Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes

B. Alexander, R. J. Park, D. J. Jacob, Q. B. Li, Robert Yantosca, J. Savarino, C. C. W. Lee, M. H. Thiemens

To cite this version:

HAL Id: insu-00373717
https://hal-insu.archives-ouvertes.fr/insu-00373717
Submitted on 2 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes

B. Alexander, R. J. Park, D. J. Jacob, Q. B. Li, and R. M. Yantosca
Department of Earth and Planetary Sciences and Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA

J. Savarino, C. C. W. Lee, and M. H. Thiemens
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA

Received 30 November 2004; revised 23 February 2005; accepted 15 March 2005; published 25 May 2005.

[1] We use observations of the mass-independent oxygen isotopic composition (\(
\Delta^{17}O
\)) of sulfate in the marine boundary layer (MBL) to quantify the sulfate source from aqueous SO\(_2\) (S(IV)) oxidation by O\(_3\) in alkaline sea-salt aerosols. Oxidation by O\(_3\) imparts a large \(
\Delta^{17}O
\) signature to the resulting sulfate (8.8\%) relative to oxidation by H\(_2\)O\(_2\) (0.9\%) or by OH or O\(_2\) (0\%). Ship data from two Indian Ocean Experiment (INDOEX) cruises in the Indian Ocean indicate \(
\Delta^{17}O
\) values usually <1\% in the submicron sulfate aerosol but considerable variability in the supermicron sulfate with frequent occurrences above 1% and up to 6.7\%. The large \(
\Delta^{17}O
\) values are associated with high concentrations of sea-salt aerosols, providing evidence for the S(IV) + O\(_3\) pathway. We use a global chemical model (GEOS-CHEM) to interpret quantitatively the INDOEX observations and to assess the global importance of sulfate production in sea-salt aerosols. The model accounts for titration of sea-salt alkalinity in the MBL by uptake of acid gases (SO\(_2\), H\(_2\)SO\(_4\), and HNO\(_3\)), shutting down the S(IV) + O\(_3\) pathway. We find that this titration occurs rapidly over much of the oceans except at high latitudes (strong sea-salt emission) and is due to both the S(IV) + O\(_3\) reaction and HNO\(_3\) (g) condensation; that is, sulfate formation in sea-salt aerosols is limited by the alkalinity flux from the ocean and by competition for this alkalinity supply from HNO\(_3\) (g). The model is consistent with the \(
\Delta^{17}O
\) magnitudes and patterns in the INDOEX data. Titration of alkalinity is critical for the success of the model simulation. Regeneration of sea-salt aerosol alkalinity by OH uptake is inconsistent with the \(
\Delta^{17}O
\) observations in INDOEX. Model results indicate that sulfate production in sea-salt aerosols decreases MBL SO\(_4\) concentrations and gas phase H\(_2\)SO\(_4\) production rates by typically 10–30\% (up to >70\%) and increases MBL sulfate concentrations by typically >10\% (up to 30\%). Globally, this mechanism contributes 9\% of atmospheric sulfate production and 1% of the sulfate burden. The impact on H\(_2\)SO\(_4\) (g) formation and implications for the potential formation of new particles in the MBL warrants inclusion in models examining the radiative effects of sulfate aerosols.

1. Introduction

[2] Sulfate is a major component of the atmospheric aerosol and drives the formation of new aerosol particles through nucleation. The implications for scattering of solar radiation and for cloud microphysics represent one of the largest uncertainties in current assessments of climate change [Intergovernmental Panel on Climate Change (IPCC), 2001]. Sulfate is mainly produced within the atmosphere by oxidation of SO\(_2\), which is itself directly emitted (fossil fuel combustion, industrial processes, and volcanoes) or produced within the atmosphere by oxidation of reduced sulfur species such as dimethyl sulfide (DMS) emitted by oceanic phytoplankton. The oxidation of SO\(_2\) can take place in the gas phase [Stockwell and Calvert, 1983] and in the aqueous phase [Schwartz, 1987]. The branching ratio between these two pathways is not well
understood but plays a critical role in determining the nucleation potential and optical properties of the sulfate aerosol.

[1] Oxidation in the aqueous phase is thought to occur primarily in clouds because of their high liquid water content [Schwartz, 1987]. However, deliquescent sea-salt and dust aerosols have also been suggested as important sites for aqueous phase sulfate production [Chameides and Stelson, 1992; Sievering et al., 1991; Song and Carmichael, 2001] because of the rapid rate of SO$_2$ oxidation by ozone in alkaline solutions. Production in sea-salt aerosols could greatly affect sulfate concentrations and size distributions in the marine boundary layer (MBL) [Song and Carmichael, 2001], with consequences for both direct radiative forcing [Shaw, 1983] and indirect radiative forcing via cloud formation [Charlson et al., 1987]. Here we exploit oxygen isotope measurements of sulfate in the MBL to quantify production in sea-salt aerosols, and we interpret the results in terms of sources and titration of MBL alkalinity.

