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Abstract–We report on the major and trace element abundances of 18 diogenites, and O-isotopes for

3 of them. Our analyses extend significantly the diogenite compositional range, both in respect of Mg-rich

(e.g., Meteorite Hills [MET] 00425, MgO = 31.5 wt%) and Mg-poor varieties (e.g., Dhofar 700, MgO =
23 wt%). The wide ranges of siderophile and chalcophile element abundances are well explained by

the presence of inhomogeneously distributed sulfide or metal grains within the analyzed chips. The

behavior of incompatible elements in diogenites is more complex, as exemplified by the diversity of

their REE patterns. Apart from a few diogenite samples that contain minute amounts of phosphate,

and whose incompatible element abundances are unlike the orthopyroxene ones, the range of

incompatible element abundances, and particularly the range of Dy/Yb ratios in diogenites is best

explained by the diversity of their parental melts. We estimate that the FeO/MgO ratios of the

diogenite parental melts range from about 1.4 to 3.5 and therefore largely overlap the values obtained

for non-cumulate eucrites. Our results rule out the often accepted view that all the diogenites formed

from parental melts more primitive than eucrites during the crystallization of a magma ocean. Instead,

they point to a more complex history, and suggest that diogenites were derived from liquids produced

by the remelting of cumulates formed from the magma ocean.

INTRODUCTION

In 2011 the Dawn spacecraft will begin to map its first

target in the asteroid belt: the asteroid 4 Vesta. Vesta is the

second largest object by mass in the asteroid belt and

astronomical observations suggest that it is covered by

magmatic rocks, such as basalts and pyroxenites. Since the

seventies (McCord et al. 1970), it has been proposed that

Vesta is the source of the most abundant group of achondrites,

namely the howardite, eucrite, and diogenite (HED) suite.

Eucrites are basic rocks that display magmatic textures and

chemical compositions indicating formation as lava flows or

intrusions. They are generally regarded as being samples of

the upper crustal lithologies from 4 Vesta. Diogenites are

orthopyroxene-rich cumulates, while howardites are polymict

breccias containing both eucritic and diogenitic lithologies.

HEDs offer a unique opportunity to understand the

processes that generated igneous activity during the early

history of a small body. It has been proposed that the diversity

of eucritic melts is the result of the combined effects of

various degrees of partial melting and fractional

crystallization within Vesta’s mantle (e.g., Stolper 1977;

Consolmagno and Drake 1977; Mittlefehldt 1979;

Mittlefehldt and Lindstrom 2003). In contrast, others have

suggested that magmatic activity on the HED parent body was

dominated by a large-scale melting event, which generated a

global magma ocean (e.g., Ikeda and Takeda 1985; Righter

and Drake 1997; Ruzicka et al. 1997; Takeda 1997; Warren

1997; Greenwood et al. 2005). According to this view, the

chemistry of eucritic melts can be explained in terms of

fractional crystallization processes (e.g., Stolper 1977;

Warren and Jerde 1987). Contamination of the eucritic

magmas by liquids derived by partial melting of the asteroid’s

crust has also been proposed (Barrat et al. 2007). The study of

HED cumulate lithologies provides a complementary view of

early magmatic processes on Vesta. Although it is generally

accepted that a few gabbros, the cumulate eucrites, formed

from “ordinary” eucritic melts (Treiman 1997; Barrat et al.
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2000a; Saiki et al. 2001; Barrat 2004), the origin of the

diogenites and the composition of their parental melts remain

unresolved (e.g., Mittlefehldt 1994; Fowler et al. 1994, 1995;

Shearer et al. 1997; Barrat 2004). Diogenites are believed to

be a major lithological component of Vesta. Their relative

abundance among the HED group, and astronomical

observations of the Vesta’s surface, imply that they comprise

a significant part of the crust which has been excavated and

exposed by large impacts (Gaffey 1997; Binzel et al. 1997).

Improving our understanding of diogenite genesis is now a

critical task if we are to gain a better overall picture of the

magmatic processes that operated on Vesta. In this paper, we

report on the geochemistry of 18 diogenites, and discuss the

diversity of their parent melts. 

ANALYTICAL METHODS

Powders were prepared using a boron-carbide mortar and

pestle. They were dissolved in screw-top teflon vessels

(Savillex) at about 130 °C for five days using 5 ml of

concentrated HF, and 2 ml of concentrated HNO3. After

evaporation to dryness of the acid mixture, approximately

2 ml of HNO3 was added, and the vessels were capped and

placed back on the hot plate and left overnight. The samples

were then dried again, and taken up in ∼20 g of 6 M HCl

(“mother solutions”). Only reagents double-distilled in quartz

or teflon sub-boilers were used. Abundances of both major

and trace elements were analyzed using aliquots of the same

mother solutions for all samples. 

The concentrations of TiO2, Al2O3, Cr2O3, FeO, MnO,

MgO, and CaO were determined by ICP-AES using a

modified Jobin Yvon spectrometer, following the procedures

of Cotten et al. (1995). For major element concentrations the

accuracy is better than 3%. Na2O, K2O, and P2O5 were

determined but their concentrations were insignificant for all

the samples (<0.02 wt%) and are not given here. 

Whole rock trace element abundances were determined

using an inductively coupled plasma-mass spectrometer

(ICP-MS) (Thermo Element 2) at Institut Universitaire

Européen de la Mer (IUEM), Plouzané (Barrat et al. 2007).

The results for the international ultramafic standards PCC1

and JP1 are given in Table 1 relative to our best estimate of

the USGS basalt BHVO2, which is based on our own

measurements and values from the literature. (In the event of

future change to these BHVO2 values, the data need only to

be corrected by the ratio of the new and old values). The

standard data are in excellent agreement with previously

published data sets (e.g., Makishima and Nakamura 1997;

Ionov et al. 2005), confirming the very good quality of our

calibration procedures. Based on standard measurements (see

Table 1) and many sample duplicates, trace element

concentration reproducibility is generally better than 5%. The

reproducibility for low Nb and Eu concentrations is sometimes

not so good. In the case of Eu in JP1, the dispersion is

explained by the high Ba/Eu ratio (about 2500) of this

peridotite (i.e., the contribution of the 135Ba16O interference

on the 151Eu peak was important and difficult to correct

[e.g., Barrat et al. 2000b]).

Three diogenite samples, Northwest Africa (NWA) 4272,

Dhofar 700, and Asuka- (A) 881548, were analyzed for

oxygen isotopes as part of this study by infrared laser-assisted

fluorination (Miller et al. 1999). O2 was liberated by heating

the samples using an infrared CO2 laser (10.6 µm) in the

presence of 210 torr of BrF5. After fluorination, the O2

released was purified by passing it through two cryogenic

nitrogen traps and over a bed of heated KBr. O2 was analyzed

using a Micromass Prism III dual inlet mass spectrometer.

System precision (2σ), based on replicate analyses of the

international standard UWG-2 garnet is: ±0.06‰ for δ17O;

±0.13‰ for δ18O; ±0.02‰ for δ17O. Oxygen isotope analyses

are reported in standard δ notation where δ18O has been

calculated as: δ18O = {[(18Osample/
16Osample)/(

18Oref/
16Oref)]−1}

× 1000, and similarly for δ17O using 17O/16O ratio. ∆17O is

calculated using a linearized format, where ∆17O = 1000 ln

[1 + (δ17O/1000)] − λ1000 ln [1 + (δ18O/1000)] where λ =

0.5247 (Miller 2002). To assess the influence of weathering,

Dhofar 700 and A-881548 were leached using a solution of

ethanolamine thioglycollate (Cornish and Doyle 1984) and

then washed and dried prior to fluorination. This treatment

removes iron oxides, hydroxides and metallic iron, but not

silicate-bound iron. An aliquot of Dhofar 700 was also

washed in dilute HCl.

