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We investigate the representation of Lagrangian velocities in heterogeneous porous media as Markov pro-
cesses. We use numerical simulations to show that classical descriptions of particle velocities using Markov
processes in time fail because low velocities are much more strongly correlated in time than high velocities. We
demonstrate that Lagrangian velocities describe a Markov process at fixed distances along the particle trajec-
tories �i.e., a spatial Markov process�. This remarkable property has significant implications for modeling
effective transport in heterogeneous velocity fields: �i� the spatial Lagrangian velocity transition densities are
sufficient to fully characterize these complex velocity field organizations, �ii� classical effective transport
descriptions that rely on Markov processes in time for the particle velocities are not suited for describing
transport in heterogeneous porous media, and �iii� an alternative effective transport description derives from the
Markovian nature of the spatial velocity transitions. It expresses particle movements as a random walk in space
time characterized by a correlated random temporal increment and thus generalizes the continuous time ran-
dom walk model to transport in correlated velocity fields.
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I. INTRODUCTION

The transport of chemicals in groundwater, the ocean, or
the atmosphere is controlled by the multiscale organization
of natural flows. Natural flow fields generally have a com-
plex organization characterized by heterogeneous structures
at different scales �1–4�. Transport in such velocity fields
displays non-Fickian characteristics such as strong tailing of
first arrival times and non-Gaussian spatial distributions
�e.g., �5��. Accounting for these properties is particularly
critical for the prediction of contaminant transport in the sub-
surface, which is the focus of the present study. A number of
approaches such as continuous time random walk �CTRW�
theory and fractional Fokker-Planck equations describe
anomalous transport �6–11�. For transport in shear flows the
role of the flow organization for effective transport can be
quantified exactly �12�. For many natural flow scenarios
cases, however, and in particular for transport in groundwa-
ter flows, the role of the local flow organization on effective
transport is not understood quantitatively �13,14� which lim-
its our predictive capabilities.

Let us consider the one-dimensional space-time random
walk model,

x�n+1� = x�n� + ��n�, t�n+1� = t�n� + ��n�, �1�

where both the spatial and temporal increments ��n� and ��n�

are random. Equation �1� describes a continuous time ran-
dom walk �CTRW� �e.g., �15��. The particle velocity at step

n is given by the kinematic relationship v�n�=��n� /��n�. Note
that it may include advection and diffusion processes. The
space-time positions of a particle after n steps are denoted by
�x�n� , t�n��. Non-Fickian transport can be modeled in this
framework by choosing the spatio-temporal increments from
distributions whose widths are of the order of or larger than
the observation scales. Fickian behavior is obtained if both
the widths of the distributions of the spatial and temporal
increments are small compared to the observation lengths
and times.

The application of effective random walk models to the
description of effective transport in heterogeneous velocity
fields is often based on the postulation of a joint distribution
of the spatial and temporal increments and the subsequent fit
of the model to some dispersion measurements �such as the
evolution of the spatial moments of the solute cloud or
breakthrough curves�. However, the relationship between the
flow field organization and the distribution of spatial and
temporal increments is unknown in general. In particular, in
many effective random walk descriptions velocity correlation
properties, which carry information on the velocity field or-
ganization, cannot be included easily �16�.

Here, we derive a joint distribution of spatial and tempo-
ral increments from the Lagrangian velocity statistics and
correlation properties instead of postulating it. The Lagrang-
ian statistics are obtained from numerical simulations of flow
and transport in highly heterogeneous porous media. La-
grangian flow characteristics play an important role for the
qualitative and quantitative understanding of non-Fickian
transport in heterogeneous flow fields �13�. Specifically,
strong correlations have been identified as a cause for non-*tanguy.le-borgne@univ-rennes1.fr
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Fickian transport patterns �e.g., �7��. A different source for
non-Fickian transport is broad disorder distributions �e.g.,
�17��. Long disorder correlations on one hand and broad het-
erogeneity distributions on the other hand are possible causes
for anomalous transport patterns with different impact on the
effective transport behavior. Our ultimate objective is to de-
fine an effective transport model that is consistent with the
velocity fields organization and that is fully characterized by
the Lagrangian velocity statistics.