[4] Gas phase oxidation of SO$_2$,

\[
SO_2 + OH + M \rightarrow HOSO_2 + M.
\]

(R1)

produces H$_2$SO$_4$ (g) that can nucleate new particles under favorable conditions, increasing aerosol number density and the population of cloud condensation nuclei (CCN) [Andronache et al., 1997; Kumala et al., 2000; Weber et al., 2001]. Sulfate produced in the aqueous phase is present in larger particles and does not lead to nucleation of new particles. Aqueous phase sulfate formation involves dissolution of SO$_2$ followed by acid-base dissociation of SO$_2$ · H$_2$O to HSO$_3^-$ (pK$_a$ = 1.9) and SO$_3^{2-}$ (pK$_a$ = 7.2). We refer to total dissolved SO$_2$ as S(IV) \equiv SO$_2$ · H$_2$O + HSO$_3^-$ + SO$_3^{2-}$. Oxidation of S(IV) takes place by dissolved H$_2$O$_2$,

\[
(R2a) \quad HSO_3^- + H_2O_2 \leftrightarrow SO_2OH^- + H_2O
\]

\[
(R2b) \quad SO_2OOH + H^+ \rightarrow H_2SO_4,
\]

and dissolved O$_3$,

\[
(R3) \quad O_3 + SO_3^{2-} \rightarrow O_2 + SO_4^{2-}.
\]

The rate of (R3) is dependent on the partitioning of S(IV) as SO$_3^{2-}$ and is significant only at pH > 6 [Chameides, 1984; Calvert et al., 1985]. In contrast, the rate of (R2) is independent of pH [McArdone and Hoffmann, 1983]. S(IV) can also be oxidized in the aqueous phase by other oxidants, including O$_2$ catalyzed by Fe(III) and Mn(II) [Jacob and Hoffmann, 1983], NO$_2$ [Lee and Schwartz, 1983], NO$_3$ [Feingold et al., 2002], and HNO$_4$ [Warneck, 1999; Dentener et al., 2002]. These other oxidants are thought to be of little importance on a global scale, although they may be significant regionally. HOCI and HOBr have been proposed as potentially important S(IV) oxidants in the MBL [Vogt et al., 1996; von Glasow et al., 2002; von Glasow and Crutzen, 2004], but there is so far no observational evidence.

[5] Global models simulating sulfur chemistry generally consider the aqueous phase production of sulfate to proceed in clouds only [Chin et al., 1996; Kasibhatla et al., 1997; Koch et al., 1999; Barth et al., 2000; Tie et al., 2001; Liao et al., 2003]. Some models omit the O$_3$ oxidation pathway [Chin et al., 1996; Kasibhatla et al., 1997; Koch et al., 1999] since H$_2$O$_2$ is the dominant oxidant under typical bulk cloud pH conditions (pH < 5) [Jacob, 2000]. However, if the pH ≈ 8 of surface seawater applies to sea-salt aerosols, then the S(IV) loss rate constant for oxidation by O$_3$ in these aerosols would be 105 times faster than in-cloud oxidation by H$_2$O$_2$, more than making up for their lower liquid water content [Chameides and Stelson, 1992]. Because of the high CO$_3^{2-}$/HCO$_3^-$ content of seawater, sea-salt aerosols have a high acid-buffering capacity or alkalinity, equal to 0.07 equivalents per kilogram (eq kg$^{-1}$) of dry sea-salt emitted [Garcia et al., 1999]. The range of global estimates for the sea-salt flux to the atmosphere, 5000–10,000 Tg yr$^{-1}$ [Chin et al., 2002; Gong et al., 2002; Grini et al., 2002], thus implies a source of alkalinity of 0.35–0.7 T eq yr$^{-1}$, enabling the fast oxidation of 6.1–12.2 Tg S yr$^{-1}$ to sulfate under high-pH conditions. Comparing this to the global oceanic DMS emission of 11–25 Tg S yr$^{-1}$ [Chin et al., 1996; Koch et al., 1999; IPCC, 2001] highlights the potential importance of this pathway.

[7] The alkalinity budget of the MBL is thus critical for quantifying the importance of S(IV) oxidation in sea-salt particles. Once the alkalinity is consumed, the pH of the aerosols drops rapidly, and (R3) effectively shuts off [Chameides and Stelson, 1992]. A schematic for the processes involved is shown in Figure 1. Alkalinity supplied by the emitted sea salt is consumed not only by (R3) but also by condensation of gas phase acids (H$_2$SO$_4$, HNO$_3$, and HCOOH) [Davies and Cox, 1998; Ten Brink, 1998; Katoshevska et al., 1999; Song and Carmichael, 1999; Guimbaud et al., 2002]. Coagulation of acid sulfate particles would also consume sea-salt aerosol alkalinity, but it is negligibly slow relative to condensation of acid gases [Gong and Barrie, 2003]. Ammonia emitted from the ocean and subsiding from the free troposphere is an additional source of alkalinity to the MBL; however, it is not significantly taken up by droplets with pH > 6 [Jacob et al., 1986] and therefore cannot sustain sea-salt aerosol alkalinity to allow (R3) to proceed.

[8] Alkalinity sources in excess of bulk seawater alkalinity have been proposed to impact the sulfur cycle in the MBL. Sea-salt aerosol measurements of excess calcium are attributed to a biogenic source of alkalinity (CaCO$_3$ produced by coccolithophore phytoplankton), which would increase the estimated alkalinity flux from the ocean surface, particularly in regions of high oceanic productivity [Sievering et al., 2004]. On the basis of laboratory experiments, Laskin et al. [2003] suggested that the reaction of the hydroxyl radical (OH) with deliquesced NaCl particles could continuously supply alkalinity through OH$^-$ formation at a rate comparable to sulfate formation via (R3). However, the atmospheric implications of Laskin et al.’s results have been challenged because of their neglect of gas phase diffusion limitation for OH uptake [Sander et al., 2004] and acidification by acids other than SO$_2$ [Keene and
As we will see, the observed oxygen isotopic composition of sulfate argues against a continuous supply of alkalinity from the NaCl + OH reaction. We use here ship measurements of the oxygen isotopic composition of sulfate over the Indian Ocean from the Indian Ocean Experiment (INDOEX) campaign [Ramanathan et al., 2001] to gain information on sulfate formation pathways in the MBL. The different oxidants (O3, H2O2, and OH) have distinct oxygen isotopic compositions that are passed to sulfate upon oxidation [Savarino et al., 2000]. Constraints from oxygen isotopes have been used previously to infer the formation pathways of sulfate in continental air [Lee et al., 2001; Lee and Thiemens, 2001] and in ice cores [Alexander et al., 2002, 2004]. However, quantitative interpretation is difficult on the basis of measurements alone. We show here that a global model simulation including oxygen isotopes can help for that purpose and can also allow for extrapolation to the global scale.