RESULTS AND DISCUSSION

The major and trace element characteristics of diogenites

and their orthopyroxenes have been extensively described

elsewhere (e.g., Fredriksson et al. 1976; Fukuoka et al. 1977;

Mittlefehldt 1994) and will not be repeated here except for a

brief overview of the factors controlling their composition.

Eighteen diogenites, mainly collected in Antarctica, have

been analyzed for major and trace elements during the course

of this study. Details of the samples studied, including the

composition of major mineral phases, are given in Table 2.

The results of major and trace element analyses are given in

Tables 3 and 4, and of oxygen isotope analysis in Table 5.

Factors Controlling the Composition of Diogenites

Previous geochemical studies of diogenites have shown

that their major element concentrations are strongly

controlled by the composition of their orthopyroxenes, in

agreement with their nearly monomineralic nature (e.g.,

Fredriksson et al. 1976; Fukuoka et al. 1977; Mittlefehldt

1994, 2002). Limited deviations from the orthopyroxene

compositions are generally well explained by the

involvement of small amounts of chromite, olivine or

plagioclase. While the results of our study lend additional
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support for this correlation, our new analyses also

significantly extend the compositional range of diogenite

compositions to both Mg-rich (e.g., MET 00425, MgO =

31.5 wt%) and Mg-poor examples (e.g., Dhofar 700, MgO =

23 wt%). The behavior of trace elements in diogenites is

much more complex, as exemplified by siderophile and

highly incompatible elements. Johnstown, which has been

repeatedly analyzed in the past (e.g., Floran et al. 1981;

Mittlefehldt 1994; Fowler et al. 1995, and this study),

illustrates this behavior:

1. Johnstown displays a wide range of Ni and Co

abundances (Ni = 37–460 µg/g, Co = 12–85 µg/g, Fig. 1).

Floran et al. (1981) have proposed that this range could

be explained by the involvement of a foreign meteoritic

component in this breccia. On the other hand, high

siderophile abundances are not just restricted to matrix-

rich material, so that some orthopyroxene clasts can

also exhibit high Ni and Co abundances. Therefore, the

behavior of these elements are more likely explained by

traces of metal contained within orthopyroxene

crystals. A similar explanation has been proposed by

Mittlefehldt (2000) for Elephant Moraine (EET)

A79002. Clearly, if this nugget effect is correct, it will

need to be taken into account, not only for the

interpretation of highly siderophile element

abundances in bulk rocks, but also in dating studies

using Hf-W or Re-Os systematics. Similarly, sulfide

grains can be inhomogeneously distributed within

orthopyroxene crystals and this might explain the

variation in chalcophile elements seen in diogenites

(e.g., Cu = 0.1 to 8.8 µg/g in the samples we have analyzed

[Tables 3 and 4]).

2. Orthopyroxene displays very low partition coefficients

for incompatible elements (Schwandt and McKay 1998),

consequently orthopyroxenites are extremely poor in

light REEs or Th. Diogenites also show this behavior

such that most of them display REE patterns with light

REE abundances largely below the chondritic level.

Unfortunately, such low concentrations are extremely

sensitive to contributions from enriched phases, such as

Table 1. Isotopes selected for analysis, resolution modes, trace element abundances for USGS BHVO2 basalt (best 

estimate), for PCC1, JP1 peridotites obtained during the course of this study (three different dissolutions for each 

standards), and estimate of 1σ analytical uncertainty for a typical diogenite sample (e.g., Johnstown or Dhofar 700)

based on replicate analyses of the same mother solution and of homogeneous geochemical reference standards.

Isotopes Resolution

BHVO2

(µg/g)

PCC1

(µg/g)

RSD%
n = 3

JP1

(µg/g)

RSD%
n = 3 Uncert.

Sc 45 MR 32.3 8.37 0.8 7.25 3.3 <4%
Ti 47 MR 16364 26 3.4 19.9 8 <4%
V 51 MR 317 25.7 1.1 21.65 2.8 <2%
Mn 55 MR 1290 849 1.2 860 2.3 <3%
Co 59 MR 45 103 1.1 104 6.1 <2%
Ni 60, 61, 62 MR 121 2171 1.1 2211 4.8 <3%
Cu 63, 65 MR 123 6.71 0.6 3.63 17.6 <5%
Zn 66, 68 MR 101 34.8 1.9 37.66 5.5 <10%
Ga 89 MR 20.6 0.51 1.1 0.47 1.8 <3%
Sr 88 MR 396 0.344 2.3 0.527 4.7 <3%
Y 89 LR 28 0.082 0.8 0.1 3.7 <1%
Zr 90, 91 LR 178 0.14 5.6 5.39 1.9 <7%
Nb 93 LR/MR 19.3 0.02 14.1 0.04 35.2 <15%
Ba 135 LR 131 0.79 1.9 10.04 1.1 <2%
La 139 LR 15.2 0.0293 2.4 0.0271 1.7 <3%
Ce 140 LR 37.5 0.0547 2 0.0597 2.4 <3%
Pr 141 LR 5.31 0.00662 3.3 0.00716 4.5 <3%
Nd 143, 146 LR 24.5 0.0255 2.6 0.0298 2.4 <3%
Sm 147, 149 LR 6.07 0.00458 2.5 0.00726 5.1 <3%
Eu 151 LR 2.07 0.00079 2 0.00385 9 <3%
Gd 157 LR 6.24 0.00513 3.2 0.0085 15.1 <3%
Tb 159 LR 0.94 0.00101 5.1 0.00166 8.4 <3%
Dy 163 LR 5.31 0.00921 1.6 0.0135 3.2 <3%
Ho 165 LR 0.97 0.00256 1.3 0.00316 5.9 <2%
Er 167 LR 2.54 0.011 2.3 0.0116 2.9 <3%
Yb 174 LR 2 0.0214 1.6 0.0194 0.9 <2%
Lu 175 LR 0.27 0.00421 1.3 0.00352 1.9 <2%
Hf 177, 178 LR 4.28 0.00379 6.4 0.113 0.6 <5%
Th 232 LR 1.21 0.011 2.3 0.0122 1 <3%
U 238 LR 0.41 0.0042 4.4 0.0122 1.2 <3%
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those produced during hot desert weathering (e.g., Barrat

et al. 1999, 2006), accessory phases (e.g., phosphates,

plagioclase), a trapped melt fraction, or any foreign

fragments (e.g., chondritic meteorites, plagioclase or

small eucritic clasts in diogenitic breccias, see Lomena

et al. [1976], Hewins [1988] and Mittlefehldt [1994]).

Therefore, the abundances of light REEs in

orthopyroxene compared to bulk rocks can differ

significantly. Johnstown is again a perfect illustration of

this effect (Fig. 2). The La concentrations displayed by

the orthopyroxenes and the chips of this meteorite vary

by more than two orders of magnitude, and a trapped

melt contribution was proposed by Floran et al. (1981).

