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[1] Total dissolvable iron (TDFe) was measured in sections of ice cores recovered from Law Dome on the
coast of Wilkes Land, East Antarctica. These samples include ice dating from the Last Glacial Maximum
(LGM), the Last Deglaciation, and the early and mid Holocene as well as samples from the Anthropocene
that have been dated with seasonal to annual resolution. Combining our TDFe concentration data with
estimates of the ice accumulation rate, we estimate the atmospheric iron deposition for Law Dome and the
adjacent Southern Ocean during these periods. Our results indicate that the atmospheric iron deposition
flux to this region during the LGM (�8 mmol Fe m�2 yr�1) was an order of magnitude higher than the
average Holocene deposition flux (�0.8 mmol Fe m�2 yr�1). This Holocene flux estimate is significantly
higher than recent estimates of atmospheric iron deposition based on the analysis of iron in samples of the
Dome C EPICA ice core, implying that there are significant meridional gradients in eolian iron flux to the
Antarctic region. Our data also suggest that there have been significant variations in atmospheric iron
deposition to Law Dome and adjacent ocean waters over seasonal to decadal timescales during the past
century. Analysis of ice samples dating from calendar years 1927 to 1928 indicates an anomalously high
flux of TDFe to the Law Dome region, amounting to around half the maximum LGM flux, possibly as a
result of severe drought conditions on the Australian continent. Given that chronic iron deficiency is
thought to limit phytoplankton production in much of the ocean around Antarctica, such large secular
variations in atmospheric iron supply are likely to have had profound impacts on year-to-year primary
production and ecosystem structure in Antarctic waters.
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1. Introduction

1.1. Significance of Atmospheric Iron
Deposition to the Southern Ocean

[2] The availability of iron (Fe) is known to limit
the growth rate and biomass of phytoplankton over
much of the modern-day Southern Ocean [Martin
et al., 1990; Boyd et al., 2000; Coale et al., 2004;
de Baar et al., 2005]. This vast circumpolar region
has extremely low surface water Fe concentrations
and receives the lowest atmospheric Fe input of the
world’s oceans [Duce and Tindale, 1991; Jickells et
al., 2005]. The low concentrations of iron that are
available to phytoplankton in surface waters of the
present-day Southern Ocean surface are largely
supplied by the upwelling of deeper waters [de
Baar et al., 1995; Fung et al., 2000; Watson et al.,
2000]. However, the transport of iron-bearing dust
to the oceans is thought to have been much greater
during glacial periods of the late Quaternary, which
may have enhanced the supply of biologically
available iron to the Southern Ocean during those
times [De Angelis et al., 1987; Martin, 1990; Petit
et al., 1999; Mahowald et al., 1999; Ridgwell and
Watson, 2002; Wolff et al., 2006]. On the basis of
the inverse correlation between atmospheric dust
loads and atmospheric CO2 levels inferred from ice
core records, Martin [1990] proposed the glacial
iron hypothesis, which contends that enhanced
atmospheric iron deposition during the last glacial
age stimulated oceanic export production, primar-
ily in the Southern Ocean, thus affecting an 80 to
90 ppm decrease in atmospheric CO2 concentration
relative to interglacial conditions.

[3] Major arguments that have been leveled against
this hypothesis concern (1) the relative timing of

atmospheric dust and CO2 changes as recorded in
ice cores, which indicate significant differences in
the timing of decreases in dust deposition versus
increases in atmospheric CO2 at glacial termina-
tions [Broecker and Henderson, 1998; Wolff et al.,
2006; Gaspari et al., 2006]; (2) the magnitude of
atmospheric CO2 drawdown resulting from plausi-
ble increases in Southern Ocean new production,
which modeling studies have estimated at less than
10 ppm CO2 [Lefèvre and Watson, 1999; Popova et
al., 2000]; and (3) the flux of iron-bearing dust to
the ocean during glacial times, which may have
been considerably less than that required by Mar-
tin’s iron hypothesis [Maher and Dennis, 2001].
However, more recent modeling studies have sim-
ulated a significant drawdown in atmospheric CO2

(>10 ppm) due to elevated Southern Ocean export
production forced by increased iron deposition
during glacial times, with the relative timing of
simulated changes in atmospheric dust and CO2

levels in good agreement with ice core records
[Watson et al., 2000; Ridgwell and Watson, 2002;
Ridgwell et al., 2002; Bopp et al., 2003]. Further-
more, increased Si input to the surface ocean and/
or changes in the Si:N uptake ratio of phytoplank-
ton due to enhanced iron availability afford addi-
tional mechanisms for reducing atmospheric CO2

during glacial periods, via a decrease in the
rain ratio of calcium carbonate to organic carbon
[Brzezinski et al., 2002; Matsumoto et al., 2002;
Ridgwell et al., 2002].