2. Isotopic Constraints on Sulfur Oxidation Pathways

Kinetic and equilibrium processes such as isotopic exchange or diffusion fractionate oxygen isotopes according to the following relation [Matsuhisa et al., 1978]:

\[
\frac{R^{17}}{R^{18}} = \left(\frac{R^{18}}{R^{16}} \right)^{0.52},
\]

where \(R = [^{18}O]/[^{16}O] \) is the isotopic ratio (\(x = 17 \) or \(18 \)), measured relative to an international reference standard \((R_0) \). The standard used for oxygen is standard mean ocean water. The relationship (1) is termed mass-dependent fractionation. Any process that does not follow (1) is termed mass-independent and is characterized by the \(\Delta^{17}O \) value where [Farquhar et al., 2000]

\[
\Delta^{17}O(\text{‰}) = 10^3 \times \left(\frac{R^{17}}{R_0^{17}} - \frac{R^{18}}{R_0^{18}} \right)^{0.52}.
\]

For mass-dependent fractionation, \(\Delta^{17}O = 0 \text{‰} \). Atmospheric H2O and O2 have \(\Delta^{17}O \approx 0 \text{‰} \) [Thiemens, 1999]. SO2 has \(\Delta^{17}O = 0 \text{‰} \) throughout the troposphere because of isotopic exchange with water vapor [Holt et al., 1981], which erases any source-derived isotopic signature.

Both atmospheric O3 and H2O2 have positive \(\Delta^{17}O \) values. Photochemical model calculations by Lyons [2001] constrained with laboratory data [Morton et al., 1990; Thiemens and Jackson, 1990; Janssen et al., 1999; Mauersberger et al., 1999] indicate \(\Delta^{17}O = 35 \text{‰} \) for surface O3, increasing to 38‰ at the tropopause. These values are at the upper end of tropospheric measurements, which, however, are likely to be biased low because of sampling artifacts [Brenninkmeijer et al., 2003]. H2O2 measurements from rainwater in La Jolla, California, show a range of 1.3–2.2‰ [Savarino and Thiemens, 1999] with an average of 1.7‰. The photochemical model calculations by Lyons [2001] indicate \(\Delta^{17}O = 0.9–1.8 \text{‰} \) for tropospheric HO2, the precursor of H2O2, which is consistent with the H2O2 measurements. In contrast, OH has \(\Delta^{17}O = 0 \text{‰} \) because of isotopic exchange with water vapor [Dubey et al., 1997; Lyons, 2001].

Laboratory experiments show that a positive \(\Delta^{17}O \) in sulfate originates from aqueous phase oxidation of SO2 by...
H$_2$O$_2$ and O$_3$ through simple transfer of the isotopic anomaly from the oxidant to the sulfate product following (R2) [Savarino et al., 2000],

$$\text{HSO}_3^- + \text{H}_2\text{O}_2 \rightarrow \Delta^{17}\text{O}_{\text{SO}_4^{2-}} = 0.9^\circ /o$$

and following (R3),

$$\text{SO}_3^{2-} + \text{O}_3 \rightarrow \Delta^{17}\text{O}_{\text{SO}_4^{2-}} = 8.8^\circ /o$$

Other sulfate sources including gas phase oxidation by OH in the troposphere, metal-catalyzed oxidation by O$_2$, and primary sulfate are mass-dependently fractionated (Δ^{17}O = 0) [Savarino et al., 2000; Lee et al., 2002]. Since S(IV) oxidation by O$_3$ (R3) is the only mechanism producing sulfate Δ^{17}O values >1‰, observations of atmospheric sulfate Δ^{17}O values >1‰ are a robust indicator of the importance of O$_3$ in sulfate formation. Sulfate in the atmosphere does not undergo further isotopic exchange.

[12] The Δ^{17}O values of sulfate formed in fresh sea-salt aerosols should be determined by O$_3$ oxidation and should have Δ^{17}O = 8.8‰, while Δ^{17}O values of sulfate formed in clouds should be <1‰ because of low cloud water pH. Rainwater pH during the two INDOEX cruises discussed in this work ranged between 3.7 and 5.6 [Kulshrestha et al., 1999], sufficiently low to suppress S(IV) oxidation by O$_3$. Δ^{17}O measurements for MBL sulfate thus provide a means to distinguish between S(IV) oxidation in sea-salt aerosols versus other processes.

3. Ship Cruise Data

[13] A high-volume air sampler with a four-stage cascade impactor was operated on board the scientific vessel OR/V Sagar Kanya during its 120th cruise (cruise 120) from 27 December 1996 to 31 January 1997 as part of the pre-INDOEX 1997 campaign and during cruise 133 from 18 February to 31 March 1998 as part of the INDOEX 1998 first field phase. The high-volume air sampler was installed in the front of the ship to minimize contamination from the ship exhaust. Cruise tracks are shown in Figure 2. They covered the Indian Ocean from about 15°N to 15°S latitude and from 60° to 79°E longitude. Glass filter samples were collected over 48-hour intervals. Immediately after collection, the filters were placed inside a sealed plastic bag and were refrigerated. A total of 14 collections were made during pre-INDOEX 1997, and 12 collections were made during INDOEX 1998, covering the course of each cruise. After each cruise the filters were sent to La Jolla, California, for isotopic analysis.