We have analyzed a large orthopyroxene clast extracted

from Johnstown, our results for this material falling

within the range of literature values (e.g., Floran et al.

1981; Mittlefehldt 1994). The REE abundances we have

obtained, are significantly higher than the orthopyroxene

concentrations (Fowler et al. 1995), and confirm the

involvement of a light REE-enriched component. The

involvement of such a light REE-enriched component is

also seen in Aïoun el Atrouss, Roda, Allan Hills (ALH)

A77256 when bulk rock and orthopyroxene analyses are

compared (Mittlefehldt 1994; Fowler et al. 1995).

3. The contribution of enriched components is not the only

parameter that can explain the variation displayed by

incompatible element variation in bulk diogenites. REE

element distributions indicate that diogenites formed

from a variety of parental melts (Mittlefehldt 1994;

Fowler et al. 1995; Shearer et al. 1997), some of which

were significantly enriched in heavy REEs (Barrat

2004). This point is discussed below.

Non-Antarctic Diogenites

Bilanga

The mineralogy of this recent fall has been described by

Domanik et al. (2004). A large fragment (3.4 g) had

previously been powdered and analyzed for REE elements

(Barrat 2004). We reanalyzed a split of this powder, and

present here the first complete analysis (major and trace

elements) of this meteorite. The major element abundances

are very similar to the average orthopyroxene composition

(En78.3, Domanik et al. 2004), suggesting that other known

phases in Bilanga (chromite, diopside, plagioclase) were

present in only very minor amounts in our fragment. Trace

element abundances are in the range of other diogenites

(Fig. 3), although as pointed out by Mittlefehldt (2002) this

meteorite is poor in Sc (7.3 µg/g).

Tatahouine

The fall of the Tatahouine diogenite took place in 1931,

with ten or so kilograms of material being recovered soon

afterwards (Lacroix 1932). The strewn field was rediscovered

by Alain Carion in 1994, and many other fragments have

since been collected. The sample analyzed here was collected

by one of us (JAB) in 2000, and is slightly weathered, as

shown by its high Ba and Sr concentrations. Despite these

Table 2. Details of meteorite samples studied.
Opx Ol Pl Source # or split Comments

Falls

Bilanga Fs21 An46–92 A. Carion

Johnstown Fs24 Fa29 An87 AMNH #2497 Large clast

Hot desert finds

Tatahouine Fs23 J. A. Barrat Unbrecciated

Dho 700 Fs31 Fa32–37 An89–95 M. Farmer Unbrecciated

NWA 4272 Fs22 An81–86 M. Franco

Antarctic finds

A-881526 Fs25 NIPR ,56

A-881548 Fs22 Fa24 NIPR ,23

A-881839 Fs27 An88–92 NIPR ,22

EETA79002 Fs19–28 Fa24 MWG ,174 Dark chip

GRO 95555 Fs23 MWG ,30 ,36 Unbrecciated

LAP 02216 Fs23 MWG ,16 ,17

LAP 03569 Fs22 Fa27 MWG ,11

LAP 03630 Fs24 MWG ,11

MET 00422 Fs22 MWG ,10

MET 00424 Fs27 Fa29 MWG ,16

MET 00425 Fs15 MWG ,11

MET 00436 Fs26 MWG ,17

MIL 03368 Fs27   MWG ,8  

Source abbreviations are: AMNH = American Museum of Natural History, New York; MWG = NASA Meteorite Working Group; NIPR = National Institute

of Polar Research, Tokyo.
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differences, the results are very similar to those obtained on

samples collected in 1931 (Mittlefehldt 1994; Barrat et al.

1999), as exemplified by its REE pattern that shows a strong

heavy REE enrichment (Fig. 4a).

Dhofar 700

This unbrecciated diogenite is slightly weathered and

displays some fractures filled with secondary carbonates and

Fe-hydroxides. We powdered about half a gram of Dhofar

700, and analyzed two different splits. We directly dissolved

the first one, and the other was leached for one hour in hot

(100 °C) sub-boiled 6 N HCl in order to remove the terrestrial

secondary phases. The residue was rinsed five times in

ultrapure water prior to analysis. Very similar results were

obtained for major elements for both splits (Table 3).

However, the residue displays slightly lower Al2O3, CaO, Ni,

Cu, and Zn suggesting that small amounts of plagioclase,

sulfide and metal were removed during the leaching

procedure. Furthermore, Sr, Ba, Zr, and the light REE

abundances have been significantly reduced, thus indicating

that our leaching procedure has efficiently removed most of

the products of terrestrial weathering. The major and minor

element abundances are similar to the average orthopyroxene

composition, and it can therefore be inferred that the trace

Table 3. Major and trace element abundances of non-Antarctic diogenites (oxides in wt%, traces elements in µg/g).
 Dhofar 700  NWA

