Skip to Main content Skip to Navigation
Conference papers

The Detached Haze Layer in Titan's Mesosphere

Abstract : The Cassini observations reveal the presence of a detached haze layer in Titan's mesosphere at an altitude of 520 km, well above the stratosphere. Observations of scattered light made by the Imaging Science Subsystem (ISS) reveal a clearly defined layer encircling low and mid-latitude regions. The aerosol layer is also detected in stellar occultation measurements of UV extinction by the UltraViolet Imaging Spectrometer (UVIS). The haze is a global and permanent feature of Titan's atmosphere. Furthermore the location of the detached haze layer is coincident with and the likely cause of a local maximum in the temperature profile measured by the Huygens Atmospheric Structure Instrument (HASI). This temperature inversion is also permanent and global, having been detected in ground-based stellar occultations. The correlation between the extinction profile and the temperature maximum imply that the detached haze cannot be due to condensation, as previously suggested. Previously, Voyager high phase angle images at 500 nm revealed a detached haze layer near 350 km, more than 150 km lower than the Cassini layer. Close examination of the Voyager images suggests that the Cassini detached layer at 520 km is a separate phenomenon rather than a change in the Voyager detached layer. Analysis of the observed optical properties suggests that the average size of particles in the Cassini detached layer is < 45 nm, with an imaginary index k < 0.3 at 187.5 nm, while Non-LTE calculations of the temperature perturbation induced by the detached haze show that the average particle size must be greater than 35 nm for reproducing the heating rate implied by the HASI temperature profile. Calculation of the sedimentation velocity of the particles, coupled with the derived number density, imply a mass flux of 1.9-3.2 × 10-14 g cm-2 s-1. This is approximately equal to the mass flux required to explain the main haze layer and suggests that the stratospheric haze is formed primarily by sedimentation and coagulation of particles in the detached layer. This is further supported from the particle size range retrieved for the detached layer (35-45 nm), being approximately equal to the radii of ~50 nm for the monomers of the aggregate aerosols in the main haze layer. It follows that aerosols on Titan are formed primarily in the thermosphere, rather than the stratosphere as assumed in many pre-Cassini studies. This is consistent with the detection of negatively charged aerosols in the thermosphere by Cassini/CAPS. These conclusions are supported by microphysical aerosol models that couple the detached haze layer and the main haze layer and extend into the thermosphere. Our calculations suggest that the detached haze layer is due to the transition in the growth of particles from spherical shape to aggregates of fractal structure. The rapid increase in the size of the particles with the onset of fractal growth, in combination with the decrease of their settling velocity, casts them invisible in the transition region. This optical illusion process explains the well-defined and symmetric structure of the detached layer, something difficult to explain under a pure advection scenario. Further investigation of the processes defining the growth of the particles is required in order to understand why the transition takes place at this region and how the particles produced at higher altitudes by high energy radical and ion chemistry, are defining the vertical haze opacity in Titan's atmosphere.
Document type :
Conference papers
Complete list of metadatas

https://hal-insu.archives-ouvertes.fr/insu-00361673
Contributor : Béatrice Pibaret-Bourdon <>
Submitted on : Monday, February 16, 2009 - 1:29:35 PM
Last modification on : Friday, September 25, 2020 - 11:20:11 AM

Identifiers

  • HAL Id : insu-00361673, version 1

Collections

INSU | CNRS | OSUG | UGA

Citation

Panayotis Lavvas, R. V. Yelle, Véronique Vuitton. The Detached Haze Layer in Titan's Mesosphere. American Geophysical Union, Fall Meeting 2008, Dec 2008, San Francisco, United States. ⟨insu-00361673⟩

Share

Metrics

Record views

439