[4] An important conclusion of these modeling
studies is that both the magnitude and timing of
simulated glacial-interglacial atmospheric CO2

changes are highly sensitive to the magnitude and
time variation of atmospheric iron deposition to the
Southern Ocean. The model simulations of Watson
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et al. [2000] and Ridgwell and Watson [2002] are
informed by an atmospheric dust deposition that
follows the Vostok ice core dust record [Petit et al.,
1999] between maximum (Last Glacial Maximum)
and minimum (Holocene) deposition estimates
derived from the general circulation dust-transport
model of Mahowald et al. [1999], with the as-
sumption that the dust contains 3.5% iron by mass
of which 2% is readily soluble (i.e., biologically
available to marine phytoplankton). The resulting
estimates of atmospheric iron deposition contain
significant uncertainties, particularly in the model-
derived Holocene and Last Glacial Maximum
(LGM) dust deposition fluxes, which may signif-
icantly overestimate deposition in the Antarctic
[Mahowald et al., 1999; Ridgwell and Watson,
2002; Bopp et al., 2003], and in the estimated
solubility of aerosol iron, which may exceed 10%
for dust deposited in and on Antarctic snow
[Edwards and Sedwick, 2001]. There is thus a
pressing need for accurate estimates of the past
and present atmospheric deposition of biologically
available iron in the Southern Ocean, to evaluate
the role of this flux in regulating oceanic algal
production and the ocean-atmosphere CO2 balance.

1.2. Records of Atmospheric Iron
Deposition From Antarctic Ice Cores

[5] Model-derived estimates of past and present
eolian iron deposition to the Southern Ocean con-
tain large uncertainties [Tegen and Fung, 1994;
Mahowald et al., 1999, 2005; Moore et al., 2000;
Prospero et al., 2002; Jickells et al., 2005], where-
as the records of eolian dust derived from deep-sea
sediment cores [e.g., Rea, 1994; Kumar et al.,
1995; Hesse and McTainsh, 1999] may be ob-
scured by physical and chemical processes in the
water column and sediments. The most reliable
estimates of atmospheric iron deposition to the
Southern Ocean are likely to be those derived from
the analysis of modern and ancient Antarctic snow.
Measurements of iron in snow collected from
Antarctic pack ice and coastal sites have been used
to infer the present-day fluxes and solubility of
eolian iron to maritime East Antarctica [Edwards
and Sedwick, 2001], whereas records of past atmo-
spheric iron deposition have been derived from
analysis of aluminum (Al) [De Angelis et al.,
1987], dust particles [Petit et al., 1999] or iron
[Edwards et al., 1998; Traversi et al., 2004;
Gaspari et al., 2006, Wolff et al., 2006] in the
ancient snow of Antarctic glacial ice cores. Direct
measurements of iron in snow and ice are expected
to provide the most robust estimates of eolian iron

deposition, because differences in sources and/or
atmospheric transport of mineral aerosols can
result in variations in Fe/Al or Fe/particle ratios,
relative to average crustal values [Zoller et
al., 1974; Arimoto et al., 1995; Holmes and Zoller,
1996; Watson, 1997; Hinkley and Matsumoto,
2001; Jickells and Spokes, 2001; Prospero et
al., 2002; Bay et al., 2004; Delmonte et al.,
2004b, 2004c; Gaspari et al., 2006].

[6] Gaspari et al. [2006] and Wolff et al. [2006]
have recently published estimates of eolian iron
fluxes for Antarctica spanning the Last Deglacia-
tion (LD) and the last eight glacial cycles, respec-
tively, based on the analysis of iron in the EPICA
ice core, which was drilled at Dome C on the
inland plateau of East Antarctica. Gaspari et al.
[2006] estimate that atmospheric deposition of
acid-dissolvable iron at the LGM was more than
30-fold higher than during the early Holocene. This
recent work represents an important advance in our
knowledge of past atmospheric iron deposition to
Antarctica, and in our ability to evaluate the impact
of changes in atmospheric iron deposition of algal
production in the surface ocean. However, it is
important to recognize that there may be significant
meridional and zonal gradients in the deposition of
iron-bearing mineral dust to Antarctica and the
Southern Ocean [Mahowald et al., 1999, 2006;
Lunt and Valdes, 2002; Delmonte et al., 2004a,
2004b]. For example, Edwards and Sedwick [2001]
reported order-of-magnitude differences in the
estimated seasonal deposition fluxes of acid-
dissolvable iron between different sectors of mar-
itime East Antarctica, based on the analysis of iron
in modern snow samples. Hence ice core records
from multiple coastal locations around the Antarctic
continent are required to better constrain the past
and present atmospheric deposition of iron to the
surrounding Southern Ocean.