[14] The collected sulfate was divided into two groups according to particle size: fine (\leq1 µm) and coarse (>1 µm). The filters were submerged in a beaker with 100 mL of Millipore water and were placed in an ultrasonic bath for 15 min to dissolve sulfate ions. Any insoluble matter was filtered from the solution with 0.22 µm pore size cellulose filters. Activated carbon was added to the solution and was filtered to eliminate dissolved organic species.

[15] For the pre-INDOEX 1997 samples, sulfate was extracted from solution through precipitation as barite (BaSO$_4$) using BaCl$_2$, followed by conversion of BaSO$_4$ to CO$_2$ and fluorination (BrF$_5$) of CO$_2$ to yield O$_2$ suitable for oxygen isotopic analysis as described by Battacharya and Thiemens [1989]. The precision of these Δ^{17}O measurements is ±0.1‰. For the INDOEX 1998 samples we used a more recently developed technique [Savarino et al., 2001; Alexander et al., 2002]. Briefly, the sulfate ions were separated by ion chromatography, were converted to Ag$_2$SO$_4$ using a cation exchange column, and were pyrolyzed at 1000°C in a continuous flow system to yield O$_2$ suitable for oxygen isotopic analysis. The precision of the Δ^{17}O measurements with this method is ±0.3‰.

[16] The isotopic compositions reported in this paper have been corrected for primary sea-salt sulfate (ssSO$_4^{2-}$) using Na$^+$ concentration measurements, according to the relation ([ssSO$_4^{2-}$]/[Na$^+$])$_{\text{sample}} = ([\text{SO}_4^{2-}]/[\text{Na}^+])_{\text{sea water}} = 0.252$ mol mol$^{-1}$ [Calhoun et al., 1991]. Subtraction of ssSO$_4^{2-}$ from the sulfate measurements yields non-sea-salt sulfate (nssSO$_4^{2-}$). For the INDOEX 1998 cruise, [Na$^+$] was measured directly in our samples by ion chromatography (Dionex 4500). For the pre-INDOEX 1997 cruise we used [Na$^+$] data from a bulk aerosol sampler (D. L. Savoie, personal communication, 2004) running continuously next to our sampler, and we assumed a 10/90 fine/coarse mass fraction for sea-salt aerosols [Gong et al., 2002].

[17] Figure 3 shows the nssSO$_4^{2-}$ Δ^{17}O (‰) and Na$^+$ concentration (µg m$^{-3}$) measurements plotted against latitude. The pre-INDOEX 1997 Δ^{17}O values are <1‰ except for the coarse nssSO$_4^{2-}$ south of the equator which displays large values, up to 6.7‰. A similar latitudinal gradient is observed for [Na$^+$]. During the INDOEX 1998 cruise, Δ^{17}O was generally <1‰ except for two samples, both collected south of the equator. There is thus evidence of S(IV) + O$_3$ as an important source of sulfate under some conditions but not in others. Association with high Na$^+$ concentrations
4. GEOS-CHEM Model

We use the GEOS-CHEM global three-dimensional (3-D) model of coupled aerosol-oxidant chemistry [Park et al., 2004] to simulate the δ^{17}O observations from the two cruises. The model (version 5.04) (available at http://www-as.harvard.edu/chemistry/trop/geos/geos_versions.html) uses assimilated meteorological data from the NASA Goddard Earth Observing System (GEOS) including winds, convective mass fluxes, mixed layer depths, temperature, precipitation, and surface properties. Meteorological data have 6-hour temporal resolution (3-hour for surface variables and mixing depths). Meteorological fields for 1996–1997 have a horizontal resolution of $2^{1/2}$ latitude by $2.5^{1/2}$ longitude with 46 sigma vertical levels (including 3 below 1 km for a column based at sea level). Meteorological fields for 1998 have $1^{1/2} \times 1^{1/2}$ horizontal resolution with 48 sigma vertical levels (including 7 below 1 km for a column based at sea level). For input into GEOS-CHEM we degrade the horizontal resolution to $4^{1/2} \times 5^{1/2}$. We conduct two simulations, one for July 1996 to June 1997 and one for January to April 1998.

Anthropogenic sources of sulfur in the model total 67.5 Tg S yr$^{-1}$, including 4.2 Tg S yr$^{-1}$ from ships. This anthropogenic sulfur is emitted as SO$_2$ except for 3% as primary SO$_4^{2-}$ (5% in Europe) [Chin et al., 2000]. Natural sources include oceanic phytoplankton (12.4 Tg S yr$^{-1}$ as DMS), volcanoes (5.5 Tg S yr$^{-1}$ as SO$_2$), and biomass burning (1.3 Tg S yr$^{-1}$ as SO$_2$). The emission flux of sea-salt (particle m$^{-2}$ s$^{-1}$) is calculated as a function of dry particle size and local 10 m wind speed following the empirical relationship of Monahan et al. [1986] and is integrated over fine (0.1–1 μm) and coarse (1–10 μm) size ranges. All emissions are distributed vertically by mass in the local mixed layer.