In this paper we analyze the Lagrangian flow characteris-
tics with the aim to obtain a simple formulation for effective
particle dynamics as a Markovian model. To this end we set
up a numerical random walk model for transport in a hetero-
geneous Darcy flow field, project the transport process on the
direction of the mean flow, and analyze the Lagrangian ve-
locity statistics along the projected particle trajectories. The
latter defines a d=1 dimensional stochastic process that turns
out to be a Markov chain for constant spatial increments, i.e.,
the velocity at a given position along the trajectory depends
only on the velocity value at the previous positions. The
transition time between two particle positions along the tra-
jectory is given by the �constant� transition length and �pro-
jected� flow velocity. The latter defines a correlated continu-
ous time random walk.

II. PRELIMINARY REMARKS

Advective-diffusive solute transport is described by mass
balance, i.e., the temporal change of the solute concentration
c�x , t� is balanced by the divergence of the advective and
diffusive solute fluxes. This mass balance is expressed by the
Fokker-Planck equation

�
�c�x,t�

�t
+ q�x� · �c�x,t� − D�2c�x,t� = 0, �2�

where D is the �constant� diffusion coefficient, and the po-
rosity � is set equal to one. Note that for simplicity here we
consider isotropic and constant diffusion. The Eulerian ve-
locity field q�x� is given as the divergence-free solution of
the Darcy equation �18�

q�x� = − K�x� � h�x� , �3�

where h�x� is the hydraulic head. The hydraulic conductivity
K�x� reflects the spatial medium heterogeneity.

The Fokker-Planck equation �2� is exactly equivalent to
the Langevin equation �e.g., �19��

dx�t�
dt

= q�x�t�� + ��t� , �4�

which describes the trajectory x�t� of a solute particle in
time. Diffusion is simulated by the Gaussian white noise
��t�, which is characterized by zero mean and the variance
��i�t�� j�t���=D�ij��t− t��; the angular brackets denote the
noise average. The particle distribution c�x , t� is given in
terms of the particles trajectories as

c�x,t� = ���x − x�t��� . �5�

In the following, we focus on transport in a d=2 dimensional
heterogeneous medium. The position vector x= �x ,y�T.

Equation �4� describes transport in a single realization of
the heterogeneous medium. In most practical cases, however,
a detailed medium description is not available and also not
desirable. What one seeks is an effective transport descrip-
tion that incorporates the impact of heterogeneity on effec-
tive transport in a systematic manner. The latter can be
achieved by upscaling. The aim here is to describe the effec-
tive transport behavior by using a statistical heterogeneity
characterization. To this end, the salient �statistical� features
of heterogeneity that determine effective transport need to be
identified and quantified. Stochastic modeling provides a
systematic way to do so.

In a stochastic approach, the spatially variable hydraulic
conductivity field K�x� represents a typical realization of a
spatial stochastic process. The latter is usually characterized
by the �functional� distribution of the log hydraulic conduc-
tivity function f�x�=ln�K�x��, P�f�x��. We consider here sta-
tionary random fields, i.e., fields for which P�f�x+L��
=P�f�x��, with L a constant translation. In the following, the
mean value f�x� is set to zero. The two-point correlation
function of f�x� then is given by

f�x�f�x�� = Cf�x − x�� . �6�

The overline denotes the ensemble average over all realiza-
tion of the spatial random process �f�x��. The correlation
function Cf�x� here is given by the Gaussian shaped function

Cf�x� = �f
2 exp	−

x2

�

 , �7�

where � is the correlation length of the log-hydraulic con-
ductivity field and � f

2 its variance, � f
2= f�x�2. The random

velocity field is stationary as a consequence of the stationar-
ity of f�x� and can be decomposed into its �constant� mean
value and fluctuations about it,

q�x� = q̄ + q��x� . �8�

The �Eulerian� correlation of q�x� is given by

qi��x�qj��x�� � Cij
E�x − x�� . �9�

Without loss of generality, the one-direction of the coordi-
nate system is aligned here with the mean flow direction so
that q̄=e1q̄, where e1 is the unit vector in one-direction.

