
HAL Id: insu-00372030
https://insu.hal.science/insu-00372030

Submitted on 13 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Lagrangian Statistical Model for Transport in Highly
Heterogeneous Velocity Fields

Tanguy Le Borgne, Marco Dentz, Jesus Carrera

To cite this version:
Tanguy Le Borgne, Marco Dentz, Jesus Carrera. Lagrangian Statistical Model for Transport in
Highly Heterogeneous Velocity Fields. Physical Review Letters, 2008, 101, pp.090601. �10.1103/Phys-
RevLett.101.090601�. �insu-00372030�

https://insu.hal.science/insu-00372030
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Lagrangian Statistical Model for Transport in Highly Heterogeneous Velocity Fields

Tanguy Le Borgne,1 Marco Dentz,2 and Jesus Carrera3

1Geosciences Rennes, UMR 6118, CNRS, Université de Rennes 1, Rennes, France
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We define an effective Lagrangian statistical model in phase space (x, t, v) for describing transport in

highly heterogeneous velocity fields with complex spatial organizations. The spatial Markovian nature

(and temporal non-Markovian nature) of Lagrangian velocities leads to an effective transport description

that turns out to be a correlated continuous time random walk. This model correctly captures the

Lagrangian velocity correlation properties and is demonstrated to represent a forward model for predicting

transport in highly heterogeneous porous media for different types of velocity organizations.
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Natural flow fields generally display a complex spatio-
temporal organization due to heterogeneous geological
structures or coherent turbulent structures at different
scales, for example, which leads to non-Fickian transport
properties (e.g., [1,2]). New experimental developments
have recently allowed for significant progress in the mod-
eling of transport in turbulent flows by detailed analysis of
the Lagrangian correlation properties (e.g., [3,4]). The
resulting effective Lagrangian statistical models often
rely on the assumption that the Lagrangian velocities taken
at equidistant times describe a Markov process, which
leads to effective random walk models that are
Markovian in time (e.g., [1,5]). For transport in highly
heterogeneous porous media, the direct measurement of
Lagrangian velocities is still beyond our capabilities,
although some progress has been made recently [6]. Such
analysis has been performed numerically for heteroge-
neous conductivity fields with conductivity values that
fluctuate spatially over 10 orders of magnitude [7,8].
This type of medium displays a complex velocity field
organization that is characterized by the localization of
flow in connected high velocity channels (Fig. 1). The
flow organization is manifested by special Lagrangian
velocity correlation properties, such as the dependence of
the correlation on the local velocity and the possibility for
particles to experience abrupt changes in velocities, i.e.,
large Lagrangian accelerations. As demonstrated in [8],
this implies that velocities at equidistant positions along
a particle trajectory form a Markov process, which means
that here Lagrangian velocities are Markovian in space and
not in time. This fundamental property leads naturally to a
representation of effective particle motion as a random
walk in space-time,

xðnþ1Þ ¼ xðnÞ þ �x (1a)

tðnþ1Þ ¼ tðnÞ þ �x

vðnÞ ; (1b)

where the series of successive particle longitudinal veloc-

ities fvðnÞg1n¼0 at equal longitudinal distances �x along the

particle trajectory form a Markov chain in space, whose
transitions are characterized by the conditional probability
density rðv; xjv0; x0Þ. The probability for a particle to make
a transition from v0 at travel distance x0 to v at travel
distance x ¼ x0 þ �x is given by (e.g., [9])

rðv; xjv0; x0Þdv ¼ h�ðv� vðnþ1ÞÞijvðnÞ¼v0dv; (2)

where the angular brackets denote the average overall

realization of fvðnÞg1n¼0. For stationary velocity fields, tran-

sition distributions are stationary in space, i.e.,
rðv; xjv0; x0Þ ¼ rðv; x� x0jv0Þ.
The random walk (1) is a Markov process in the phase

space (x, t, v). It can be viewed as a correlated continuous
time random walk (CTRW). Unlike classical CTRW mod-