Bilanga Johnstown W.R. Residue Residue 4272 Tatahouine

Mass (g) 0.2306 0.2357 0.1295 0.2341 0.2341 0.2038 0.2034

TiO2 0.09 0.14 0.07 0.07 0.19 0.08

Al2O3 0.87 1.1 1.17 0.83 1.13 0.59

Cr2O3 0.86 0.89 0.8 0.8 0.59 0.93

FeO 13.5 15.93 19.98 20.05 14.94 15.48

MnO 0.43 0.5 0.74 0.75 0.47 0.5

MgO 29.7 26.2 23 23.1 27.9 28.2

CaO 0.97 1.45 2.66 2.27 1.47 0.78

Sc 7.25 15.63 29.14 29.64 14.34 13.33

Ti 461 756 374 373 968 416

V 88 99 152 144 75 104

Mn 2879 3400 4923 4948 3118 3289

Co 20 14.9 13.3 10.1 7.7 11.9

Ni 8.5 30 24.8 8.7 6.6 8.5

Cu 0.14 1.55 2.28 0.07 0.33 0.34

Zn 0.5 1.5 1.77 0.72 0.7 0.1

Ga 0.17 0.2 0.18 0.12 0.18 0.15

Sr 0.95 1.54 9.95 0.17 2.36 0.8

Y 0.99 1.69 0.88 0.91 0.91 2.73 0.25

Zr 0.72 2.42 0.52 0.28 3.55 0.15

Nb 0.14 0.36 0.021 0.011 0.39 0.044

Ba 0.21 3.03 1.49 0.08 1.75 0.43

La 0.0113 0.126 0.057 0.0028 0.0025 0.131 0.0067

Ce 0.0487 0.345 0.133 0.0127 0.0119 0.423 0.0144

Pr 0.0101 0.0538 0.0119 0.0023 0.0022 0.071 0.002

Nd 0.0693 0.288 0.0444 0.0189 0.0183 0.395 0.0096

Sm 0.0426 0.105 0.0191 0.0171 0.0170 0.158 0.0034

Eu 0.0041 0.0107 0.0035 0.0008 0.0007 0.0178 0.0006

Gd 0.0746 0.147 0.0482 0.0471 0.0503 0.245 0.0069

Tb 0.0178 0.0311 0.0126 0.0129 0.0138 0.053 0.0021

Dy 0.145 0.25 0.113 0.116 0.122 0.403 0.0247

Ho 0.0371 0.0618 0.0313 0.0321 0.0326 0.099 0.0081

Er 0.119 0.201 0.106 0.108 0.111 0.307 0.0341

Yb 0.129 0.223 0.126 0.126 0.129 0.326 0.0604

Lu 0.0211 0.0369 0.0198 0.0198 0.0202 0.053 0.0117

Hf 0.025 0.068 0.019 0.014 0.108 0.003

Th 0.0013 0.0205 0.0016 0.0003 0.0258 0.001

U 0.0022 0.0136 0.018 0.0001 0.0052 0.0007

(La/Sm)n 0.14 0.65 1.62 0.09 0.09 0.45 1.06

(Gd/Lu)n 0.43 0.48 0.29 0.29 0.31 0.56 0.07

Eu/Eu* 0.22 0.26 0.35 0.09 0.07 0.27 0.37



1764 J. A. Barrat et al.

element abundances of the residue are also very close to those

of the orthopyroxene fraction. The REE pattern of Dhofar 700

(Fig. 3) displays a strong depletion from Lu to La with a deep

negative Eu anomaly (Eu/Eu* = 0.09). The positive Ce

anomaly (Ce/Ce* = 1.20) is not an analytical artifact and

suggests that minute amounts of secondary phases have

survived the leaching procedure. Dhofar 700 is one of the

most ferroan diogenites analyzed during the course of this

study. In addition, its Sc abundance is very high (Sc = 29 µg/

g), and is similar to concentrations measured in main group

eucrites. 

The bulk oxygen isotopic composition of Dhofar 700 has

been determined on both untreated and acid washed samples

(Table 5). The aliquots leached in dilute HCl and

ethanolamine thioglycollate both display a consistent shift to

lower δ18O and δ17O values when compared to the untreated

sample (Table 5, Fig. 5). The heavy δ18O and δ17O

composition of the untreated Dhofar 700 sample undoubtedly

reflects the influence of hot desert weathering processes. The

fact that both the HCl and ethanolamine thioglycollate

leached aliquots are in reasonable agreement suggests that in

both cases the weathered products have largely been removed

Table 4. Major and trace element abundances of Antarctic diogenites (oxides in wt%, traces elements in µg/g).
EETA LAP LAP LAP MIL Asuka LAP MET

79002,174 02216,17 02216,16 03630,11 03368,8 881526,56 03569,11 00422,10

Mass (g) 0.1802 0.1638 0.1487 0.1612 0.1666 0.1306 0.1896 0.1788

TiO2 0.10 0.10 0.09 0.07 0.12 0.13 0.11 0.05

Al2O3 0.79 0.76 0.65 0.67 1.00 1.04 0.92 0.56

Cr2O3 0.77 0.86 0.75 0.74 1.12 0.81 1.03 0.99

FeO 17.60 17.06 17.07 16.21 17.08 16.20 17.06 18.00

MnO 0.51 0.52 0.53 0.57 0.55 0.52 0.51 0.60

MgO 27.44 27.23 27.41 27.26 26.10 27.30 28.85 26.20

CaO 1.17 1.16 1.19 1.19 1.62 1.34 1.44 0.92

Sc 13.26 13.21 12.73 13.33 13.68 14.20 12.95 15.47

Ti 539 519 470 375 605 629 551 256

V 96 100 92 97 156 92 99 120

Mn 3461 3376 3496 3666 3637 3122 3258 3973

Co 23.1 19.5 29.8 6.8 19.8 10.3 28.8 25.0

Ni 78.9 48.3 88.0 6.9 11.4 21.0 45.0 19.9

Cu 7.45 4.00 4.70 0.49 2.55 0.63 2.49 1.74

Zn 0.6 0.1 – 0.8 0.3 0.23 0.2 0.8

Ga 0.11 0.10 0.093 0.077 0.19 0.14 0.12 0.20

Sr 0.41 0.27 0.27 0.23 0.24 0.51 0.59 0.14

Y 0.78 0.78 0.66 0.58 1.00 1.33 0.96 0.23

Zr 0.62 0.68 0.44 0.47 0.55 1.07 0.90 0.16

Nb 0.037 0.048 0.039 0.019 0.030 0.041 0.079 0.024

Ba 0.16 0.13 0.09 0.06 0.10 0.02 0.33 0.08

La 0.0156 0.0160 0.0107 0.0070 0.0139 0.0279 0.0321 0.0074

Ce 0.0468 0.0516 0.0326 0.0244 0.0403 0.082 0.0879 0.0193

Pr 0.0078 0.0090 0.0054 0.0045 0.0068 0.014 0.0127 0.0027

Nd 0.0483 0.0566 0.0379 0.0348 0.0454 0.088 0.0734 0.0153

Sm 0.0250 0.0258 0.0187 0.0203 0.0262 0.0500 0.0327 0.0063

Eu 0.0042 0.0039 0.0030 0.0023 0.0031 0.0084 0.0064 0.0014

Gd 0.0481 0.0515 0.0391 0.0366 0.0550 0.0932 0.0643 0.0120

Tb 0.0118 0.0118 0.0096 0.0089 0.0143 0.0224 0.0150 0.0030

Dy 0.104 0.101 0.0851 0.0770 0.128 0.184 0.125 0.0287

Ho 0.0286 0.0280 0.0237 0.0204 0.0355 0.0485 0.0337 0.0081

Er 0.0996 0.0945 0.0832 0.0707 0.1234 0.162 0.1159 0.0294

Yb 0.135 0.133 0.115 0.0956 0.163 0.212 0.152 0.0443

Lu 0.0232 0.0222 0.0201 0.0162 0.0270 0.0356 0.0261 0.0081

Hf 0.023 0.025 0.017 0.017 0.022 0.040 0.032 0.005

Th 0.0017 0.0022 0.0013 0.0012 0.0016 0.0041 0.0041 0.0011

U 0.0006 0.0010 0.0005 0.0003 0.0010 0.0009 0.0012 0.0002

(La/Sm)n 0.34 0.34 0.31 0.19 0.29 0.30 0.53 0.63

(Gd/Lu)n 0.25 0.28 0.23 0.27 0.25 0.32 0.30 0.18

Eu/Eu* 0.36 0.33 0.33 0.26 0.25 0.37 0.42 0.47
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Table 4. Continued. Major and trace element abundances of Antarctic diogenites (oxides in wt%, traces elements in µg/g).
MET MET Asuka-881839, 22 GRO GRO MET Asuka