Note that the particle movement described by Eq. �4� de-
pends on two stochastic processes, the spatially varying ran-
dom velocity field, and the temporal noise term. The aim is
to represent effective transport as a random walk that is com-
pletely characterized by the Lagrangian velocity statistics,
i.e., by the statistics of q�x�t��. The Lagrangian velocity cor-
relation is defined by

Cij
L�t − t�� = �qi��x�t��qj��x�t���� . �10�

The particle velocity is given by

v�t� = q̄e1 + q��x�t�� + ��t� . �11�

The correlation of the velocity fluctuations in the Ito inter-
pretation then reads as

�vi��t�v j��t��� = Cij
L�t − t�� + 2D�ij��t − t�� , �12�
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Here we study effective random walk descriptions of the
transport problem �4� as given by Eq. �1�. Let us consider the
discretized version of Eq. �4�:

x�n+1� = x�n� + q�x�n��	t + �2D	t��n�, �13�

t�n+1� = t�n� + 	t , �14�

where 
�n� is a Gaussian random variable with zero mean and
unit variance. In an effective description, we want to substi-
tute the nonlinear noise term q�x�t�� by a noise term that
does not depend on the �effective� particle trajectory but only
on the number of steps of the effective random walk. Projec-
tion of the particle motion on the direction of mean flow
yields the equation of motion

x�n+1� = x�n� + q1�x�n��	t + �2D	t
�n�,

t�n+1� = t�n� + 	t , �15�

To represent transport in an ensemble sense, the statistics of
q1�x�t��, which depends on the particle trajectory, need to be
explored. This can be done in two different ways. The first
way is to define an equivalent description of Eq. �15� by

x�n+1� = x�n� + vt
�n�	t, t�n+1� = t�n� + 	t . �16�

Here, �vt
�n��n=0

� is a stochastic process that is defined by the
ensemble statistics of the Lagrangian velocity field along the
projected particle trajectory at equidistant times. However,
the process �vt

�n��n=0
� does not need to be Markovian, and in

general is not. For transport in Gaussian random shear flow
the description �16� turns out to be an equivalent effective
random walk model �12� with �vt

�n�� a correlated Gaussian
noise. For lognormally distributed hydraulic conductivity
fields, Fiori and Dagan �20� established an approximate ef-
fective random walk description, whose �correlated� noise is
characterized by the first-order approximation of the La-
grangian correlation function Cij

L�t� in the variance of the
log-hydraulic conductivity field.

If it is possible to define a �finite� characteristic transition
length over which the velocity field is approximately con-
stant we can define an alternative effective random walk
model by

x�n+1� = x�n� + 	x, t�n+1� = t�n� +
	x

vs
�n� . �17�

For the heterogeneity scenarios under consideration, the
characteristic length is given by the correlation scale � of the
log-hydraulic conductivity field. In fact, the correlation scale
of the �Eulerian� flow velocity is in general larger than � so
that a choice of 	x of the order of or smaller than � should
be sufficient, i.e., 	x��. Here, the stochastic process
�vs

�n��n=0
� is defined by the Lagrangian ensemble statistics

along the projected particle trajectory at equidistant spatial
locations. In the following, we focus on the analysis and
characterization of the processes �vt

�n��n=0
� and �vs

�n��n=0
� .