FIG. 1 (color online). Example of velocity field realization for
the multilognormal conductivity field: spatial distribution of the
absolute value of the longitudinal velocity m/s.
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els (e.g., [2,10–12]), here the successive particle velocities
are not independent, but depend on the velocity at the
previous step. Correlated CTRW models have been re-
cently studied in the literature (e.g., [13,14]). While these
studies postulate some correlation, here the correlated
CTRW approach derives from the Markovian nature of
the spatial (Lagrangian) velocity transitions [8]. The pro-
posed Lagrangian statistical model is shown to provide
accurate predictions for transport in the preasymptotic
non-Fickian transport regime for different velocity organ-
izations. It describes a wide range of transport behaviors,
which can be related directly to the Lagrangian velocity
correlation properties and thus to the velocity field organi-
zation. The effect of including velocity correlation is
studied by comparison with the predictions of the corre-
sponding classical CTRW model.

The particle distribution in phase space after n steps of
the correlated CTRW is defined by (e.g., [9])

fnðx; t; vÞ ¼ h�ðx� xðnÞÞ�ðt� tðnÞÞ�ðv� vðnÞÞi; (3)

where angular brackets denote the ensemble average over

all realizations of the Markov chain fvðnÞg1n¼0. The

Chapman-Kolmogorov equation for fnðx; t; vÞ reads as
fnþ1ðx;t;vÞ¼

Z
dx0

Z t

0
dt0

�
Z 1

0
dv0fðx;t;vjx0;t0;v0Þfnðx0; t0;v0Þ; (4)

where the transition probability is defined by (e.g., [9])

fðx; t; vjx0; t0; v0Þ ¼ h�ðx� xðnþ1ÞÞjxðnÞ¼x0�ðt
� tðnþ1ÞÞjtðnÞ¼t0�ðv� vðnþ1ÞÞjvðnÞ¼v0 i:

(5)

Using (1) and (2) gives

fðx; t; vjx0; t0; v0Þ ¼ �ðx� x0 � �xÞ
� �ðt� t0 � �x=v0Þrðv;�xjv0Þ: (6)

Inserting (6) into (4), we obtain

fnþ1ðx; t; vÞ ¼
Z 1

0
dv0rðv;�xjv0Þ

� fnðx� �x; t� �x=v0; v0Þ: (7)

We define the probability per time to just arrive at (x, v),
Rðx; v; tÞ, by summing fnðx; t; vÞ over all n [15],

Rðx; t; vÞ ¼ X1
n¼0

fnðx; t; vÞ: (8)

Summing (7) over n gives for Rðx; t; vÞ,
Rðx;t;vÞ¼f0ðx;t;vÞ

þ
Z 1

0
dv0rðv;�xjv0ÞRðx��x;t��x=v0;v0Þ;

(9)

where f0ðx; t; vÞ is the initial distribution of the particles in
phase space. We assume here that once a particle arrives at

the phase space position (x, v), it remains at this position
for a waiting time � ¼ �x=v. Thus, the probability
Pðx; t; vÞ for a particle to be at the phase space position
(x, v) at time t is given by the probability per time to arrive
at (x, v) at some earlier time t0 < t and to remain there until
time t,

Pðx; t; vÞ ¼
Z t

0
dt0�ð�x=v� t0ÞRðx; t� t0; vÞ; (10)

where �ðtÞ is the Heaviside step function. The particle
distribution in space is obtained from Pðx; t; vÞ by integra-
tion over all velocities,

cðx; tÞ ¼
Z 1

0
dvPðx; t; vÞ: (11)

For independent successive velocities, i.e.,
rðv; xjv0; x0Þ ¼ pðvÞ, where pðvÞ is the Lagrangian ve-
locity distribution, the probability distribution in phase
space can be decoupled, i.e., Rðx; t; vÞ ¼ Rðx; tÞpðvÞ and
Pðx; t; vÞ ¼ Pðx; tÞpðvÞ. Replacing these expressions in
Eqs. (9) and (10), the classical CTRW formulation is
recovered [15].
In the following, we demonstrate that the proposed

