. At t = 0, since Q(r) = S(r), the instantaneous
response of the material is purely elastic, and the stress
distribution in the different grain orientations only depends
on the local elastic anisotropy. On the other hand, for t !
1, the compliance Q(r) !M(r)t. The permanent creep
regime is therefore insensitive to the elastic response of
grains. In that latter case, the stress and strain rate distribu-
tion only depends on the local viscoplastic anisotropy.
[44] Finally, it is worth emphasizing that in the above

treatment, the local stress and strain (rate) have not been
assumed to follow any specific spatial distribution. Recall
that an orientation (r) (or mechanical phase) comprises
many grains with the same crystallographic orientation but
exhibiting different morphologies and surroundings. In
those grains, the stress and strain are naturally heteroge-
neous. The mean-field SC approach does not allow to
access the value of stress and strain at a specific spatial
position x, but only to characterize the stress and strain
distribution within a phase (r). The use of the Eshelby
[1957] formalism in the SC formulation allows to solve for
the phase average stress and strain when the average grain
shape is ellipsoidal

�s rð Þ ¼ hs xð Þi rð Þ; �e rð Þ ¼ he xð Þi rð Þ: ðA8Þ

Note again that this does not mean that those quantities are
assumed to be uniform in the orientation (r). Indeed, the
heterogeneity of stress and strain rate within a given lattice
orientation (so-called ‘‘intraphase’’ heterogeneity) can be
partially characterized by an appropriate derivation of the
effective potentials [Bobeth and Diener, 1987; Kreher,
1990; Brenner and Masson, 2005].

A2. Extension to Nonlinear Elastoviscoplasticity

[45] The additional difficulty when dealing with material
exhibiting a nonlinear viscoplastic behavior is that the local
viscosity is stress-dependent. Consequently, since the stress
is generally not uniformly distributed in a given lattice
orientation, the local constitutive relation cannot be written
in a form analog to (A1) with phase uniform M(r) and _e0(r).
The classical treatment to bypass this difficulty is to
introduce a multiphase ‘‘Linear Comparison Polycrystal’’
(LCP) that has the same microstructure as the real nonlinear
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polycrystal, and for which well-known homogenization
results apply. The ‘‘affine’’ method proposed by Masson
and Zaoui [1999] consists in a tangent linearization of
relation (5) with respect to the phase average shear stress
on system (k). The local behavior of system (k) for a
linearization time x reads [Rougier et al., 1994]

_g kð Þ x; tð Þ ¼ a rð Þ
kð Þ xð Þ t kð Þ x; tð Þ þ _e

rð Þ
kð Þ t; xð Þ; ðA9Þ

with

a rð Þ
kð Þ xð Þ ¼

@ _g kð Þ

@t

����
t¼ht kð Þ xð Þi rð Þ

; ðA10Þ

where _g(k)(t) denotes the shear rate on system (k) given by
the nonlinear relation (5) for the shear stress t(k), and

_e
rð Þ
kð Þ t; xð Þ ¼ _g kð Þ t tð Þð Þ � a rð Þ

kð Þ xð Þ t kð Þ tð Þ 8t � x

_e
rð Þ
kð Þ t; xð Þ ¼ _g kð Þ t tð Þð Þ � a rð Þ

kð Þ xð Þ t kð Þ xð Þ 8t � x:
ðA11Þ

The (linearized) viscoplastic compliance and stress free
strain rate finally read

M rð Þ xð Þ ¼
P

k a
rð Þ
kð Þ xð Þm rð Þ

kð Þ � m rð Þ
kð Þ

_e rð Þ
0 t; xð Þ ¼

P
k _e

rð Þ
kð Þ t; xð Þm rð Þ

kð Þ

ðA12Þ

with � denoting the dyadic product. This allows the
homogenization treatment introduced in section A2 to be
applied at any time t = x. Eventually, it is emphasized that
the obtained effective behavior remains nonlinear because
of the dependence of the linearized compliances on the
actual stress, as shown by equations (A10) and (A11).
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rue Molière, B.P. 96, F-38402 Saint-Martin d’Hères, France. (duval@
lgge.obs.ujf-grenoble.fr; maurine@lgge.obs.ujf-grenoble.fr)

B11203 CASTELNAU ET AL.: TRANSIENT CREEP OF ICE

14 of 14

B11203