III. NUMERICAL SETUP AND TRANSPORT BEHAVIOR

Here we consider different hydraulic conductivity fields
that have the same point distributions but different spatial

structures. Figure 1 illustrates three types of velocity fields
and the corresponding flow fields. We use particle tracking
simulations in d=2 dimensional heterogeneous hydraulic
conductivity fields in order to compute the Lagrangian ve-
locity and investigate its transition properties in space and
time.

We solve flow and transport in two-dimensional heteroge-
neous hydraulic conductivity fields. At the boundaries we
impose permeameterlike conditions: no flux across the lateral
boundaries and constant head at the upstream and down-
stream boundaries. The flow equation is solved numerically
with a finite difference scheme using a grid of 512
512
elements. Once the flow field is obtained, solute transport is
simulated by random walk particle tracking �e.g., �21��, i.e.,
numerical iteration of Eq. �14�. Flow velocities are interpo-
lated using a bilinear interpolation scheme �e.g., �22��.

We consider here advection-dominated transport sce-
narios. The relative importance of advective and diffusive
transport mechanisms is measured by the Peclet number. The
latter is defined in terms of the geometric mean of the hy-

draulic conductivity field K̄, the pixel size d, and the diffu-

sion coefficient D as Pe= dK̄
D . For large Pe, transport is

advection-dominated and vice versa. The mean hydraulic
gradient is set to one. The Peclet number is set to Pe=102,
which is a typical value for solute transport in heterogeneous
geological formations. The influence of the Peclet number on
the velocity correlation properties will be investigated in a
further study. Solute particles are tracked within 100 hydrau-
lic conductivity field realizations. The particles are injected
along a centered vertical line of 200 elements length located
in a distance of 64 elements from the upstream boundary.
They are injected proportionally to the local flow. The nu-
merical solution of the flow problem and the implementation
of the particle tracking method are described in more details
in �13�.

We consider three types of hydraulic conductivity fields:
�i� multilognormal fields, �ii� connected multilognormal
fields, and �iii� multilognormal stratified fields. For the mul-
tilognormal hydraulic conductivity field �Fig. 1�a��, the vari-
ance is and the correlation length is �=8 �in units of ele-
ments�, i.e., the medium size is 64
64 �. For the generation
of the lognormal hydraulic conductivity fields with con-
nected high hydraulic conductivity zones �Fig. 1�b��, we use
the method described in Refs. �23,24�. The resulting hydrau-
lic conductivity has the same point value distribution and
approximately the same two-point correlation as the multi-
lognormal hydraulic conductivity field described above. For
the stratified hydraulic conductivity field �Fig. 1�c��, a hy-
draulic conductivity is randomly assigned to each �one ele-
ment wide� horizontal stratum. Thus, here the correlation
structure is highly anisotropic as the longitudinal correlation
length is infinite, the transverse correlation length is of the
order of one.

The three hydraulic conductivity fields have identical
point distributions of hydraulic conductivity values. They are
different with respect to their respective spatial organization.
The degree of organization of the hydraulic conductivity
fields increases from top to bottom in Fig. 1. The calculated
point velocity distributions are given in Fig. 2. They are
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highly heterogeneous with a range of about eight orders of
magnitude. The characteristic distance of the fields of the
first and second type is the correlation length �, which, to-
gether with the geometric mean of the hydraulic conductivity

field K̄ defines the characteristic advection time scale �

=� / K̄. Note, however, that the velocity field organization
implies a range of �Lagrangian� velocity correlation lengths
and times �13�. The high heterogeneity of the hydraulic con-
ductivity field leads to connected high velocity zones and

strong focusing of the streamlines �Figs. 1�a� and 1�b��. In
the following, we propose a method to quantify the Lagrang-
ian correlation lengths and times.