[7] In this paper, we present results from the
analysis of iron in sections of glacial ice cores
from Law Dome, in maritime East Antarctica,
which extend the preliminary data set presented
by Edwards et al. [1998]. By combining our iron
concentration data with estimates of snow and ice
accumulation rates for these core sections, we
calculate atmospheric iron deposition fluxes for
this location during recent times, the early and late
Holocene, the LD, and the LGM. Our data thus
provide information on the temporal variability of
eolian iron deposition at Law Dome over time-
scales ranging from seasons to millennia, albeit at
rather coarse resolution. Given that this site is

Geochemistry
Geophysics
Geosystems G3G3

edwards et al.: iron in ice cores from law dome 10.1029/2006GC001307edwards et al.: iron in ice cores from law dome 10.1029/2006GC001307

3 of 15



exposed to predominantly maritime atmospheric
circulation, these flux estimates are likely to be
representative of atmospheric iron deposition over
the adjacent polar waters of the Southern Ocean.

2. Ice Cores

2.1. Ice Core Locations

[8] Law Dome is located on the periphery of the
East Antarctic ice sheet near the coast of Wilkes
Land, East Antarctica (Figure 1). Approximately
200 km in diameter, the Law Dome ice cap has a
summit elevation of 1389 m above sea level and a
maximum ice thickness of 1200 m [Hamley et al.,

1986]. Ice flow from the Law Dome summit is
relatively independent of the main East Antarctic
ice sheet, which drains into the Totten and Vander-
ford glaciers, located to the southeast and south-
west, respectively (Figure 1). Prevailing easterly
winds from the Southern Ocean produce an oro-
graphic flow over the ice cap, resulting in high
snow accumulation rates (>1 m ice-equivalent per
year) on the eastern side and lower rates (<0.5 m
ice-equivalent per year) in the west [Morgan et al.,
1997]. Here we present results of analyses of
sections of three ice cores, DSS, DE08 and
BHC1, which were drilled on Law Dome between
1982 and 1993 (Figure 1 and Table 1). For this
study, recent and Holocene-age ice samples were

Figure 1. Location map of Law Dome showing locations of ice cores used in this study.

Table 1. Description of Law Dome Ice Cores Used in This Study

Core
Site Location

Average Ice or
Snow Accum. Rate,

m H2O equivalent yr�1
Max. Core
Depth, m

Time Span of
Core, years

DSS 66�46.180S, 112�48.420E 0.640a 1200 �40,000
DE08 66�43.320S, 113�11.970E 1.16b 234 �180
BHC1 66�07.830S, 110�56.280E 0.06c 300 �40,000

a
Morgan et al. [1997].

b
Etheridge et al. [1988].

c
Morgan and McCray [1985].
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selected from sections of cores DSS and DE08,
which were recovered from high snow accumula-
tion-rate sites located approximately 18 km apart
near the Law Dome summit (Figure 1). Because
the oldest sections of these summit cores were
highly fractured and thus unsuitable for trace metal
analysis, samples dating from the LD and LGM
were taken from sections of the BHC1 core, which
was drilled near Cape Folger, 109 km northwest of
the DSS site (Figure 1). The BHC1 site lies on a
flow line running from the Law Dome summit to
Cape Folger, along which a series of cores were
drilled to study the physical properties of the ice
cap [Etheridge, 1989; Morgan and McCray, 1985;
Russell-Head and Budd, 1979]. Oxygen isotope
data from these cores, together with results of ice-
flow modeling and radio echo sounding, indicate
that the LGM and LD-age sections of the BHC1
core were originally deposited in the vicinity of the
Law Dome summit [Rowden-Rich and Wilson,
1996; Morgan, 1993; Etheridge et al., 1988].

2.2. Ice Core Chronology

[9] The DE08 core chronology was constrained by
counting annual layers determined from the sea-
sonal variations in d18O(H2O) [Etheridge et al.,
1988]. The age-depth relationship for the DSS core
was determined using several methods, including
(1) locating known volcanic horizons and counting
of annual layers using seasonal variations of

d18O(H2O), hydrogen peroxide, sulfate and con-
ductivity for the Holocene period; (2) gas concen-
trations synchronized to the Byrd-GRIP timescale
of Blunier and Brook [2001]; and (3) a flow-
thinning model for the oldest core sections
[Morgan et al., 2002]. For the LD and LGM age
sections of core BHC1, our age-depth chronology
is based on comparison of the BHC1 and Byrd-
GRIP ice core d18O records (Figure 2), using the
Analyseries software (lineage tool) to map the
Byrd-GRIP timescale on to the BHC1 isotope
record (r2 = 0.955).

3. Methods

[10] Subsamples were taken from the ice core
sections as described by Edwards et al. [1998]
and decontaminated by the method of Candelone et
al. [1994], using stringent trace metal clean proce-
dures to remove contaminated outer layers of the
ice core sections. Detailed descriptions of the
decontamination procedures are given by Edwards
[2000] and Edwards et al. [1998]. The decontami-
nated ice core samples were melted and acidified to
�pH 1.9 by addition of Seastar ultrapure concen-
trated hydrochloric acid (to 0.1% by volume con-
centrated acid), and then stored at room
temperature in acid-cleaned Nalgene low-density
polyethylene bottles for more than three months, to
allow for dissolution of the ‘‘acid-labile’’ iron-
bearing mineral particles. This minimum storage