00425,11 00436,17 W.R. Residue “Phosphate” 95555,30 95555,36 00424,16 881548,23

Mass (g) 0.1454 0.1208 0.1304 0.083 0.1475 0.1994 0.1414 0.1312

TiO2 0.04 0.05 0.16 0.08 0.03 0.11

Al2O3 0.52 0.69 1.15 0.68 0.30 0.94

Cr2O3 0.74 4.05 0.82 0.94 0.55 0.59

FeO 11.6 21.27 18.72 16.31 20.39 16.96

MnO 0.38 0.69 0.65 0.55 0.71 0.49

MgO 31.45 23.62 23.8 27.38 25.36 28.3

CaO 0.54 0.76 2.56 1.15 0.76 1.17

Sc 6.39 15.62 21.57 19.95 11.54 11.50 16.63 12.72

Ti 197 256 886 910 411 458 113 557

V 77 348 125 135 120 125 94 99

Mn 2496 4540 4274 4472 3580 3609 4618 3208

Co 13.6 6.2 15.8 6.46 13.8 14.8 35.4 4.2

Ni 19.1 1.2 28 2.67 6.2 7.3 1.3 26.5

Cu 1.75 8.78 0.86 0.14 1.14 2.32 4.9 5.69

Zn 0.5 0.2 0.72 – 0.6 0.25 0.3 0.34

Ga 0.069 0.22 0.18 0.15 0.10 0.11 0.043 0.16

Sr 1.14 0.3 4.68 0.65 53496 0.63 0.67 <0,015 0.44

Y 0.37 0.15 2.98 2.56 5666 0.51 0.68 0.006 1.68

Zr 1.12 0.53 6.96 6.90 0.50 0.71 <0.1 1.79

Nb 0.100 0.072 0.47 0.38 0.049 0.058 <0.15 0.76

Ba 0.60 0.20 2.26 0.65 23130 0.12 0.41 <0.015 0.37

La 0.0563 0.0173 0.368 0.0861 3950 0.0267 0.0437 <0.001 0.061

Ce 0.164 0.0484 0.977 0.303 8942 0.0804 0.108 <0.002 0.277

Pr 0.0203 0.0068 0.151 0.0606 1176 0.0119 0.0143 <0.0005 0.057

Nd 0.107 0.0359 0.793 0.405 5322 0.0629 0.0732 <0,001 0.347

Sm 0.0364 0.0124 0.265 0.179 1161 0.0223 0.0296 <0,0005 0.131

Eu 0.0068 0.0022 0.043 0.0088 466 0.0059 0.0057 <0,0002 0.0078

Gd 0.0475 0.0169 0.348 0.269 1217 0.0346 0.0521 <0,0005 0.171

Tb 0.0087 0.0031 0.0655 0.0553 180 0.0078 0.0116 <0,0002 0.035

Dy 0.0599 0.0222 0.459 0.404 982 0.0668 0.0917 0.00036 0.253

Ho 0.0135 0.0052 0.108 0.0979 197 0.018 0.0234 0.00014 0.0612

Er 0.0404 0.0162 0.330 0.313 509 0.063 0.0803 0.00093 0.191

Yb 0.0442 0.0186 0.347 0.337 378 0.0882 0.105 0.00508 0.217

Lu 0.0071 0.00315 0.0551 0.0546 54.8 0.0152 0.0181 0.00145 0.0353

Hf 0.028 0.011 0.192 0.198 0.015 0.025 <0,005 0.044

Th 0.0141 0.0026 0.0496 0.0104 482 0.0033 0.0104 <0,001 0.009

U 0.002 0.0005 0.016 0.0105 85.5 0.0009 0.0019 <0,0004 0.021

(La/Sm)n 0.84 0.76 0.75 0.26 1.84 0.65 0.93 0.25

(Gd/Lu)n 0.81 0.65 0.76 0.6 2.69 0.28 0.36 <0,04 0.59

Eu/Eu* 0.5 0.47 0.43 0.12 1.19 0.64 0.44  0.16

Table 5. Oxygen isotopes data for diogenites Dho 700, NWA 4272, and A-881548 (n = number of replicates).

Sample Comments n δ17O‰ 1σ δ18O‰ 1σ  ∆17O‰ 1σ

Dhofar 700 Unwashed 2 1.86 0.03 3.97 0.1 −0.23 0.02

Dhofar 700 Washed thioglycolate 2 1.52 0.01 3.38 0.01 −0.25 0.01

Dhofar 700 Washed dilute HCl 1 1.57 3.45 −0.24

A-881548 Unwashed 4 1.64 0.12 3.56 0.21 −0.23 0.02

A-881548 Washed thioglycolate 2 1.62 0.01 3.56 0.01 −0.24 0.01

NWA 4272 Unwashed 2 1.63 0.03 3.56 0.01 −0.23 0.02
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by these treatments. Only the result for ethanolamine

thioglycollate treatment is plotted on Fig. 5. This shows that the

oxygen isotope composition of Dhofar 700 is well within the

range of previous measurements from diogenites (Clayton and

Mayeda 1996; Wiechert et al. 2004; Greenwood et al. 2005).

Northwest Africa 4272

This diogenite is a relatively fresh hot desert find, and the

fraction we have analyzed was apparently devoid of

secondary phases. Its major and trace element abundances are

very similar to our Johnstown clast (Table 3). We believe that

an enriched component explains the shape of its REE pattern

(Fig. 3) and the rather high light REE abundances. This

interpretation is in agreement with petrographic observations.

NWA 4272 exhibits an unusual texture with veins of calcic

plagioclase (or interstitial plagioclase?) and minor diopside

(Connolly et al. 2007) that are possible remnants of an

interstitial melt. The O isotopic composition of this meteorite

(Table 5) is well within the range of previous measurements

from diogenites (Clayton and Mayeda 1996; Wiechert et al.

2004; Greenwood et al. 2005).

Antarctic Diogenites

Two important observations emerge from our analyses of

Antarctic diogenites (Table 4). The first concerns the diversity

of their chemical compositions, and the second the presence

of possible groupings within these meteorites samples. For

the sake of clarity we will first discuss the chemical features

of these different groups and then those seen in individual

samples.

Asuka-81526–EETA79002 Group

EETA79002 is a complex breccia that contains materials

from at least three different diogenitic lithologies, including

an olivine-rich orthopyroxenite (Mittlefehldt 2000).

Mittlefehldt (2000) has analyzed the trace element

abundances of 16 chips of this meteorite, and found a

remarkably uniform incompatible lithophile element

distribution. We have analyzed one more chip of EETA79002,

and our analysis is similar to these earlier results.

Furthermore, the REE patterns of the various chips

(Mittlefehldt 2000 and this study) and the average

composition of orthopyroxene obtained in-situ by SIMS

(Fowler et al. 1995) are strikingly similar (Fig. 6a). 

Fig. 1. Ni versus Co diagram for diogenites. The data are from
Floran et al. (1981), Mittlefehldt (1994, 2000), Barrat et al. (2006),
and this study.

Fig. 2. REE concentrations for different samples of Johnstown vary
greatly. The reference chondrite is from Evensen et al. (1978). The 2σ
errors for the new analysis are equivalent to the size of the data points.

Fig. 3. REE patterns of selected non-Antarctic diogenites analyzed
during the course of this study. The reference chondrite is from
Evensen et al. (1978). The 2σ errors are equivalent to the size of the
data points.
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An important outcome of our analysis is the discovery

that six of the Antarctic diogenites display incompatible

lithophile element distributions very similar to that seen in

EETA79002. These samples are: A-881526, LaPaz Icefield

(LAP) 02216, LAP 03569, LAP 03630, MET 00422, and

Miller Range (MIL) 03368. Among them, LAP 03569 and

MET 00422 exhibit slightly less pronounced light REE

depletions, however, these differences are not important

(Figs. 6b and 6c). We did not expected such a grouping, in

part because of the diversity of the REE patterns previously

obtained for the diogenites and their pyroxenes (e.g.,

Mittlefehldt 1994; Fowler et al. 1995), and because of the

possible involvement of a light REE-rich component able to

alter the shape of the REE patterns (see above). Among these

stones, only LAP 02216 and LAP 03569 were previously

known to be paired. However, textural and phase composition

differences among the other stones suggests that they are

distinct meteorites and cannot be paired; see Antarctic

Meteorite Newsletter (JSC, Houston) 26, 2 (2003), 27, 3

(2004), 28, 1 (2005) and Meteorite Newsletter (NIPR, Tokyo)

13, 1 (2005).