First, however, let us illustrate the effect of connectivity
on solute dispersion. To this end, we first display arrival time
distributions at a distance of 100 elements from the inlet
�Fig. 3�. The first arrival time decreases and the late time
tailing increases with increasing connectivity. Notice that the
late time tails are due to low particle velocities. However,

scale
log K and log V

(a) (b)

(c) (d)

(e) (f)

10 10

FIG. 1. �Color online� Hydraulic conductivity K and modulus of velocity v. �a� Multilognormal hydraulic conductivity field �� f
2=9, �

=8, size 512
512 elements�, �b� corresponding velocity field, �c� connected hydraulic conductivity field, �d� corresponding velocity field,
�e� stratified hydraulic conductivity field, and �f� corresponding velocity field. These three fields have the same point distribution of hydraulic
conductivity values.
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even though all three hydraulic conductivity fields have simi-
lar distributions of the low velocity values �Fig. 2� they dis-
play different tails of the first arrival time distribution. It
needs to be concluded that the breakthrough curve tailing is
not entirely controlled by the point velocity distribution. It is
also controlled by the velocity correlation properties. Thus
the hydraulic conductivity organization and its correlation
properties have a strong impact on the non-Fickian transport
properties and the relevant effective equation.

IV. LAGRANGIAN VELOCITY STATISTICS

For the stratified case, the Lagrangian velocity statistics
are known �e.g., �7,12,25��. The process is stationary and
characterized by a power-law correlation function. The latter
is due to the fact that velocity transitions here are equivalent
to particle transitions between strata by lateral diffusion.
Thus the probability to return to a given stratum, i.e., to a
certain velocity value decreases with travel time as t−1/2 �e.g.,
�7,12��. The return probability and thus the Lagrangian cor-
relation is the same for all initial velocities. For the lognor-
mal hydraulic conductivity fields �Figs. 1�a� and 1�b�� this is
different. As shown in the following, here the Lagrangian
velocity correlation at equidistant times, i.e., for the process
�vt

�n��n=0
� depends on the initial velocity vt

�0�. Specifically, low
velocities turn out to be more strongly correlated than high
velocities.

In the following, we propose a methodology to character-
ize and analyze these processes in terms of transition prob-
abilities for the random processes �vt

�n��n=0
� and �vs

�n��n=0
� , re-

spectively. Recall that the former is defined by the
Lagrangian velocity statistics at equidistant times along the
particle trajectories while the latter is defined by the La-
grangian statistics at equidistant positions along the trajecto-
ries.

A. Definition of velocity classes

We discretize the particle velocity into n−1 classes
�Ci�1�i�n−1 of equal probability of occurrence. We define y
= P�v� as the score corresponding to the velocity v where
P�v� is the cumulative Lagrangian velocity distribution. We

discretize the y domain, which is bounded between 0 and 1,
into n−1 classes of equal width 1 / �n−1�, defined by their
boundaries yi. The smallest velocity corresponds to y1=0 and
the largest velocity to yn=1. In this study, we use 49 classes
�n=50�. For a given velocity v the corresponding class Ci is
determined as follows: v�Ci if yi� P�v��yi+1.

B. Velocity transitions

We define t�x� as the first passage time of a particle at the
longitudinal location x. For a particle at longitudinal distance
x from the inlet, at time t�x�, we define the longitudinal La-
grangian velocity as

vL =
xn+1 − x

t�xn+1� − t�x�
, �18�

where xn+1 is the downstream coordinate of the pixel in
which the particle is moving. Thus the Lagrangian velocity is
defined as the average velocity across an incremental length
xn+1−x. It includes both advective and diffusive motions.
The practical advantage of this definition is that all velocities
vL are positive. Particle velocities along particle trajectories
are quantified at given times vt�t� and at given longitudinal
locations vs�x�.