Figure 2. The d18O(H2O) records for the Byrd and BHC1 ice cores [Blunier and Brook, 2001, and references
therein; Morgan and McCray, 1985] mapped on to the GRIP ice core timescale, based on common features in the
Byrd and BHC1 down-core records.
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time was based on the results of repeated analyses
of acidified Antarctic snowmelt waters over a
period of four to five months, which demonstrate
a significant increase in measured iron concentra-
tions for up to three months following acidification
to pH 1.9 with hydrochloric acid (Figure 3)
[Edwards, 2000; Edwards and Sedwick, 2001].
We define the fraction of iron that we measure in
solution after more than three months storage at pH
1.9 as ‘‘total-dissolvable iron.’’ As discussed by
Edwards and Sedwick [2001], most of the iron
contained in polar snow and ice samples is thought
to be rendered soluble under mildly acidic con-
ditions, with the exception of that contained within
the lattice of highly refractory aluminosilicate par-
ticles. The latter is unlikely to enter into the
oceanic iron cycle, and is thus of little relevance
with regard to the glacial iron hypothesis. The
total-dissolvable iron concentrations presented in
this paper can be considered as a firm upper limit
on the eolian iron that is potentially available to
phytoplankton in the surface ocean.

[11] Total-dissolvable iron (TDFe) was determined
in the acidified meltwaters by flow injection anal-
ysis (FIA) using a modification of the method of
Measures et al. [1995], which is further detailed by
Bowie et al. [2004] and Sedwick et al. [2005],
without sample preconcentration. The accuracy of

the FIA measurements was verified by reanalysis
of meltwater samples using high-resolution induc-
tively coupled plasma mass spectrometry (ICP-
MS) [Townsend and Edwards, 1998; Edwards,
2000].

4. Results and Discussion

4.1. Iron Concentrations

[12] The TDFe concentrations of all ice core
samples analyzed in this study are presented in
Figure 4 and Table 2. In samples dating from the
past 200 yr (also known as the Anthropocene
[Crutzen and Stoermer, 2000]), the meltwater TDFe
concentrations range from 0.5 nM to 6.0 nM, with
considerable variability evident on seasonal to
decadal timescales (Figure 5). These TDFe concen-
trations are generally lower than values we have
measured in modern Antarctic snow, with the
exception of snow samples collected from the
seasonal sea ice zone to the northeast of Law Dome
[Edwards and Sedwick, 2001]. Several of these ice
samples do not integrate a full year, due to the high
snow-accumulation rates at the DSS and DE08 sites
(Table 2) and the maximum sample size that can be
accommodated during the decontamination proce-
dure. The results for these samples suggest that
there may be seasonal variations of as much as a
factor of 4 in atmospheric iron deposition, with the
highest TDFe concentrations measured in core
sections dating from the austral summer and autumn.
The highest TDFe concentrations in the Anthropo-
cene samples were measured in sections of core
DE08 dating from calendar years 1927 to 1928
(Figure 5); the TDFe concentrations in these samples
(�4.5–6 nM)were asmuch as five times higher than
the average TDFe concentration (1.2 nM) of all
remaining Holocene-age ice samples.

[13] We note that the late 1920s were marked by
drought conditions across much of southeastern
Australia [Dai et al., 1998, 2004], particularly in
South Australia, which experienced severe land
degradation due to overgrazing [Donovan, 1995].
In addition, red dust was observed in New Zealand
snow in 1928 (P. Marshall and E. Kidson, cited by
Warren and Wiscombe [1980]), indicating the
transport of significant quantities of Australian dust
across the Tasman Sea and presumably into the
Southern Ocean. When considered together with
our ice core TDFe data, these observations imply
that the Australian continent has been an important
source of mineral dust to maritime East Antarctica
during the recent past. This suggestion is supported

Figure 3. Measured TDFe concentration in acidified
Antarctic snowmelt waters as a function of time after
acidification from Edwards [2000] (see text). A number
of deionized-water blanks were analyzed alongside the
samples; TDFe remained below the detection limit
(�0.3 nM) in all of the blanks.

Geochemistry
Geophysics
Geosystems G3G3

edwards et al.: iron in ice cores from law dome 10.1029/2006GC001307

6 of 15



Table 2. Ice Core Total Dissolvable Iron Concentrations

Ice
Core

Sample Depth
in Core, m

Age in Years
Before Present (BP, 1997)