The uniformity of the trace incompatible lithophile

element distributions of EETA79002 (Mittlefehldt 2000) and

of the other diogenites in this group indicates that the

contribution of a trapped melt (or another light REE enriched

phase) is at best very limited. It can be inferred that they either

originated from the same magmatic system, or from very

similar parental melts.

Asuka-881839–MET 00425–MET 00436 Group

These three diogenites are compositionally very

different: MET 00425 is the most Mg-rich diogenite analyzed

so far; MET 000436 and A-881839 are among the most Fe-

rich ones. Their lithophile trace element abundances are

extremely different and do not follow the major element

compositions, as portrayed by the REE concentrations. MET

00425 and A-881839 have respectively about 2 times and

20 times more REEs than MET 00436. Despite these

differences, they have been grouped together because they

share a remarkable characteristic (Fig. 7a): their REE patterns

are fairly flat and display similar negative Eu anomalies (Lan/

Smn = 0.75–0.84, Eu/Eu* = 0.43–0.50). Such features are

unusual and strongly suggest the involvement of light-REE

rich component(s). Indeed, MET 00425 and MET 00436 both

exhibit a slight positive Ce anomaly. This kind of anomaly has

been documented previously in weathered Antarctic finds

(Shimizu et al. 1984; Floss and Crozaz 1991; Mittlefehldt and

Lindstrom 1991, 2003) and has been ascribed to the

dissolution of REE-rich phosphates by water equilibrated

with the atmosphere (Mittlefehldt and Lindstrom 1991). Ce

can be oxidized to the +4 state, and in this way becomes

Fig. 4. REE patterns of the Tatahouine (Barrat et al. 1999 and this
study), MET 00424, GRO 95555 diogenites. The patterns of the
Yamato-A (Masuda et al. 1979), NWA 4215 (Barrat et al. 2006)
diogenites and the average orthopyroxene from GRO 95555 (Papike
et al. 2000) are shown for comparison. The reference chondrite is
from Evensen et al. (1978). The 2σ errors for the new analyses are
equivalent to the size of the data points.

Fig. 5. Oxygen isotope variation in diogenites and eucrites. All ∆17O
values are linearized (see text for details). The data set is limited to
analyses obtained in Open University to avoid analytical bias
(Greenwood et al. 2005, 2006; Barrat et al. 2006, 2007 and this
study). For clarity, error bars for individual analysis have been
omitted. (EFL = eucrite fractionation line, TFL = terrestrial
fractionation line, B = Bilanga, J = Johnstown, T = Tatahouine).
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fractionated from the +3 charged REEs. Thus, weathering of

Antarctic meteorites generates a variety of REE patterns,

some exhibiting positive, and some negative Ce anomalies.

Here, the positive Ce anomalies can be interpreted as the

possible fingerprint of REE-rich phosphates in these two

MET diogenites. Although scarce, these phases have been

observed in Roda, Bilanga and Manegaon (Mittlefehldt 1994;

Domanik et al. 2004, 2005).

To verify whether a REE-rich phase was present in these

diogenites, we have leached the remaining powder (83 mg)

obtained from our allocated chip of A-881839 using hot 7N

HNO3 (120 °C) for 20 min. The residue (rinsed 5 times in

ultrapure water) and the HNO3 fraction were both analyzed

for trace elements and P. The HNO3 fraction contained

detectable amounts of P (about 1 µg of P), which confirmed

that a phosphate phase has been leached. Consequently, we

adjusted the abundances of the other elements in this fraction

assuming a P2O5 concentration fixed to 42 wt%. This fraction

is named “phosphate” (Table 4), and is either enriched or

highly enriched in Sr, Y, Zr, Nb, Ba, REEs, Hf, Th, and U. Its

REE pattern (Fig. 7b) is light-REE enriched (Lan/Ybn = 7.05)

and displays a distinct positive Eu anomaly (Eu/Eu* = 1.19).

The latter is probably not related to the phosphate phase, but

is more likely produced by a small amount of plagioclase

dissolved in the hot HNO3. Nevertheless, the REE

concentrations displayed by the “phosphate” fraction are very

high and in the range expected for whitlockite. The residue

displays lower concentrations in Sr, Y, Ba, light REEs, and

Th, and also lower Co, Ni, and Cu concentrations than the

unleached sample, suggesting that a small amount of metal

and sulfide had been dissolved (Table 3). The REE pattern of

the residue (Fig. 7b) is in agreement with an orthopyroxene

composition, with a significant light REE depletion (Lan/Smn

= 0.26) and a deep negative Eu anomaly (Eu/Eu* = 0.12). The

trace element content of the bulk sample is well accounted for

by a mixture of 99.993 wt% residue and only 0.007 wt%
“phosphate.”

Asuka-881548

A-881548 is a diogenite that contains inhomogeneously

distributed olivine grains (up to 70 vol% in a 1 cm2 section).

The major element abundances measured in this study

indicate that our allocated chip was devoid of olivine. The

distribution of the lithophile incompatible trace elements of

A-881548 are unlike the previous samples. However, its REE

pattern resembles the residue of A-881839 (Fig. 7c) with a

similar light REE depletion (Lan/Smn = 0.30) but a less

pronounced negative Eu anomaly (Eu/Eu* = 0.37). The bulk

oxygen isotopic composition of A-881548 has been

determined on both untreated and ethanolamine

thioglycollate-washed samples (Table 5). The very good

agreement between these samples indicates that A-881548

has experienced very low degrees of terrestrial weathering.

The oxygen isotope analysis for the acid washed sample

(Fig. 5) is well within the range of previous measurements

from diogenites (Clayton and Mayeda 1996; Wiechert et al.

2004; Greenwood et al. 2005).

Grosvenor Mountains 95555

This unbrecciated diogenite was previously studied by

Papike et al. (2000). The REE patterns of our two chips and

the average composition of orthopyroxene obtained in-situ by

SIMS by these authors are not similar (Fig. 4b), and we have

no satisfactory explanation for this discrepancy. Interestingly,

the shapes of the REE patterns we have obtained are akin to

that obtained for the Yamato-type A diogenites (Masuda et al.

1979). GRO 95555, however, exhibits more pronounced

Fig. 6. REE patterns of the EETA79002 group diogenites
(EETA79002, LAP 02216, LAP 03569, LAP 03630, MET 00422,
MIL 03368, A-881526). The field of the results for EETA79002
obtained by Mittlefehldt (2000) on 16 different chips, and by Fowler
et al. (1995) on orthopyroxene by ion-probe are shown for
comparison. The reference chondrite is from Evensen et al. (1978).
The 2σ errors for the new analyses are equivalent to the size of the
data points.
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negative Eu anomalies. One of the analyzed chips (GRO

95555,30), displays a slight positive Ce anomaly (Ce/Ce* =
1.08, Antarctic weathering involving minute amounts of

phosphate?). Indeed, minute amounts of phosphates could

explain the different REE abundances displayed by the

chips ,30 and ,36.