We consider velocity transitions along the particle trajec-
tory �i� depending on the travel time and �ii� depending on
the travel distance along the trajectory projected on the mean
flow direction. Thus we define �i� the probability for a par-
ticle to make a transition from velocity v� at travel time t� to
the velocity v at travel time t,

rt�v,t
v�,t�� = 
���v − vt�t���
vt�t��=v� �19�

and �ii� the probability for a particle to make a transition
from velocity v� at travel distance x� to the velocity v at
travel time x,

rs�v,x
v�,x�� = 
���v − vs�x���
vs�x��=v�. �20�

Note that the transition distributions are stationary in time,
i.e., rt�v , t 
v� , t��=rt�x , t− t� 
x�� and space, rs�v ,x 
v� ,x��
=rs�v ,x−x� 
v��, respectively, because the log-conductivity
f�x� is modeled as a stationary random field.

FIG. 3. Breakthrough curves for each of the hydraulic conduc-
tivity fields, at a distance equal to 100 elements from the particle
inlet. The breakthrough curves are averaged over 100 hydraulic
conductivity field realizations.

FIG. 2. Distributions of the decimal logarithm of absolute value
of the Eulerian velocity.
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Here, velocities are binned into velocity classes of equal
probability. Thus in the following we consider transition
probabilities between velocity classes. The probability to
make a transition from a velocity v��Cj at time t�=0 to a
velocity v�Cj at time t is given by

Tij
t �t� = �

vi

vi+1

dv�
vj

vj+1

dv�rt�v,t
v�,0� , �21�

while the probability to make a transition from a velocity
v��Cj at location x�=0 to a velocity v�Cj at location x is
given by

Tij
s �x� = �

vi

vi+1

dv�
vj

vj+1

dv�rs�v,x
v�,0� , �22�

Tt�t� and Ts�x� are the temporal and spatial velocity transition
matrices for the temporal increment t and the spatial incre-
ment x, respectively.

1. Probability of returning to the initial velocity

First, we study the diagonal elements of the transition
matrices �21� and �22�, Tii

t �t� and Tii
s �x�, respectively. The

diagonal elements describe the probability for a particle to
return to the same velocity as the initial velocity after a cer-
tain travel time or travel distance. Figures 4 and 5 display
Tii

t �t� and Tii
s �x� for a low initial velocity class C5 and a high

initial velocity class C45. An expected, yet remarkable result
is that the return probability in time is much higher for low
velocities than for high velocities �Fig. 4�, which implies that
the return probabilities have different temporal range. This is
different for the stratified case, for which the return probabil-
ity is independent of the initial velocity. This effect can be
explained by the fact that particles take a much longer time
to leave the �spatially confined� low velocity regions than the
high velocity regions by advection, see Fig. 1. This type of
dependence on the initial velocities is usually not accounted
for in correlated random walk models as presented in, e.g.,
�20�.

For the return probability as a function of travel distance
Tii

s �x�, we find very different results. The return probabilities

for the high and low velocities have a narrow spatial range
�Fig. 5�. Thus the Lagrangian velocity field for the multilog-
normal hydraulic conductivity field is characterized by a
broad range of correlation times �as quantified by Tii

t �t�� but
by a relatively narrow range of correlation distances �as
quantified by Tii

s �x��.
For the connected field we find similar results as for the

multilognormal field �Figs. 4 and 5�, except that the differ-
ence between the return probabilities for high and low initial
velocities increases. This can be explained by the topology of
the velocity fields �Fig. 1�. High velocity paths tend to be
narrower in the connected fields, so that diffusion can take
particles to low velocity regions faster than in multilognor-
mal fields.

2. Transition probability matrix

In this section, we compute the full velocity transition
matrix, which describes the probability for a particle starting
in a given velocity class to make a transition to another ve-
locity class. As a consequence of the stationarity of the La-
grangian velocity distribution P�v�, the transition matrix at
any given travel time or distance has the property

�
i=1

n

Tij
t �t� = �

j=1

n

Tij
t �t� = �

i=1

n

Tij
s �x� = �

j=1

n

Tij
s �x� = 1. �23�

Figures 6 and 7 display the transition matrices for the
different hydraulic conductivity fields at travel time t=� /2
and travel distance x=� /2. The transition matrices in time
for the multilognormal and connected fields are found to be
symmetric with respect to the principal diagonal but very
asymmetric with respect to the secondary diagonal �Fig. 6�.
This reflects the fact that the temporal correlation properties
depend strongly on the initial velocity. Particles that start at
high initial velocities can, within the same time interval,
jump to other velocities whereas particles that start at low
initial velocities can only jump to velocities that are rela-
tively close to the initial velocity.

