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Effective transport in random shear flows
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We obtain an effective transport description for the superdiffusive motion of random walkers in stratified
flow by projection of the process on the direction of stratification. The effective dimensionally reduced motion
is shown to describe a correlated random walk characterized by the Lagrangian velocity correlation. We
analyze the projected motion through exact analytical solutions for the distribution density for an arbitrary
correlated Gaussian noise and derive an evolution equation for the one-point and conditional two-point dis-
placement densities. The latter gives an explicit effective equation for superdiffusive transport in stratified
random flow and demonstrates that the displacement density has a Gaussian scaling form for all times.
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Non-Markovian transport and non-Fickian and anomalous
diffusion are frequently observed in disordered dynamic sys-
tems (e.g., [1-3]). Many studies have focused on the devel-
opment of effective non-Markovian transport frameworks
based on the assumption of heavy-tailed uncorrelated disor-
der distributions (e.g., [4,3]). Here we study the complemen-
tary scenario of non-Markovian processes originating from
(strong) correlations by focusing on effective transport in
stratified random flow (e.g., [5-7]). Matheron and de Marsily
[5] studied the latter as a model for solute transport in strati-
fied porous media and found superdiffusive growth of the
distribution density in the direction of stratification. Such
anomalous and in general non-Fickian transport features
dominate solute transport in geological formations.

Many applications, ranging from performance assessment
of nuclear waste repositories in geological media to ground-
water remediation, require identifying and quantifying the
effective large scale transport dynamics caused by the inter-
action of medium heterogeneities and microscale transport
dynamics [e.g., [8,9]]. The latter implies spatial or stochastic
averaging of the microscale transport equations, i.e., dimen-
sional reduction or in general projection of the process (e.g.,
[10,11]). Such a contraction of information in general leads
to a non-Markovian property of the projected process [11]
that can be cast into formal effective equations by using the
projector formalism proposed by Zwanzig and Mori [12,13],
see, e.g., [14] for an application to transport in random me-
dia. Here, we derive an explicit effective transport equation
and explicit solutions for the distribution densities of the
projected process by exploiting the fact that the projected
motion of random walkers in stratified flow describes a cor-
related random walk characterized by its Lagrangian velocity
correlation. It has been shown that the latter plays an impor-
tant role for characterizing non-Fickian transport in hetero-
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geneous media in general (e.g., [15]). In the following, we
pose the projection problem for transport in stratified random
flow, which is solved by (i) demonstrating that the projected
motion of a random walker describes a correlated random
walk; (ii) derivation of a (non-Markovian) transport equation
for correlated random walks. These steps render an explicit
effective transport framework for stratified random media.
Transport of a passive scalar c¢(x,?) in a stratified flow
field u(y) is described by the Fokker—Planck equation (e.g.,

[5D).

de(x,1) . Dé‘zc(x,t)

%D ) S (1)

at ox ady

where the coordinate vector is given by x=(x,y)”; D is the
diffusion coefficient. For simplicity, we restrict this study to
an infinite d=2 dimensional domain, no diffusion in flow
direction. The spatial density c(x,¢) and its gradient normal
to the boundaries at infinity are zero. The normalized initial
distribution c(x,7=1y)=p(y) 8(x), where p(y) is normalized to
one, its variance is denoted by a*. Fora>>1, p(y) is assumed
to have the scaling form,

p(y) = lfp(X>, ()
a a

where f,(0) is constant. The stratified flow field u(y) is a
realization of the stationary spatial Gaussian random process
{u(y)} characterized by the constant ensemble mean velocity
up=u(y) and the correlation of the velocity fluctuations
u'(y)=u(y)—ug, which is given by Cr(y—y")=u'(y)u’(y").
The overbar denotes the ensemble average over all realiza-
tions of {u(y)}.

In order to obtain a simplified effective transport descrip-
tion, the spatial density is projected on the x direction by,
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clx,) = f“’ dyc(x,1). (3)

—00

We determine a non-Markovian evolution equation and ex-
plicit analytical expressions for the average density ¢(x,) by
formulating the projected transport problem as a correlated
random walk.