The simulation includes 10 chemical species transported in the model: DMS, SO$_2$, sulfate (as six separate tracers), methanesulfonic acid, NH$_4$, NO$_3$, H$_2$O$_2$, submicron sea salt, and supermicron sea salt. Sulfate formation from oxidation of SO$_2$ takes place by gas phase oxidation by OH and by in-cloud oxidation by H$_2$O$_2$ and O$_3$. A cloud pH of 4.5 is assumed for the latter. The oxidation of S(IV) by O$_3$ in sea-salt aerosols is described in section 5. We use monthly mean oxidant (OH, O$_3$, and NO$_3$) concentration fields, H$_2$O$_2$ production rates and photolysis frequencies, and total inorganic nitrate (HNO$_3$ (g) plus aerosol NO$_3$) concentrations from a coupled aerosol-oxidant simulation as described by Park et al. [2004].

Wet deposition of aerosols is as described by Liu et al. [2001] and includes contributions from scavenging in

Figure 3. Measurements of (top) non-sea-salt sulfate (nssSO$_4^{2-}$) δ^{17}O and (bottom) Na$^+$ concentrations for pre-INDOEX 1997 and INDOEX 1998. The data are segregated as fine (<1 μm diameter, open squares) and coarse (>1 μm diameter, solid diamonds) aerosols for all but Na$^+$ for the 1997 pre-INDOEX cruise. Solid squares are bulk aerosol measurements from D. L. Savoie (personal communication, 2004).
convective updrafts, rain out and washout from convective anvils and large-scale precipitation, and return to the atmosphere following reevaporation. Dry deposition velocities for sea-salt aerosols (and sulfate formed in sea-salt aerosols) are computed with the size-dependent scheme of Zhang et al. [2001] integrated over each model size bin and accounting for hygroscopic growth as a function of relative humidity [Gerber, 1985]. Dry deposition velocities for all other species are computed with a standard resistance-in-series scheme based on Wesely [1989] as described by Wang et al. [1998].

[25] Our global sea-salt aerosol budget is given in Table 1, and global maps of surface (0–100 m altitude) air concentrations for January 1997 (pre-INDOEX 1997) and March 1998 (INDOEX 1998) are shown in Figure 2. Our sea-salt emission (5370 Tg yr⁻¹) and burden (5.9 Tg) are within the range reported in the literature (Table 1). Differences between models reflect, in part, the accounting of different size ranges. Our simulated monthly average sea-salt concentrations over the Indian Ocean (Figure 2) show a similar spatial distribution to the [Na⁺] measurements from the two INDOEX cruises (Figure 3), with higher concentrations south of the equator due to stronger winds.

5. Sea-Salt Aerosol Alkalinity and Sulfate Production

[24] Sea-salt aerosol alkalinity is consumed rapidly by uptake of SO₂ (g), H₂SO₄ (g), and HNO₃ (g). To describe this process in the model, we start by calculating the fluxes of the three acids to sea-salt aerosols in the MBL column by assuming that the alkalinity is present in excess. We then compare the sum of these fluxes to the local emission flux of alkalinity. If alkalinity is indeed in excess, then the rate of S(IV) + O₃ in sea-salt aerosols is calculated as the SO₂ flux. We assume that the excess alkalinity is eventually removed by uptake of carboxylic acids [Mochida et al., 2003; Legrand et al., 2004] or hydrochloric acid (HCl) or by deposition to the oceans; it is not transported outside of the MBL in the model. If alkalinity is not in excess, we assume that SO₂ (g), H₂SO₄ (g), and HNO₃ (g) compete for the available alkalinity on the basis of their relative fluxes. Aerosol neutralization by NH₃ is not significant above pH values of ~6 [Jacob et al., 1986; Shi et al., 1999] and so is not considered here for sea-salt aerosols.

[25] Uptake of SO₂ (g) by sea-salt aerosols is driven by the SO₂⁻ + O₃ aqueous phase reaction with a rate constant $k = 1.5 \pm 0.6 \times 10^9$ mol L⁻¹ s⁻¹ [Hoffmann and Calvert, 1985]. For a pH = 8, a typical O₃ concentration of 30 ppb, and a

Henry’s law constant for O₃ of 1.1×10^{-2} mol L⁻¹ atm⁻¹ [Seinfeld and Pandis, 1998] we obtain a first-order loss rate constant for S(IV) in the aqueous phase $k_{chem} = \frac{[SO_2]^-}{[S(IV)]}$ = 4.4×10^{-1} s⁻¹. This loss rate constant is sufficiently fast that the overall reaction rate is limited by SO₂ transfer from the gas to the aerosol phase [Jacob, 2000; Liao et al., 2004]. Ozone, present at much higher concentrations than SO₂, is in excess. We express the SO₂ transfer rate constant (k_t) following the formulation of Schwartz [1986]:

$$k_t = \frac{r_{so2}}{r_D + \frac{4}{v_N} - 1} 4\pi r^2 N(r) dr,$$

integrated over each particle radius bin [r_0, $r_0 + \Delta r$]. Here $N(r)dr$ is the number concentration of sea-salt particles of radius r, $r + dr$ derived from the Monahan et al. [1986] emission formulation and allowing for hygroscopic growth as a function of local relative humidity, $D = 0.2$ cm² s⁻¹ is the gas phase molecular diffusion coefficient of SO₂ in air, $v = 3 \times 10^4$ cm s⁻¹ is the mean molecular speed, and $\alpha = 0.11$ is the mass accommodation coefficient for SO₂ on liquid water surfaces [Worsnop et al., 1989].