Estimated Time Period
Spanned by Core Section

TDFe,a

nM

DSS 46.64–46.82 56 summer-autumn 2.5
DSS 46.82–46.98 56 winter 0.6
DSS 46.98–47.08 56 spring 1.1
DSS 47.17–47.54 57 summer-autumn 1.4
DSS 72.95–73.20 88 winter 0.5
DSS 895.74–895.99 2,729 �2 yr 0.5
DSS 1106.76–1106.94 8,518 �16 yr 2.0
DSS 1106.94–1107.04 8,530 �10 yr 1.3
DEO8* 0–0.3 1,995 summer 0.9
DEO8 96.01–96.29 69 summer-autumn 4.5
DEO8 96.41–96.55 70 autumn 6.1
DEO8 96.55–96.69 70 winter 1.8
DEO8 136.02–136.16 102 winter 1.0
DEO8 136.16–136.30 102 spring 1.1
DEO8 150.90–151.42 115 winter 0.5
DEO8 192.80–193.08 155 summer 1.3
BHC1 256.28–256.39 18,287 �60 yr 54
BHC1 256.39–256.48 18,345 �60 yr 36
BHC1 256.48–256.59 18,403 �60 yr 31
BHC1 256.59–256.77 18,487 �80 yr 70
BHC1 256.77–256.87 18,568 �80 yr 67
BHC1 262.14–262.28 20,927 �80 yr 124
BHC1 271.76–271.84 23,554 �40 yr 21
BHC1 271.84–271.91 23,591 �40 yr 22
BHC1 271.91–271.99 23,628 �40 yr 13
BHC1 271.99–272.065 23,667 �40 yr 25
BHC1 272.065–272.145 23,705 �40 yr 19

a
TDFe, total dissolvable iron.

Figure 4. TDFe concentration of all ice core samples versus estimated sample age in years before present (BP,
relative to calendar year 1997).
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by dust-transport model simulations of Mahowald
et al. [1999], by measurements of the isotopic
composition of lead in Law Dome ice samples
[Vallelonga et al., 2002], and by the recent com-
parison of Sr and Nd isotopes in Australian dust
with previously reported values for East Antarctic
ice cores [Revel-Rolland et al., 2006]. If a signif-
icant fraction of the soil dust reaching Law Dome
is of Australian origin, then this may represent an
important contrast between the coastal location of
Law Dome and the Antarctic plateau sites of
Vostok and Dome C, where dust deposition is
thought to be dominated by soils of Patagonian
provenance [Grousset et al., 1992; Basile et al.,
1997; Lunt and Valdes, 2002; Delmonte et al.,
2004c]. It is also interesting to note that elevated
concentrations of iron or dust particles have been
documented in Antarctic ice and firn from Siple
Dome in Marie Byrd Land (J. McConnell, personal
communication, Desert Research Institute, 2005),
from Hercules Nêvê in northern Victoria Land
[Maggi and Petit, 1998], and from the South Pole
[Boutron and Lorius, 1979], for samples dating
from the period 1928 to 1940. Maggi and Petit
[1998] proposed that the elevated dust concentra-
tions in Hercules Nêvê firn were associated with
low rainfall in South America during the late
1930s. Collectively, these data suggest an
enhanced transport of iron-bearing dust to Antarc-
tica during the late 1920s through the 1930s, as a

result of drought conditions in Australia and South
America.

[14] If we exclude the ‘‘anomalous’’ samples dat-
ing from 1927 to 1928, the average TDFe concen-
tration for our Anthropocene- and Holocene-age
Law Dome ice samples is 1.2 ± 0.6 nM (n = 14). In
contrast, we observed much higher iron concen-
trations in ice core sections dating from the LD and
LGM (Figure 4 and Table 2), with TDFe ranging
from 4 nM to 120 nM. Consistent with previous
studies of ice cores and marine sediments, the
highest Fe concentrations were measured in core
sections dating from the LGM, implying elevated
levels of mineral dust in the atmosphere during the
last glacial epoch. The magnitude and time varia-
tion of our TDFe concentration record are in close
agreement with the Law Dome dust particle record
for the DSS ice core [Jun et al., 1998], and with
dust particle records reported for the Vostok and
Dome C ice cores [Petit et al., 1999; Delmonte et
al., 2004a] (Figure 6). Recent analyses of the
EPICA (Dome C) ice core reveal concentrations
of ‘‘acid-leachable iron’’ (that measured by ICP-
MS after 24 hours acidification to pH 1 with nitric
acid) that range from �5 nM in early Holocene ice
to �320 nM in LGM ice, and concentrations of
‘‘total iron’’ (that measured by ICP-MS after
microwave-assisted acid digestion) that range from
�14 nM in early Holocene ice to �550 nM in
LGM ice (estimated from Figure 3 of Gaspari et al.

Figure 5. TDFe concentration of Anthropocene ice samples versus age (calendar years).
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[2006]). These values are higher than the TDFe
concentrations we measured in Law Dome ice of
comparable age; however, it is not really useful to
compare the iron concentrations of ice from Law
Dome and Dome C, because of the much higher ice
accumulation rate at Law Dome. Differences in ice
accumulation rates are accounted for in the atmo-
spheric flux estimates that are discussed in the
following section.