The starting point is the Langevin equation equivalent to
the Fokker-Planck equation (1), which is given by (e.g., [6]),

dX(t|b) dY(t|b) ~
dr 4 - &@). 4)

=ug+u'[Y(t]D)],

We used here the decomposition u(y)=ug+u'(y); &(r) is a
Gaussian white noise with zero mean and correlation
(&(1)&(¢"))=2D8(t—t"), where the angular brackets denote
the white noise average. The initial particle position at time
t=t, is given by [X(ty|b),Y(ty|b)]=(0,b). Particles are ini-
tially distributed along the y axis according to p(b). The
distribution density c¢(x,7) in this picture is given by

c(x,1) =f dbp(b)(dlx - X(t[p)]oly - Y(t[p)]).  (5)
Application of (3) to (5) gives for the average density,
(x,1) = f dbp(b){&lx — X(t[p)]) = (3x - X(D)]),.  (6)

The trajectory X(¢) describes the d=1 dimensional random
walk,

dX(z)

—=ug+{(1), 7

3y VE () (7)

with the initial position X(r=f1,)=0 and noise (1)
=u'[y(t,b)]. The latter is Gaussian distributed because u'(y)
is a Gaussian random field. The noise average, denoted by
()¢ is defined in (6) and consists of taking the average over

the white noise &(¢) and integration over the source distribu-
tion p(b). Thus, noise mean and correlation are given by

(é(t)>g=f dylf dbp(b)u’(y+b)}g(y,t|0), (®)

<§(f)§(f,)>g=f dyf dy'[f dbp(b)u’(y+b)u’(y’+b)}

Xg(y9t_t,|y,)g(y7t,|0)7 (9)

where g(y,1—1"|y")=(y—y(t,b))y()y is the conditional
density of the transverse diffusion process in (4). For the
infinitely extended medium under consideration here, it is
given by

(10)

—_y)2
oot W y)]

1
") = ——=c¢ex [
Y V4Dt P 4Dt
In the limiting case of a>>1 and using the scaling form
(2), the expressions in the square brackets in (8) and (9) can

be substituted by the respective ensemble averages,
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limlf dbf<l3>u'(y+b)su'_(y)=o, (11)
a—ood o0 a

1(” b
lim—f dbf(—)u'(y+b)u’(y’+b)
a—od © a

=u'(y)u'(y')
=CE(y_y,)7 (12)

where we used (2) and the ergodicity of {u(y)}. Thus, in this
limit the Lagrangian mean ({(¢)),=0. Using (12) in (9), we
obtain for the Lagrangian velocity correlation,

<§(1)§(1’)>§ECL(t_t,)=f dyCr(y)g(y.t=1'(0).
(13)

Thus, for sufficiently large source distributions, the noise £(¢)
can be approximated by a stationary correlated Gaussian
noise. The projected motion of a random walker in stratified
random flow is a correlated random walk characterized by
the correlated Gaussian noise (), with zero mean and cor-
relation (13). As such, we can obtain an effective transport
framework and a complete effective description for transport
in stratified random flow by deriving solutions for the n-point
densities of correlated random walks, which are non-
Markovian by nature. In the following, we derive explicit
solutions for correlated random walks.

Discretizing (7) in time, we obtain

X(ty+ 7) = X(ty) + ugt+ {(ty) 7, (14)

with the constant time increment 7 and discrete time 7y=NT.
The random walk (14) has the sharp initial position
X(ty)=x at time 1,=N,7. The random force {(zy) kicks in at
time In,: In order to make the process well defined, for
IN<Iy, We consider the process deterministic or driven by
white noise. Thus, for ty>1y , the evolution of X(zy) does
not depend on the system states previous to I, The series of
random velocities {(1,,) (n=Nj, ..., ) describes the stochas-
tic process {{(z,)}. The latter can be described by its charac-
teristic function, which is defined by the Fourier transform of
the multivariate distribution density (e.g., [10]),

Gl{K(t,)}) = <exp[i2 K<zn)§<rn)]> . )