[26] Uptakes of H₂SO₄ (g) and HNO₃ (g) by sea-salt aerosols are similarly limited by transfer to the aerosol surface [Abbatt and Waschewsky, 1998; Song and Carmichael, 1999; Guimbaud et al., 2002]. We estimate the uptake rate of H₂SO₄ (g) by aerosols from the production rate of H₂SO₄ (g) through (R1), partitioned between sea-salt and H₂SO₄-NH₃-H₂O aerosols on the basis of their locally computed relative surface areas in the model. For the latter we assume a lognormal size distribution with mean radius $r = 0.082 \mu m$ and geometric standard deviation of 2.0 to determine surface area. The sea-salt aerosol surface area is calculated by integrating the emission flux (particle m⁻² s⁻¹) for each size bin [Monahan et al., 1986]. The computation of HNO₃ (g) concentrations in the aerosol-oxidant GEOSCHEM simulation of Park et al. [2004] is biased high because uptake by aerosols is considered only through the HNO₃-H₂SO₄-NH₃ system and does not include uptake by sea salt. To deal with this problem, we use the locally computed HNO₃ (g) deposition flux to the ocean in GEOS-CHEM as representing, in fact, uptake by sea-salt aerosols. The lifetime of HNO₃ (g) against deposition to the ocean surface (~1 day) is sufficiently long compared with uptake by sea-salt aerosols (~1 hour) that the latter will indeed dominate as long as the aerosols remain alkaline.

<table>
<thead>
<tr>
<th>Table 1. Global Sea-Salt Aerosol Budgets Reported in the Literaturea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission, Tg yr⁻¹</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>This work</td>
</tr>
<tr>
<td>Liao et al. [2004]</td>
</tr>
<tr>
<td>Gong et al. [2002]</td>
</tr>
<tr>
<td>Chiu et al. [2002]</td>
</tr>
<tr>
<td>Grini et al. [2002]</td>
</tr>
<tr>
<td>Takemura et al. [2000]</td>
</tr>
<tr>
<td>Tegen et al. [1997]</td>
</tr>
</tbody>
</table>

aNA, not available.
bDry particle radius r.
cAs percentages of total deposition, which balances emission.
We find in this manner that sea-salt aerosol alkalinity is usually titrated by excess acidity, on a timescale of <1 hour following emission, for most oceanic conditions. Exceptions are remote oceanic regions with high sea-salt emissions, such as the Southern Ocean. Uptakes of SO₂(g) and HNO₃(g) are both important for titrating sea-salt aerosol alkalinity, their relative importance depending on region (Figure 4). Uptake of H₂SO₄(g) is negligible in comparison because of low surface concentrations and competition with condensation on H₂SO₄-HNO₃-NH₃-H₂O aerosols. Titration by SO₂ is most important at extratropical northern latitudes where anthropogenic emissions (including ship emissions) are high. Titration by HNO₃(g) is most important in the tropics where NOₓ emissions from soils, biomass burning, and lightning dominate over SO₂ emissions.

6. Model Evaluation With INDOEX Measurements

We ran two GEOS-CHEM simulations for the period of each cruise, one with S(IV) oxidation in sea-salt aerosols as described in section 5 and one without. The model was sampled as 24-hour averages along the track of each cruise. Since the model does not resolve the sulfate size distribution, the observed Δ¹⁷O data for the coarse and fine size ranges were combined to give a bulk Δ¹⁷O value for each sample \(\Delta^{17}O_{\text{bulk}} = \chi \Delta^{17}O_{\text{fine}} + (1 - \chi) \Delta^{17}O_{\text{coarse}} \), where \(\chi \) is the fraction of total nssSO₄²⁻ in the fine size range. The comparison between simulated and observed bulk Δ¹⁷O is shown in Figure 5 for the pre-INDOEX 1997 (Figure 5, top) and 1998 INDOEX (Figure 5, bottom) cruises. Δ¹⁷O values in the simulation with no sea-salt chemistry are always <1‰, while the simulation with sea-salt chemistry shows a similar range as the measurements (~0.5–3‰ for pre-INDOEX 1997 and ~0.5–2‰ for INDOEX 1998) and a similar latitudinal structure (Δ¹⁷O > 1‰ only south of the equator). The latitudinal structure of Δ¹⁷O in the model is driven by sea-salt emissions, as illustrated in Figure 2 by the strong gradient of sea-salt concentrations along the cruise tracks.

For the pre-INDOEX 1997 cruise we ran two additional sensitivity simulations. In the first sensitivity simulation we investigated the effect of an additional biogenic alkalinity source in sea-salt aerosols by doubling the alkalinity flux (0.14 eq kg⁻¹) on the basis of the suggested 1–2.5 times enhancement of alkalinity indicated by calcium measurements from the western Pacific Ocean [Sievering et al., 2004]. This results in a 50–100% increase in the amount of sulfate formed in sea-salt aerosols (3–38% of total sulfate along the cruise track, compared to 2–24% in the standard simulation), with an increase in Δ¹⁷O sulfate values of 0.1–1.1‰ (Figure 6, top). This simulation reproduces the latitudinal trend in Δ¹⁷O values; however, unlike the observations, all Δ¹⁷O values are ≥1‰, and the maxi-
mum 17O value overestimates the observations by 0.8%. Chlorophyll images from Sea-viewing Wide Field-of-view Sensor (SeaWIFS) (available at http://seawifs.gsfc.nasa.gov/seawifs.html) indicate that oceanic productivity is relatively low in the Indian Ocean during January to March 1998 (data are not available for January 1997). The contribution of biogenic alkalinity and its effects on the sulfur budget will vary with oceanic productivity [Sievering et al., 2004]. The impact of a biogenic alkalinity source would be better tested with sulfate 17O measurements in a region of high oceanic productivity and high acid flux such as the North Atlantic.