Lagrangian statistical model (1) and (2) describes correctly
the effective movement of particles in heterogeneous po-
rous media, which are characterized by a spatially varying
conductivity KðxÞ. To this end, we compare the solutions
of the local scale flow and transport problem to the effec-
tive Lagrangian statistical model presented above.
Incompressible fluid flow through a porous medium is

described by the Darcy equation. The particular media we
focus on are ubiquitously used for modeling solute trans-
port in geological media. The first type of field (Fig. 1) is a
multilognormally distributed random conductivity field
with a broad range of permeabilities (variance of the log-
conductivity �2

lnK ¼ 9) and a Gaussian correlation func-

tion. The second type of conductivity field contains pref-
erentially connected high conductivity zones [8,16], which
induces a greater localization of high velocity zones. The
two conductivity fields have the same point distributions
and similar two point correlation functions, characterized
by the correlation length � (here, we set � ¼ 8 pixels).
Particle motion in a single realization is described by

advection in the flow through the medium and local diffu-
sion. The numerical method for solving flow and transport
is described in detail in [8]. The Peclet number, defined by
the geometric mean conductivity Kg, pixel size d, and

diffusion coefficient D as Pe ¼ dKg

D , here is set to Pe ¼
100. The mean hydraulic gradient is set to one. The effec-
tive (average) transport behavior is obtained by averaging
over 100 conductivity field realizations.
The large disorder variance implies the existence of a

preasymptotic non-Fickian regime that is characterized by
long tails in the first passage time distributions and a
preasymptotic non-Fickian scaling of the second centered
moment of the particle positions in the direction of the
mean flow �2

xðtÞ (Figs. 2 and 3). For such high degree of
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heterogeneity, very large grids are needed to assess the full
preasymptotic regime [17]. The simulations presented in
this Letter address the first part of the preasymptotic re-
gime, for which we find a transition between ballistic
motion [�2

xðtÞ / t2] and anomalous transport [�2
xðtÞ /

t1:3]. The presence of connected high conductivity patterns,
Fig. 3, implies significantly earlier particle breakthrough
(about 1 order of magnitude in Fig. 3) and stronger tailing
than for the multilognormal field.

The definition of the Lagrangian statistical model (1) as
an effective transport model for such media requires the
characterization of the spatial velocity transition densities.
Ideally, this could be performed analytically. Here, we
define it numerically. Notice that solving the full flow
and transport on the whole field can be very computation-
ally demanding (we have done it solely for comparison
with our effective model). On the other hand, the definition
of the spatial velocity transition densities only requires
computing transition probabilities over one half of the

permeability correlation length [8], whose computational
effort is comparatively negligible. To evaluate the spatial
Lagrangian velocity transition probabilities (2), we discre-
tize the longitudinal velocity distribution into n classes
fCig1�i�n¼50 following a logarithmic discretization of the
velocity scale. The probability for a particle to make a
transition from a longitudinal velocity v0 2 ½vj; vjþ1� at
location x to a longitudinal velocity v 2 ½vj; vjþ1� at

location xþ�x is given by

Tijð�xÞ ¼
Z viþ1

vi

dv
Z vjþ1

vj

dv0rðv;�xjv0Þpðv0Þ=Pj; (12)

where Pj ¼
Rvjþ1
vj

dv0pðv0Þ is the probability of class Cj.

Tð�xÞ represents a velocity transition probability matrix
for an incremental length �x. Note that the longitudinal
Lagrangian velocity v that we consider here includes ad-
vective and diffusive motions. The specific methodology
for determining Tð�xÞ is given in [8]. For the spatial

FIG. 2. Comparison of the numerical simulations for the multi-
lognormal field with the predictions given by the Lagrangian
statistical model and the standard CTRW model. (a) First pas-
sage time distribution at a distance of 100 elements (12:5�) from
the inlet (b) variance of the spatial concentration distribution
�2

xðtÞ as a function of time.