The transition matrix Tij
s �x� in space is found to be nearly

symmetric for the multilognormal hydraulic conductivity

FIG. 4. Probability of returning to the initial velocity as a func-
tion of travel time for a low initial velocity T5,5

t �t� �black lines� and
for a high initial velocity T45,45

t �t� �gray lines�, for the multilognor-
mal and connected �dotted lines� hydraulic conductivity fields.

FIG. 5. Probability of returning to the initial velocity as a func-
tion of travel distance for the two extreme velocity classes, T5,5

s �x�
and T45,45

s �x�, for the multilognormal and connected hydraulic con-
ductivity fields.
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field �Fig. 7�a��. This is consistent with the fact that the re-
turn probabilities for high and low initial velocities are
nearly identical �Fig. 5�. The transition matrix Tij

s �x� for the
connected hydraulic conductivity field is slightly asymmetric
with a higher return probability for the low velocity values.

C. Test of the Markov property

The velocities series in time, �vt
�n��n=1

� , and space, �vs
�n��n=1

� ,
are stochastic processes. In the previous section we observed
that the transition probabilities for the temporal process de-
pend strongly on the initial particle velocity, while the spatial
process seems to be independent of the initial condition. In
the following, we test the Markovianity of both temporal and
spatial processes. The transition probabilities for a Markov
chain model need to satisfy the Chapman-Kolmogorov equa-
tion �e.g., �19��, which reads for the transition matrices T���
of a discrete Markov chain as

T�� + ��� = T���T���� �24�

with � ,���0. The latter implies

T�n�� = Tn��� . �25�

We test the validity of the Chapman-Kolmogorov equa-
tion for both temporal and spatial processes numerically by
comparing the transition matrix Tt�t�n with the transition ma-
trix Tt�nt�, and Ts�x�n with the transition matrix T�nx�.

For the transition matrix in time, we find that the Markov
property is never confirmed whatever the temporal increment
t, see Fig. 8. The expression Tt�t�n reproduces well the return
probability for high initial velocities but fails for low initial
velocities. In addition, the Markov model in time does not
predict correctly the probability for particles to make a tran-
sition from a low initial velocity to other velocities �Fig.
9�a�� and the probability for particles to make a transition
from any velocity to a low velocity zone �Fig. 9�b��.

For the transition matrix in distance, Ts�x�, the Markov
property holds for a minimum spatial increment x=� /2. It
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FIG. 6. �Color online� Transition matrix in time Tt�� /2� for the
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FIG. 8. Comparison of simulation and the Markov model in
time for the return probability for the multilognormal field. The
Markovian model is defined for a temporal increment t=� /2.
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does not for smaller spatial increments, for which the particle
velocities can depend on the previous particle velocities for
several steps. This can be attributed to the Gaussian correla-
tion function adopted here �Eq. �7�� for the log permeability
field, which imposes a relatively strong correlation at small
distances. Figure 10 compares the prediction of the Markov
model, i.e., Ts�x�n and the result of the simulation for the
multilognormal hydraulic conductivity field, i.e., Ts�nx�. The
Markov model reproduces well the return probability for the
high and low initial velocities �Fig. 10�. Contrary to the Mar-
kov model in time �Fig. 9�, the Markov model in space pre-
dicts correctly the transitions from low initial velocities to
other velocities �Fig. 11�a�� and the transition from any ve-
locity to a low velocity �Fig. 11�b��.