MET 00424

This ferroan diogenite (FeO/MgO = 0.80) was by far the

most difficult to analyze for trace elements. MET 00424 is

the diogenite that displays the lowest incompatible

lithophile element concentrations (Mittlefehldt 2002). The

concentrations of Zr, Hf, light REEs, Th, U were so low, that

we were unable to quantify them correctly. The

concentrations we have obtained for heavy REEs and Y are

extremely low: only 5 ng/g for Yb, only 6 ng/g for Y. For

comparison, Shalka, the diogenite with the lowest heavy REE

contents measured before has about 30 ng/g Yb. 19 ng/g Y

were measured in an orthopyroxene grain from Ellemeet

(Mittlefehldt 1994; Fowler et al. 1995). MET 00424 is not

only the sample with the lowest incompatible trace element

abundances, it displays the most fractionated heavy REE

pattern (Dyn/Ybn = 0.046, Fig. 4a).

How Many Parental Melts for Diogenites?

While the cumulate origin of diogenites is widely

accepted, the number and the composition of their parental

melts are still a matter of debate. Two distinct views have

been put forward to explain the origin of diogenites and their

relationship to eucrites. Many workers (Mason 1967; Bartels

and Grove 1991; Warren 1997; Righter and Drake 1997;

Ruzicka et al. 1997) have suggested that eucrites and

diogenites were directly cogenetic, sharing the same parental

melts. In this model diogenites are cumulates that formed

during the crystallization of relatively primitive magmas,

while eucrites are viewed as the products of more evolved

residual melts. In contrast, it has been proposed that

diogenites and eucrites are not directly related (e.g., Stolper

1977; Mittlefehldt 1994, 2000; Fowler et al. 1995; Shearer

et  al. 1997; Barrat 2004), with diogenites representing

cumulates from parental melts for which the composition

cannot be easily constrained (ultramafic melts? Mg-rich

basalts or Mg-rich andesites?). 

Incompatible element systematics, while extremely

useful for bulk rocks that represent melt compositions, are

more ambiguous for cumulate rocks. However, our new

results extend the range of known diogenite compositions,

and can constrain some features of their parental melts:

1. Trace and major element abundances are rarely coupled

in diogenites. A correlation between Sc and FeO/MgO

ratios has been previously noticed (Göpel and Wänke

1978; Mittlefehldt 2002) and is confirmed by the present

data (Fig. 8a). However, Sc is well correlated with the Fe

or Mn abundances and so a relationship of the type

displayed by Fig. 8 does not necessarily have any

petrogenetic significance. If diogenites are part of a

single crystallization sequence then clear relationships

between incompatible trace elements (e.g., the REEs)

and differentiation indexes (e.g., the FeO/MgO ratios)

are to be expected, but none has been observed (Fig. 8b).

The involvement of an incompatible rich component

(e.g., a trapped melt), or metamorphic equilibration are

both plausible explanations for the absence of such

correlations (Mittlefehldt 1994). However, it is also

possible that the spread of the data in the Yb versus FeO/

Fig. 7. REE patterns of the diogenites Asuka-881548, A-881839,
MET 00425, and MET 00436. A-881839 has been leached and the
residue and the leachate (“phosphate”) were analyzed (see the text for
more details). The reference chondrite is from Evensen et al. (1978).
The 2σ errors are equivalent to the size of the data points.
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MgO plot (Fig. 8b) reflects the pristine distribution, and

hence is indicative of a real diversity within the parent

melts that produced the diogenites.

2. Previous studies have shown that Al, Zr, Y, Yb, and Ti

abundances in diogenites exhibit significant linear

relationships (Fig. 9). These variations are at first glance

consistent with igneous fractionation from a common

parent melt. However, this interpretation is unlikely as it

implies high degrees of fractional crystallization, using

either constant or increasing partition coefficients with

decreasing temperature. Such high degrees of fractional

crystallization are inconsistent with the nearly

monomineralic composition of most diogenites and the

scarcity of plagioclase which is expected to crystallize

abundantly if a Mg-rich basaltic parent melt is assumed

(Mittlefehldt 1994; Fowler et al. 1995). Alternatively,

the linear trends could be also generated by fractional

crystallization of different melts (e.g., Fowler et al.

1995). In addition, it can be seen from Fig. 9 that many

pyroxene analyses plot significantly away from the main

trend in the Al versus Ti diagram, a feature which

supports the idea that multiple parental melts were

involved in the genesis of the diogenites.

3. The low-Ca pyroxene KD (about 0.27) is well

determined for eucritic or high-Mg eucritic systems

(Stolper 1979; Bartels and Grove 1991). In principle,

using this value, the Fe/Mg ratio of the melt in

equilibrium with crystals can be deduced only if their

distribution of Fe or Mg has not been affected by reaction

with interstitial melt, subsolidus or metamorphic

re-equilibrations, or any post-crystallization process.

Most orthopyroxene crystals in diogenites are

homogeneous with respect to major elements. It could

therefore be suggested that any initial zoning was erased

by later metamorphic processes (e.g., Mittlefehldt 1994).

If this interpretation was correct, any estimate of the Fe/

Mg ratio of their parent melt would be seriously in error.

However, in the case of cumulates, there are many

factors that determine the extent of the zoning in the

cumulus phases. Of particular importance is the fraction

of trapped melt. If this fraction is significant, crystals can

develop large rims with evolved compositions. If the

melt has been almost totally expelled, as is the case for

the diogenites (e.g., Barrat 2004), zoning can be far less

pronounced, or the volume of rim material highly

restricted compared to that of the core. In other words,

the average composition of the crystals may not

necessarily be far removed from that of their core and

Fig. 8. Yb and Sc versus FeO/MgO (wy%/wt%) diagrams for
diogenites (W.R.: whole rock, Opx: average orthopyroxene). The 2σ
errors for the new analyses are equivalent to the size of the data points.

Fig. 9. Al2O3 and Yb versus Ti diagrams for diogenites (W.R.: whole
rock, Opx: average orthopyroxene). The data are mainly from
Berkley and Boynton (1992), Mittlefehldt (1994, 2000), Fowler et al.
(1994, 1995), Domanik et al. (2003), Liermann and Ganguly (2001),
Barrat et al. (1999, 2006) and this study. The 2σ errors for the new
analyses are equivalent to the size of the data points.
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hence can provide useful constraints on the composition

of the parent melt. Pyroxenes that still display pristine

zoning with respect to Fe and Mg, have been found in

two diogenites, Garland and NWA 4215. In the first case,

the average core and rim compositions are not very

different (respectively En72.4 and En69.4, Fowler et al.

1994). For NWA 4215 (Barrat et al. 2006), the

composition of a typical crystal ranges from En76.2 to

En71.4, and the average composition is close to En74.0.

These two examples suggest that the average

compositions of orthopyroxene crystals in diogenites are

strongly controlled by the composition of their cores.