4.2. Estimates of Past Eolian Iron Fluxes

[15] The atmospheric flux of iron to the Law Dome
region occurs via both dry and wet deposition. The
former can be considered as a relatively continuous
process, whereas the latter occurs episodically with

precipitation, and is likely to dominate the deposi-
tion flux, given the relatively high rates of snow
accumulation at Law Dome [Edwards et al., 1998;
Wolff et al., 1998, 2006] (Table 1). However, snow
accumulation rates in the Law Dome summit
region are believed to be relatively constant
throughout the year [Van Ommen and Morgan,
1997]; thus a significant seasonal bias in wet
deposition is considered unlikely. With this as-
sumption, we have calculated an average atmo-
spheric iron deposition flux (which includes both
wet and dry deposition) for each core section
analyzed, from the product of TDFe concentration
and estimated annual ice-accumulation rates
(Table 2 and Figure 7). As previously mentioned,
the youngest ice core sections used in the study
integrate accumulation over periods of less than a
year (�1 to 7 months), although we have estimated
TDFe deposition fluxes for these samples using
annual ice-accumulation rates; thus the fluxes cal-
culated for these samples are the least certain of our
deposition estimates.

[16] Table 3 compares the mean value of our
estimated eolian iron flux for Law Dome (exclud-
ing the anomalous 1927 to 1928 data) to
corresponding eolian iron flux estimates for the
Dome C and Vostok sites, as calculated from the
concentrations of aluminum or dust particles in ice
core samples and ice-accumulation rates, assuming
that dust has a crustal Al/Fe ratio of 0.841 and
contains 3.5% Fe by mass [Taylor and McClennan,
1985]. Also shown is a mean estimate of present-
day iron deposition in maritime East Antarctica,
calculated from measurements of TDFe in modern
snow [Edwards and Sedwick, 2001], and recently
published estimates of atmospheric iron deposition
at Dome C during the early Holocene, based on
analyses of acid-leachable iron and total iron in the
EPICA ice core [Gaspari et al., 2006]. Our mean
Holocene TDFe deposition flux estimate for Law
Dome of 0.8 mmol m�2 yr�1 is similar to the
estimated deposition flux for present-day maritime
East Antarctica (1.1 mmol m�2 yr�1), and higher
than the iron deposition estimates calculated from
aluminum or dust concentrations in the Dome C
and Vostok ice cores (0.2–0.6 mmol m�2 yr�1).
Interestingly, the deposition of acid-leachable
iron and total iron estimated by Gaspari et
al. [2006] for Dome C in the early Holocene
(0.13 mmol m�2 yr�1 and 0.31–0.41 mmol m�2 yr�1,
respectively) are considerably less than our mean
Holocene TDFe deposition estimate for Law
Dome. Considered together, the flux estimates
in Table 3 imply that atmospheric iron deposition

Figure 6. Law Dome TDFe concentrations record in
comparison to dust concentration records for ice cores
from Law Dome, Vostok, and Dome C (see text).
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to Law Dome and maritime East Antarctica has
been significantly higher than that delivered to
Dome C and Vostok during the Holocene.

[17] A possible explanation for this discrepancy
lies in the relative ice accumulation rates during the
Holocene (Table 3), which are high near the coastal
site of Law Dome (�0.8 m H2O yr�1), but much
lower at the inland sites of Dome C and Vostok
(�0.02–0.03 m H2O yr�1). Wet deposition, pri-
marily as snow, has likely dominated the atmo-

spheric flux of iron to coastal sites such as Law
Dome during the Holocene, whereas dry deposition
has been most important on the inland Antarctic
plateau [Wolff et al., 1998, 2006]. Because snow is
known to effectively scavenge mineral aerosols
from the atmosphere [Wolff et al., 1998], we
suggest that wet deposition has maintained an
elevated atmospheric iron flux to maritime East
Antarctica during the Holocene, relative to inland
locations on the Antarctic plateau. Furthermore,
this meridional gradient in atmospheric iron depo-

Table 3. Estimates of Average Atmospheric Iron Flux to Antarctica During the Holocene

Site
Reference for
Ice Core Data

Data
Used

Mean Ice
Accum. Rate,

m H2O equiv. yr�1
Reference for
Accum. Rate

Estimated Fe
Deposition Flux,
mmol m�2 yr�1

Law Dome this study TDFea 0.8b this study 0.8
Maritime East
Antarctica

Edwards and Sedwick
[2001]

TDFe 0.19 Edwards and Sedwick
[2001]

1.1c

Dome C Petit et al. [1981] Al 0.034 Lorius [1989] 0.6
Dome C Delmonte et al. [2004a] dust 0.025 Delmonte et al.

[2004a]
0.2

Dome C Gaspari et al. [2006] ALFed

TFef
not given not given 0.13e

0.31–0.41
Vostok De Angelis et al. [1984] Al 0.023 Lorius [1989] 0.4

a
TDFe, total-dissolvable iron (see text).

b
Mean net accumulation rate calculated from both DSS and DE08 samples.

c
Flux was estimated using samples of modern snow.

d
ALFe, acid-leachable iron (see text).

e
Early Holocene deposition flux estimated by Gaspari et al. [2006]; ice accumulation rates are not provided.

f
TFe, total iron (see text), here calculated assuming ALFe = 30–40%TFe in Holocene ice [Gaspari et al., 2006].