[36] In the second sensitivity simulation we assumed that OH uptake by sea-salt aerosols always maintains an excess of alkalinity [Laskin et al., 2003]. The 17O values in this simulation greatly overestimate the measurements (Figure 6). We conclude that regeneration of alkalinity does not, in fact, take place, consistent with the observations of Keene et al. [2002].

7. Implications for the Sulfur Budget

[31] Table 2 presents the GEOS-CHEM global budgets for sulfate produced by different oxidation pathways. For a general discussion of the GEOS-CHEM global sulfate budget, including comparisons to other models, see Park et al. [2004] and Martin et al. [2004]. Sulfate formed by gas phase oxidation has the longest lifetime (6.1 days) because of a relatively high contribution from dry regions and high altitudes. The shortest lifetime (0.5 days) is for sulfate formed on coarse sea-salt aerosols. Wet processes account for 85% of deposition for total sulfate and dominate except for sulfate formed in coarse sea-salt aerosols. Sulfate formed on sea-salt aerosols accounts for 9% of global sulfate production but only 1% of the global sulfate burden. Liao et al. [2004] found a much larger contribution to the burden (13%) because they assumed, following Laskin et al. [2003], that reaction of OH with sea-salt aerosols would sustain alkalinity. As we have seen, this is not consistent with the oxygen isotope data.

[32] In our model, sulfate produced via S(IV) + O$_3$ in clouds is 4 times more abundant globally than sulfate produced by the same process in sea-salt aerosols. This is despite our assumption of a uniform cloud water pH of 4.5, greatly limiting the importance of the S(IV) + O$_3$ relative to the S(IV) + H$_2$O$_2$ pathway. The contribution from the S(IV) + O$_3$ in-cloud reaction is largely confined to the Northern Hemispheric winter when H$_2$O$_2$ is titrated [Kleinman and Daum, 1991; Feichter et al., 1996], but there are large uncertainties with this result involving SO$_2$ oxidation on ice (in our model, in-cloud oxidation shuts down at temperatures below 258 K) and the competition from other non-photochemical oxidants [Feichter et al., 1996; Kasibhatla et al., 1997; Leriche et al., 2003]. 17O measurements of sulfate in that environment could effectively resolve these issues.

Table 2. GEOS-CHEM Global Budgets for Sulfate Produced by Different Oxidation Pathways

<table>
<thead>
<tr>
<th>Source, Tg S yr$^{-1}$</th>
<th>Dry Depositiona</th>
<th>Wet Depositiona</th>
<th>Lifetime, days</th>
<th>Burden, Tg S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sulfate</td>
<td>31.0</td>
<td>15%</td>
<td>85%</td>
<td>4.1</td>
</tr>
<tr>
<td>SO$_2$ + OH (gas phase)</td>
<td>8.2</td>
<td>15%</td>
<td>85%</td>
<td>6.1</td>
</tr>
<tr>
<td>S(IV) + H$_2$O$_2$ (in cloud)</td>
<td>15.7</td>
<td>7%</td>
<td>93%</td>
<td>4.0</td>
</tr>
<tr>
<td>S(IV) + O$_3$ (in cloud)</td>
<td>2.3</td>
<td>13%</td>
<td>87%</td>
<td>3.1</td>
</tr>
<tr>
<td>S(IV) + O$_3$ (fine sea salt)</td>
<td>0.4</td>
<td>8%</td>
<td>92%</td>
<td>1.7</td>
</tr>
<tr>
<td>S(IV) + O$_3$ (coarse sea salt)</td>
<td>2.3</td>
<td>62%</td>
<td>38%</td>
<td>0.5</td>
</tr>
<tr>
<td>Primary anthropogenic</td>
<td>2.0</td>
<td>20%</td>
<td>80%</td>
<td>3.7</td>
</tr>
</tbody>
</table>

aAs percentages of total deposition, which balances production.
Figure 7 shows the relative effect of sea-salt chemistry on simulated yearly mean SO$_2$ and sulfate concentrations in the MBL. Concentrations of SO$_2$ decrease by 10–30% over most of the oceans, up to a maximum of >70% over the Southern Ocean. Formation of sulfate in sea-salt aerosols could either increase total sulfate (by competing with SO$_2$ deposition) or decrease it (because of faster dry deposition leading to shorter sulfate lifetime). We find that sulfate concentrations increase slightly in much of the MBL, up to a maximum of 30% in the tropical South Pacific. In that region, rapid wet deposition (due to strong convection) makes the negative effect on sulfate concentrations relatively less important. Using a global model, Gong and Barrie [2003] previously examined the effect of sea-salt aerosols on the sulfur budget in the MBL due to condensation and coagulation processes and found decreases of 5–75% in sulfate concentrations in the MBL as a result of condensation of H$_2$SO$_4$ (g) followed by deposition. Our simulation does not account for this effect but indicates that it would be partially compensated by SO$_2$ oxidation in sea-salt aerosols, not taken into account by Gong and Barrie [2003].

Figure 7 also shows the impact of sea-salt chemistry on simulated yearly mean H$_2$SO$_4$ (g) production rates by (R1) in the MBL. The decrease is usually <30 but >50% over the Southern Ocean. This would tend to decrease the potential for formation of new particles over the oceans. The effect tends to be greatest where sea-salt aerosol concentrations are highest, and these are not regions propitious for formation of new particles in any case. Nevertheless, the widespread nature of the effect (10–30% over most of the oceans) suggests that it could be of some importance for model simulations of aerosol nucleation.