¢

The {«(z,)} denote the Fourier variables conjugate to {£(z,)}.
For the multi-Gaussian correlated processes (), it is given
by

G({«(t,)}) = exp[— %E K(t,)Cp(t, — tnr)K(tnf)} . (16)

’
nn

Note that {(z,)} is Gaussian white noise for C,(t,—t,)
« g, Systems driven by strongly correlated noise have
been studied in various contexts (e.g., [16]) ranging from
Brownian motion in fractals [e.g. [17,18]] to the description
of animal movements (e.g., [19]).
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The correlated random walk (14) is non-Markovian. Note
that a non-Markovian process is not sufficiently character-
ized by its one-point density and transition probability. Here,
for simplicity we focus only on the latter two distributions.

In order to derive an explicit expression for c(x,z), we

perform a Fourier transform of (6), which gives for ¢(k,?) in
discrete time,

&(k,ty) = (explikX(ty) D, (17)

where k is frequency and the tilde denotes Fourier-
transformed quantities. From (14) we obtain for X(z,),

N-1 N-1
X(ty) = x+ 2 upt+ 2 {(1)7. (18)
I=Ny I=Ny

Inserting the latter into (17), and subsequently performing
the noise average, gives

N-1
clk,ty) = exp|:ik<x0 -> MET) :|

=Ny
X G k(1) = Ky k(1) = 0iy),  (19)

which can be verified by inserting (15) into (19).

For process times ty that are large compared to the con-
stant time increment, > 7, we take the limit to continuous
time, set #y=t, and identify

N-1

> olt)T= J dr’ (1) (20)

=Ny 0

for an arbitrary function ¢(z). Thus, we obtain from (19) by
using (16) and taking the limit of continuous time,

k1) = exp|:— K2 J o de'D(t") + ikug(t — to):| , (2D

0

where we defined the time-dependent diffusion coefficient,
t
D(t) = f de'C,(1'). (22)
0

A similar method was used in Ref. [18] for the derivation of
the evolution equation for the one-point density for a gener-
alized Langevin equation with power-law correlated noise.
Note that with the same method as outlined above all n-point
densities of the correlated random walk (7) can be calculated
[23].

Derivation of (21) with respect to time and transforming
the resulting equation back to real space, we obtain the fol-
lowing evolution equation for the average concentration,

? ) ) - Dl 1) el =0 (23)
—c(x,t) + ug—clx,1) — D(t — t)) —clx,1) =

ot Fox 7

with the initial condition ¢(x,t=f,)=8(x—x,). Note that the
average concentration is identical to the two-point condi-
tional density,
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FIG. 1. Effective distributions obtained from (triangles) projec-
tion of the random walk (4) to the direction of stratification using
numerical random walk simulations and (solid) expression (25), at
two different times. The velocity mean and autocorrelation are ug
=10 and Cg(y) < 8(y).

P(xtx’,t") = (3[x = X(OD | x(er)=n (24)

for t'=ty,. As outlined above, for consistency reasons, we
assume that the correlated noise is switched on at ¢, while for
t<t, the noise is uncorrelated or zero. Thus, (23) expresses
the fact that the system remembers the point in time when
the correlated random force is switched on, i.e., the non-
Markovianity of the projected process. Seen as the evolution
equation for P(x,t|x',t"), (23) expresses the system’s
memory of a measurement at time ¢’.
The solution of (23) is a Gaussian pulse, i.e.,

cx,n) =27 (0] exp[- (x —ug)¥o*(n)],  (25)

where we set 7,=0 and defined the variance o2() by
t
(1) =J dt'D(t"), (26)
0

where D(z) is given by the general expression (22). In terms
of the Eulerian velocity correlation function, D(z) is given by
(e.g., [5,20]),

D(t) = f dr’ f dyCr(y)g(y.1'|0), (27)
0 —0

which can be obtained by inserting (13) into (22). Note that
the average density (25) is always Gaussian, irrespective of
the noise correlation C;(¢) and thus of the Eulerian velocity
correlation Cg(y). Figure 1 shows the average concentration
c(x,1) obtained by random walk simulations compared to the
analytical solution (25). Analytical and numerical solutions
are in perfect agreement.