Figure 7. Estimates of eolian TDFe fluxes calculated for all ice core samples versus estimated sample age in years
before present (BP, relative to calendar year 1997).
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sition would have been reinforced by the effect of
wet deposition removing aerosol iron from air
parcels as they traveled from the Antarctic coast
toward the continental interior. Consequently, ice
core records from Antarctic plateau sites, such as
Dome C, are unlikely to provide quantitative
estimates of atmospheric iron deposition to Ant-
arctica waters during the Holocene. In this regard,
ice cores from Antarctic coastal locations, such as
Law Dome, are likely to provide more useful
information.

[18] To calculate atmospheric iron deposition at
Law Dome during the LGM and LD (Figure 7),
we use the TDFe concentrations measured in
sections of the BHC1 ice core and the ice-accu-
mulation rate estimates derived from our proposed
age-depth relationship for this core (see section
2.2). We estimate an LGM accumulation rate of
66 kg H2O m�2 yr�1 at 20,927 yr before present
(BP), which compares well with a recent estimate
of 64 kg H2O m�2 yr�1 for the ice accumulation
rate at the DSS site (Law Dome summit) during
the LGM [Van Ommen et al., 2004]. From this,
we calculate a maximum TDFe deposition of
8 mmol m�2 yr�1 during the LGM, a value that
is 10 times our average Holocene deposition flux,
and in fair to good agreement with estimates of
iron deposition for the Dome C and Vostok
sites during the LGM (Table 4). The lowest iron
deposition estimate for Dome C at the LGM
(4.3 mmol m�2 yr�1) is that calculated from the
acid-leachable iron measurements of Gaspari et al.
[2006]; this perhaps reflects the incomplete disso-
lution of acid-labile iron in their meltwater sam-
ples, which were acidified for a relatively short
period (�24 hours) prior to analysis (compare with

Figure 3). For the Law Dome ice core sections
from immediately below (age �23,000 yr BP) and
above (age �18,000 yr BP) our LGM ice, TDFe
concentrations are much lower than those in LGM
ice, and estimated iron deposition fluxes are similar
to our average Holocene TDFe flux estimates
(Figure 7). These results are consistent with the
rapid variations in dust flux before and after the
LGM that have been inferred from analysis of the
Vostok and Dome C ice cores [Petit et al., 1999;
Delmonte et al., 2004b, 2004c] (Figure 6). The
reasonably good agreement between the LGM iron
deposition estimates for Law Dome, Dome C, and
Vostok suggests that there was less spatial variabil-
ity in the atmospheric dust flux to East Antarctica
during the LGM, relative to the Holocene situation.
This probably reflects the much lower ice accumu-
lation rate on the Antarctic coast during the LGM
(0.07 m H2O yr�1 at Law Dome, versus 0.8 m H2O
yr�1 during the Holocene), hence wet deposition
was less important in these areas, and the higher
atmospheric dust loadings at this time, which would
have been less impacted by precipitation during
atmospheric transport.

5. Conclusions

[19] Our data indicate that the atmospheric
deposition of total-dissolvable iron to Law Dome
and the adjacent Southern Ocean averaged
0.8 mmol m�2 yr�1 during recent and Holocene
times, and was an order of magnitude higher at
8 mmol m�2 yr�1 during the LGM. These results
contrast with recent data from the EPICA Dome C
ice core, which suggest that atmospheric deposition
of acid-leachable iron during the LGM (4.3 mmol

Table 4. Estimates of Atmospheric Iron Flux to Antarctica During the Last Glacial Maximum

Site
Reference for
Ice Core Data

Data
Used

Mean Ice
Accum. Rate,

m H2O equiv. yr�1
Reference for
Accum. Rate

Estimated Fe
Deposition Flux,
mmol m�2 yr�1

Ratio of LGM
to Holocene
Fe Flux

Law Dome this study TDFea 0.07b this study 8 10
Dome C Petit et al. [1981] Al 0.02 Lorius [1989] 7 12
Dome C Delmonte et al.

[2004a]
dust 0.01 Delmonte et al.

[2004a]
5 25

Dome C Gaspari et al.
[2006]

ALFec

TFee
not given not given 4.3d

6.6
33
16–21

Vostok De Angelis et al.
[1984]

Al 0.01 Lorius [1989] 8 20

a
TDFe, total-dissolvable iron (see text).

b
Ice accumulation rate estimated for core BHC1 (see text).

c
ALFe, acid-leachable iron (see text).

d
Average LGM deposition flux estimated by Gaspari et al. [2006]; ice accumulation rates are not provided.

e
TFe, total iron (see text), here calculated assuming ALFe = 65%TFe in LGM ice [Gaspari et al., 2006].
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m�2 yr�1) was more than 30-fold higher than the
average atmospheric deposition in the early Holo-
cene (0.13 mmol m�2 yr�1) [Gaspari et al., 2006;
Wolff et al., 2006]. This difference in the LGM/
Holocene iron deposition flux ratio between Law
Dome and Dome C is largely driven by the higher
iron deposition fluxes estimated for Law Dome
during the Holocene, which we argue are the result
of elevated precipitation over maritime East Ant-
arctica, relative to the Antarctic plateau. Interest-
ingly, these inferred differences in aerosol iron
deposition between Law Dome and Dome C are
qualitatively consistent with the dust-transport
model simulations of Mahowald et al. [1999],
whose results suggest that there are significant
meridional and zonal gradients in the LGM/Holo-
cene dust deposition ratio for the Antarctic region.