FIG. 3. Comparison of the numerical simulations for the con-
nected field with the predictions given by the Lagrangian statis-
tical model and the standard CTRW model. (a) First passage
time distribution at a distance of 100 elements (12:5�) from the
inlet (b) variance of the spatial concentration distribution �2

xðtÞ
as a function of time.
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increment, we use�x ¼ �=2, for which the spatial Markov
property is verified [8]. The velocity transition matrix
quantifies the dependence of the velocity correlation on
the local velocity, such as the increased persistence of high
velocities due to connected high velocity channels. It also
characterizes the non-negligible probabilities for particles
to perform large jumps in the velocity space, such as the
transition from a very low velocity to a high velocity when
a particle escapes from a stagnation zone to join a high
velocity channel (Fig. 1). These properties are not quanti-
fied in classical measures of correlation such as the
Lagrangian velocity autocorrelation function. By construc-
tion and due to the stationarity of the velocity fields con-
sidered here, the Lagrangian velocity distribution is an
eigenvector of the velocity transition matrix, i.e., Pi ¼P

n
j¼0 Tijð�xÞPj.

The Lagrangian velocity distribution pðvÞ and the tran-
sition matrix Tð�xÞ together with the spatial Markovian
property completely define the Lagrangian statistical

model for fvðnÞg1n¼0 in (1). Using this effective description,

we make predictions of the transport behavior over a large
range of temporal and spatial scales. The equations of
motion (1) of a particle are solved numerically using
random walk particle tracking in phase space (x, t, v),
which allows for efficient transport simulations. We com-
pare the predictions of this effective random walk model
with the numerical random walk simulations of transport
through the fully resolved two-dimensional velocity fields.
To probe the role of correlation, we also compare the
transport behavior resulting from the correlated CTRW
with the predictions of a classical CTRW model defined
by (1) for the transition probability rðv; xjv0; x0Þ ¼ pðvÞ,
i.e., independent identically distributed velocities. The
model predictions are obtained without fitting of the model
parameters.

The proposed Lagrangian statistical model is found to
provide very good predictions of first passage time distri-
butions at all distances, including the non-Fickian late time
tailing and the early time particle arrival as illustrated in
Figs. 2(a) and 3(a). It also predicts the scaling of the second
centered moment �2

xðtÞ at all times [Figs. 2(b) and 3(b)]. In
particular, the scaling �2

xðtÞ / t1:3 in the preasymptotic
regime is correctly predicted.

Conversely, the standard CTRW model is found to over-
estimate the early arrival times by about 1 order of magni-
tude and to underpredict slightly the largest arrival times
[Figs. 2(a) and 3(a)]. It underestimates the second centered
moment �2

xðtÞ by 1 order of magnitude at large times
[Figs. 2(b) and 3(b)]. It predicts a slightly different scaling
�2

xðtÞ / t1:4, which is determined by the scaling of the
velocity distribution in the low velocity part, pðvÞ / v0:6.
The scaling predicted by the classical CTRW model is
entirely determined by the velocity distribution while the
observed scaling �2

xðtÞ / t1:3 is due to both the scaling of

the velocity distribution and the Lagrangian correlation
properties.
As a conclusion, the good agreement of the proposed

Lagrangian statistical model and the fully resolved numeri-
cal simulations demonstrates that the spatial (Lagrangian)
velocity transition densities contain all the transport rele-
vant information about the complex organization of the
velocity fields studied here. The fact that the model turns
out to be a correlated CTRWmodel is remarkable given the
broad use of CTRWs in the description of anomalous
transport (e.g., [2,11,12]). Note that CTRW is often based
on a phenomenological understanding of the small scale
behavior. The approach that we propose provides an ex-
plicit link between small scale characterization (as repre-
sented by the Lagrangian velocity statistics) and large scale
dynamics. Here, the (correlated) CTRW representation as a
(coupled) random walk in position, time, and velocity
space is a direct result of the spatial Markovianity of the
Lagrangian velocity transitions. This finding may be a
significant step towards the quantification of effective
transport in random media and geological flows.
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