We performed the same tests for the Markovianity of the
velocity transition process for the connected field and found
similar results. The Markov model in time fails to reproduce
the simulations while the Markov model in space is in good
agreement with the simulations. Thus it appears that the spa-
tial Markov model is able to capture the specific velocity
correlation properties that characterize the connected field.

The failure of the Markov model in time to represent the
velocity transitions is related to the existence of a broad
range of characteristic correlation times. The range of char-

acteristic correlation distances is much narrower. The veloc-
ity transition process for particles departing from high ve-
locities is well-represented by a Markov model. However,
this is not the case for velocity transition for particles with
low initial velocities. For these particles, non-Markovian ef-
fects occur due to strong velocity correlations.

(a)

(b)

FIG. 9. Comparison of simulation and the Markov model in
time for two crosscuts of the velocity transition matrix at time t
=8�, for the multilognormal hydraulic conductivity field. �a� Veloc-
ity class distribution at time t=8� for particles leaving from class
C5 and �b� distribution of velocity class origin for particles arriving
at class C5 at time t=8�. As for Fig. 8, the Markov model is defined
for a temporal increment t=� /2.

FIG. 10. Comparison of simulation and the Markov model in
distance for the return probability for the multilognormal field. The
Markov model is defined for a spatial increment x=� /2.

(a)

(b)

FIG. 11. Comparison of simulation and the Markov model in
space for two crosscuts of the velocity transition matrix at distance
x=�, for the multilognormal hydraulic conductivity field. �a� Veloc-
ity class distribution at distance x=� for particles leaving from class
C5 and �b� distribution of velocity class origin for particles arriving
at class C5 at distance x=�. As for Fig. 8, the Markov model is
defined for a spatial increment x=� /2.
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Note that we chose a discretization of the Lagrangian ve-
locity field using equiprobable classes because it provides a
good way to visualize the Lagrangian velocity transition pro-
cess and the correlation properties for different organizations
of the hydraulic conductivity fields �Figs. 6 and 7�. We have
tested other discretizations and found similar results.

V. CONCLUSIONS

The analysis of flow and transport in lognormal perme-
ability fields shows that the Lagrangian velocities form a
Markov process in space, that is, the Lagrangian velocities
taken at equal longitudinal distances along particle trajecto-
ries form a Markov process. Thus classical descriptions of
particle transport using Markov processes in time
�14,26–28�, Eq. �16�, are not suited for modeling particle
movements in such media. This is a direct consequence of
the fact that low particle velocities are much more strongly
correlated in time than high velocities. The latter is the rea-
son why the effective particle dynamics are non-Markovian
in time. This behavior is captured in a systematic way by a
Markov model that acknowledges that the Lagrangian veloc-
ity is a spatial Markov process. The complex velocity field
organization can be quantified by the velocity transition ma-
trix in space �Fig. 7�. The latter can be used to characterize
and visualize the Lagrangian velocity properties for different
velocity field organizations.

The fact that the Lagrangian velocities form a Markov
process in space indicates that effective particle movements

can be modeled as a space-time random walk characterized
by a constant spatial increment and a random time incre-
ment. The sequence of Lagrangian velocities is mapped onto
the sequence of temporal displacements by Eq. �17�, which
then form a Markov process, i.e., an increment at a given
step depends on the increment at the previous spatial step.
This transport description is consistent with the Lagrangian
velocity field correlation properties. Such an effective trans-
port model generalizes the classical CTRW framework to
transport in correlated velocity fields. It can be viewed as a
persistent CTRW. This effective transport model is devel-
oped in �29� and compared to the classical CTRW model.
The relevance of the spatial Markov property for different
velocity field organizations suggests that such an effective
framework may find a wide range of applications for describ-
ing transport in heterogeneous flows. We are currently inves-
tigating the influence of the Peclet number and the influence
of a spatially variable porosity on the Lagrangian velocity
correlation properties and on the relevant effective transport
model.
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