For times > 7p=[%/D and a Cg(y) that decays sharply on
the correlation scale /, it is easy to show that D(r) <« \e";; thus
we find for the variance (26) o2(¢) < +¥2. For delta-correlated
velocity, i.e., Cg(y) = &(y), this is exactly so for all times [6].

020101-3
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Thus, for zero bias, i.e., uz=0, and delta-correlated velocity,
the projected density ¢(x,?), (25), has the exact scaling form,

clx,t) = V4 (e, (28)

where foexp(-u?). The scaling form (28) has been conjec-
tured by [6,21]. However, unlike argued there, the scaling
function f(u) has Gaussian shape for all times as the solution
c(x,1) of (23) for uz=0 is a Gaussian pulse with variance
proportional to ¥ according to (25) and (26). This is con-
firmed by comparison with explicit random walk simulation
as illustrated in Fig. 1.

The analysis of effective transport in stratified random
flow in terms of correlated random walks is conditioned by

PHYSICAL REVIEW E 77, 020101(R) (2008)

(i) the velocity distribution and (ii) the initial distribution of
random walkers, which determine the statistical characteris-
tics of the effective correlated noise. For source distributions
with an extension of the order of the correlation scale, pre-
asymptotic transport is dominated by the details of the local
velocities, which can induce nonlocal terms in the effective
transport equation (e.g., [22]). This memory is expected to
persist until the distribution is spread out vertically by diffu-
sion over a distance that is much larger than the correlation
scale and has sampled a representative part of the flow vari-
ability. A line source with a transverse extension that is large
compared to the correlation scale wipes this memory out
from the very beginning, thus giving the Gaussian scaling
form (25) at all times.

[1] J. P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[2] E. Frey and K. Krog, Ann. Phys. 14, 20 (2005).
[3] B. Berkowitz, A. Cortis, M. Dentz, and H. Scher, Rev. Geo-
phys. 44, 2005RG000178 (2006).
[4] R. Metzler and J. Klafter, Phys. Rep. 339, 1, (2000).
[5] G. Matheron and G. de Marsily, Water Resour. Res. 16, 901
(1980).
[6]J. P. Bouchaud, A. Georges, J. Koplik, A. Provata, and S.
Redner, Phys. Rev. Lett. 64, 2503 (1990).
[7] S. N. Majumdar, Phys. Rev. E 68, 050101(R) (2003).
[8]J. Carrera, J. Contam. Hydrol. 13, 23 (1993).
[9] B. Berkowitz and H. Scher, Transp. Porous Media 42, 241
(2001).
[10] H. Risken, The Fokker-Planck Equation (Springer, Heidelberg/
New York, 1996).
[11] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II,
Non-Equilibrium  Statistical (Springer-Verlag,
Berlin/Heidelberg, 1991).

Mechanics

[12] R. Zwanzig, Lectures in Theoretical Physics (Interscience, NY,
1961), Vol. IIL.

[13] H. Mori, Prog. Theor. Phys. 34, 399 (1965).

[14]J. Cushman and T. Ginn, Transp. Porous Media 13, 123
(1993).

[15] T. Le Borgne, J. R. de Dreuzy, P. Davy, and O. Bour, Water
Resour. Res. 43, W02419 (2007).

[16] A. H. Romero, J. M. Sancho, and K. Lindenberg, Fluct. Noise
Lett. 2, L79 (2002).

[17] B. B. Mandelbrot and J. W. van Ness, SIAM Rev. 10, 422
(1968).

[18] K. G. Wang, Phys. Rev. A 45, 833 (1992).

[19] V. O. Nams, Anim. Behav. 72, 1197 (2006).

[20] M. Clincy and H. Kinzelbach, J. Phys. A 34, 7141 (2001).

[21] S. Redner, Physica A 168, 551 (1990).

[22] M. Dentz and J. Carrera, Phys. Fluids 19, 017107 (2007).

[23] M. Dentz et al. (unpublished).

020101-4

RAPID COMMUNICATIONS