8. Conclusions

Measurement of the mass-independent composition of the oxygen isotopes (δ17O ≠ 0) of atmospheric sulfate aerosol provides quantitative insight into the oxidation pathways responsible for sulfate formation. A positive δ17O implies aqueous phase formation involving oxidation of S(IV) by H$_2$O$_2$ or O$_3$. A δ17O > 1‰ specifically implies aqueous phase oxidation by O$_3$ [Savarino et al., 2000]. The latter reaction can proceed at a significant rate only at relatively high pH (~6). Measurements presented here from two INDOEX ship cruises over the Indian Ocean show frequent occurrences of δ17O > 1‰ in regions of high sea-salt concentrations but not elsewhere. This provides evidence for sulfate formation in alkaline sea-salt aerosols by the S(IV) + O$_3$ pathway.

We used the GEOS-CHEM global chemical transport model to interpret the δ17O observations and to place them in a global context. We showed that the extent of sulfate formation in sea-salt aerosols is usually limited by the alkalinity flux associated with sea-salt aerosol emission and by competition for this alkalinity supply from HNO$_3$ (g). Once the alkalinity of the sea-salt aerosols has been titrated, the pH drops abruptly, and sulfate formation shuts off. In the extratropical Southern Hemisphere where the sea-salt alkalinity flux often exceeds the availability of strong acids, sulfate formation in sea-salt aerosols is limited by the gas-to-particle transfer rate of SO$_2$.

We find that a model simulation including S(IV) + O$_3$ oxidation in alkaline sea-salt aerosols, and accounting for acid titration of sea-salt alkalinity, can reproduce the range and latitudinal structure of the observed δ17O sulfate values from the two INDOEX ship cruises. The latitudinal structure of δ17O in the model is driven by sea-salt emissions. A sensitivity simulation with a doubled alkalinity flux, to account for a possible biogenic alkalinity (CaCO$_3$) source, produces similar results in terms of the latitudinal trend in the δ17O observations, with a 0.8‰ overestimate of the maximum δ17O observation. The potential impact of a biogenic alkalinity source on the sulfur budget in the MBL could be better tested with sulfate δ17O measurements in a region of high oceanic productivity and high acid flux such as the North Atlantic. Another sensitivity simulation not accounting for titration of alkalinity (i.e., assuming that alkalinity always remains in excess) greatly overestimates (by 3.8‰) the δ17O observations. This argues against the hypothesis that sea-salt alkalinity is regenerated in the atmosphere by the NaCl + OH reaction [Laskin et al., 2003].

We applied the GEOS-CHEM model with the above constraints to quantify the impact on the atmospheric sulfur budget of sulfate formation in sea-salt aerosols. Sulfate formed in sea-salt aerosols has a short lifetime (0.5–1.7 days) compared to sulfate formed in the gas phase or in clouds (3.1–6.1 days) and accounts for 9 and 1% of total global sulfate production and burden, respectively. This sea-salt chemistry decreases SO$_2$ concentrations in the MBL by typically 10–30% but by >70% over the Southern Ocean. It increases sulfate concentrations by up to 30%. This chemical enhancement of sulfate in the MBL offsets, at least in part, the depletion due to condensation of H$_2$SO$_4$ (g) onto sea-salt particles followed by dry deposition [Gong et al., 2002]. Sulfate formation in sea-salt aerosols also leads to reductions in the rate of gas phase H$_2$SO$_4$ formation by 10–30% over
much of the world’s oceans. This would tend to decrease the potential formation of new particles over the oceans and hence any possible thermostat involving production of CCN from temperature-dependent DMS emissions.

[39] $\Delta^{17}O$ measurements of sulfate aerosols collected at various continental sites also show values $>1.0\%$ [Lee et al., 2001; Lee and Thiemens, 2001; Bao and Reheis, 2003], indicating potential sources of continental alkalinity. Laboratory experiments have observed sulfate formation on dust when exposed to SO_2 and O_3 [Ullerstam et al., 2002], perhaps at least partially explaining these large continental $\Delta^{17}O$ values. Ice core sulfate $\Delta^{17}O$ measurements are available from Greenland and Antarctica extending through the last interglacial period and show values in the range of 0.2–4.8%, varying with climate on the glacial-interglacial timescale [Alexander et al., 2002, 2004]. Interpretation of these ice core data with a global 3-D paleoclimate model could provide important new information on trends in sulfur and oxidant budgets over Earth’s history.

[40] Acknowledgments. Financial support for this project was provided by a NOAA CGC postdoctoral fellowship to B. Alexander and by the NSF Atmospheric Chemistry Program. The GÉOS-CHEM model is managed at Harvard University with support from the NASA Atmospheric Chemistry and Modeling Analysis Program. B. Alexander is a Daly postdoctoral fellow in the Department of Earth and Planetary Sciences, Harvard University.

References

Kasibhatla, P., W. L. Chameides, and J. St. John (1997), A three-dimensional global model investigation of seasonal variations in the atmo-

B. Alexander, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195, USA. (beckya@uwashington.edu)

D. J. Jacob, R. J. Park, and R. M. Yantosca, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA.

C. C. W. Lee, URS Corporation, 2020 East First Street, Suite 400, Santa Ana, CA 92705, USA.

Q. B. Li, Jet Propulsion Laboratory, 4800 Oak Grove Drive, M/S 183-501, Pasadena, CA 91109, USA.

J. Savarino, Laboratoire de Glaciologie et Géophysique de l’Environnement/CNRS, 54, Rue Molière BP96, St. Martin d’Hères F-38402, France.

M. H. Thiemens, Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0356, USA.