[20] A quantitative assessment of the phytoplank-
ton production supported by the iron deposition
fluxes we have estimated for the Holocene and
the LGM requires additional information that is
beyond the scope of this paper, including (1) the
fractional solubility and biological availability of
the aerosol iron in surface seawater; (2) the role of
seasonal sea ice in modulating the delivery of the
aerosol iron to the surface ocean; (3) the depth of
the ocean surface mixed layer into which the
aerosol iron was introduced; and (4) the species
composition and Fe/C uptake ratio of the algal
community that utilized the aerosol iron [Martin,
1990; Edwards and Sedwick, 2001; Bopp et al.,
2003]. However, within the context of the glacial
iron hypothesis, we note that the LGM/Holocene
iron flux ratio of �10 at Law Dome is much less
than that considered by Martin [1990], who as-
sumed that the atmospheric iron flux to the South-
ern Ocean at the LGM was 50 times higher than the
eolian iron flux during the Holocene.

[21] With regard to the biological availability of
aerosol iron, the results of solubility experiments
using Antarctic snow suggest that 10 to 90%
(geometric mean 32%) of total-dissolvable iron is
readily soluble, and presumably available to
phytoplankton [Edwards and Sedwick, 2001].
Assuming that 32% of the TDFe deposited in
the Law Dome region is readily soluble yields
deposition fluxes of 0.26 mmol m�2 yr�1 and
2.6 mmol m�2 yr�1 for bio-available iron during
the Holocene and the LGM, respectively. These
values may be compared with the iron fluxes
assumed by Bopp et al. [2003], who use an ocean
biogeochemical model to assess the impact of
elevated dust deposition on phytoplankton produc-

tion during the LGM. These authors prescribe
atmospheric iron fluxes based on the modeled dust
deposition of Mahowald et al. [1999], with the
assumption that 0.035% of the dust is soluble iron
(hence bio-available). For the ocean region adjacent
to Law Dome, this corresponds to bio-available iron
fluxes of around 0.6–1.3 mmol m�2 yr�1 and 1.3–
3.1 mmol m�2 yr�1, for the present-day and the
LGM, respectively. Thus our estimate of the flux of
bioavailable iron to the Law Dome region during
the Holocene is substantially less than that used in
the model simulations of Bopp et al. [2003].

[22] One surprising result of our study is the
relatively high eolian iron flux estimated for Law
Dome during calendar years 1927 and 1928, which
we suggest is the result of enhanced dust transport
from the drought-affected Australian continent. At
4.1 mmol m�2 yr�1, this flux is around half of the
eolian iron flux estimated for Law Dome during
the LGM. Karl et al. [2001] have proposed that
decadal-scale changes in eolian iron supply to the
subtropical North Pacific have affected significant
changes in the algal community structure and
biogeochemical cycling of that oceanic region.
Given that present-day phytoplankton growth is
thought to be limited by iron deficiency over much
of the Southern Ocean [Moore et al., 2004], short-
term variations in atmospheric iron supply, such as
the 1927 to 1928 episode, would be expected to
have had a profound impact on the magnitude and
nature of primary production over regional scales.
The analysis of iron or dust in ice cores at high
temporal resolution is required to establish the
duration and frequency of such dust transport
episodes. In this regard, an increase in the severity
of Australian droughts, as is predicted to result
from global warming [Nicholls, 2004], would be
expected to result in an increased transport of
aerosol iron to ocean waters in the Australian
sector of the Southern Ocean, thus increasing
primary production in this region.

[23] The significant discrepancies that exist
between eolian iron fluxes estimated from the
analysis of ice cores at Law Dome (this study)
and Dome C [Gaspari et al., 2006], and from dust
transport models [Mahowald et al., 2006] highlight
the need for additional ice core records from other
Antarctic locations, to better constrain the past
deposition of iron to the Southern Ocean. Perhaps
the most vexing question concerns the biological
availability of eolian iron in the past, given that the
preservation of aerosol iron in glacial ice might
alter its solubility characteristics over time. Cer-
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tainly, it is important to know the fractional solu-
bility of iron in mineral aerosol deposited during
the LGM versus that deposited during the Holo-
cene to understand the effects of this atmospheric
deposition on ocean biota. Until such information
becomes available, the role of eolian iron supply in
glacial-interglacial CO2 changes remains uncertain.
As noted by Martin [1990], ‘‘iron availability
appears to have been a player; however, whether
it had a lead role or a bit part remains to be
determined.’’
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