Hence, the FeO/MgO ratios of their parent melts can be

estimated from the composition of average pyroxenes or

whole rocks. Using literature data (Mittlefehldt 1994;

Fowler et al. 1994), and the whole rock compositions

obtained in this study, we calculate that the FeO/MgO

ratios of diogenite parental melts ranged from about 1.4

to 3.5 (Fig. 10). In our calculations we have assumed that

diogenites contain only orthopyroxene, however, taking

into account the involvement of chromite or olivine

would not significantly alter these values. This range of

values is wide and overlaps that obtained for non-

cumulate eucrites. It is possible to question the validity

of these calculations and suggest that the Fe/Mg ratio of

the initial core of the crystals and that of the average

pyroxene could be very different, especially for some of

the most ferroan diogenites (like the unique Dhofar 700

whose pyroxenes exhibit preserved zonings for Al, Cr,

Ca and possibly Ti). Nevertheless, the wide range of

FeO/MgO ratios calculated for equilibrium melts is

certainly not an artifact, and reflects the diversity of the

parental melts involved. We note that the FeO/MgO

ratios of many calculated melts cluster around 2–2.5, a

value very similar to some main-group eucrites. This

could indicate that many diogenites formed from melts

with FeO/MgO ratios close to those that produced the

eucrites, but of course with a different composition. In

other words, the parent melts of diogenites were not

systematically more “primitive” than the eucrites. We

note that the range of the FeO/MgO ratios of the cores of

the pigeonite crystals from the unequilibrated eucrites

(FeO/MgO = 0.63–1.39, Pun and Papike 1996) overlaps

partly the values obtained for diogenites (FeO/MgO =
0.36–0.90), which is in full agreement with this

interpretation. This conclusion is at odds with a simple

magma ocean model, in which the diogenites are seen as

being the early-formed cumulates from a relatively

primitive magma which as a consequence underwent

progressive differentiation to produce the more evolved

liquids that gave rise to the eucrites.

4. We have tentatively calculated the abundances of Yb and

the (Dy/Yb)n ratios of the parental melts of diogenites

using the partition coefficients for orthopyroxene

obtained experimentally by Schwandt and McKay

(1998). The spread of the results displayed in the Yb

versus FeO/MgO plot (Fig. 10) cannot be solely

explained by secondary processes (metamorphic

reequilibration, trapped melt effects, etc.), and indicates

again a diversity of parental melts for diogenites. This is

further confirmed by the range of their calculated (Dy/

Yb)n ratios (Fig. 10), in particular because Barrat (2004)

has shown that these ratios are not very sensitive to the

influence of trapped melt. Indeed, the results obtained

here indicate unambiguously that some diogenites (e.g.,

Tatahouine and MET 00424) formed from melts

characterized by a significant heavy REE enrichment

(i.e., (Dy/Yb)n < 1). Such a feature clearly demonstrates

that basaltic eucrites and these diogenites could not have

originated from the same parental melts. Furthermore,

Fig. 10. (Dy/Yb)n and Yb versus FeO/MgO diagrams for the
calculated parental melts of diogenites (see the text for more details).
The samples (WR) that contain a light REE rich component are not
shown in the (Dy/Yb)n versus FeO/MgO plot. The field for basaltic
eucrites is drawn from literature data (mainly from Barrat et al. 2003,
2007).
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some parental melts are characterized by (Dy/Yb)n > 1.

Such results are not necessarily reliable when obtained

from bulk rock concentrations. If the rock contains a

light REE rich component, the Dy/Yb ratios of the bulk

rock and of the orthopyroxene are different. This is

exemplified by Johnstown (Fig. 2) and the leaching

experiment performed on A-881839 (Fig. 7b). For this

reason, samples where a light REE-rich component was

suspected, are not used in the (Dy/Yb)n versus FeO/MgO

plot (Fig. 10). For melts calculated from the

orthopyroxene compositions obtained by ion-probe

(Fowler et al. 1995), this inference has greater validity.

Alternatively, these high (Dy/Yb)n ratios could be partly

explained by the involvement of a significant fraction of

trapped melts (about 10–20 wt% of trapped melts are

required (Barrat 2004)). However, textural and chemical

evidence indicates that, if present, the amount of trapped

melt in diogenites was minor, and probably not sufficient

to alter drastically the Dy/Yb ratios of the

orthopyroxenes (Barrat 2004).

Our new results are consistent with the conclusions of

previous studies suggesting that there is no direct genetic link

between diogenites and eucrites (e.g., Stolper 1977;

Mittlefehldt 1994, 2000; Fowler et al. 1995; Shearer et al.

1997; Barrat 2004). The behavior of heavy REEs

demonstrates unambiguously that a variety of parental melts

are required to account for the composition of diogenites. The

diversity of the trace element abundances displayed by

diogenites cannot be explained by a simple single-stage

magma ocean model, nor by the involvement of a single large

magma reservoir. Of major importance, we confirm that some

diogenites such as Tatahouine or MET 00424, formed from

melts displaying a pronounced heavy REE enrichment, a

feature which is necessarily inherited from their sources. Two

hypotheses can be proposed for the origin of such heavy REE

enrichments (the reader is referred to Barrat (2004) for a more

detailed discussion of this topic). First, a residue from which

significant melt has been extracted, which prior to melting

had a flat REE pattern, will then have a Dy/Yb)n ratio

significantly lower than 1. Remelting of such a residue could

in theory produce a HREE-enriched liquid. This is essentially

the model for the genesis of the diogenites proposed by

Stolper (1977). Alternatively, olivine and pyroxene rich

cumulates formed from melts displaying a flat REE pattern

would also exhibit strong heavy REE enrichment. Remelting

of such a cumulate pile would also generate melts displaying

a variety of (Dy/Yb)n ratios, including very low values.

Oxygen isotope evidence presented here and previously

(Greenwood et al. 2005) demonstrates that all lithologies of

the HED suite, including the diogenites, have an extremely

restricted ∆17O composition consistent with a large scale

homogenization event early in the history of Vesta. The most

likely scenario to explain this homogenization event is

planetary-scale melting of the type that would have led to the

formation of a magma ocean. Under such circumstances, a

model that produces the eucrites by relatively low degrees of

partial melting followed by remelting of the remaining source

region to produce diogenitic parental melts (Stolper 1977)

would appear to be untenable. This suggests that the HREE

enriched trace element patterns seen in diogenites, such as

Tatahouine or MET 00424 (Fig. 4), must necessarily involve

remelting of previously formed cumulates. At first sight, this

would appear to be at odds with the progressive

crystallization of a magma ocean. However, we presently

have little information about the crustal structure of Vesta and

an extremely poor understanding of the stages in the

development of any early-formed global magma ocean

(Righter and Drake 1997; Warren 1997). It is possible that the

initial crustal layer of the magma ocean would have

comprised eucritic volcanic rocks underlain by a relatively

thick pile of hot cumulates. Underneath this initial carapace

the still primitive and therefore hot magma ocean would have

been undergoing relatively rapid convection and hence be

relatively well-mixed both compositionally and thermally.

Foundering and entrainment of portions of the hot cumulate

pile into the underlying magma ocean would be highly likely

and where a significant density contrast exists such fragments

would sink to the base of the global magma chamber.

However, the base of the cumulate pile would have been

relatively hot and the thermal contrast between it and the

underlying ocean relatively small. Under such conditions, the

cumulate pile would at least locally have experienced

significant degrees of melting. Once formed there would have

been two possible routes for any melt produced by this

process. It would either have become entrained in the

convecting magma ocean, or more likely due to the density

contrast with the overlying crust it would have intruded the

overlying crust as diapirs. While this is a speculative scenario

due to our lack of understanding of the processes on early

Vesta, it is entirely feasible that significant amounts of

remelting of the early formed crust took place on Vesta. 

SUMMARY AND IMPLICATIONS

FOR HED METEORITES

Major and trace element abundances were determined for

18 diogenites using ICP-AES and ICP-MS. This new data set

extends the range of known diogenite compositions, from

Mg-rich examples (e.g., MET 00425) to Mg-poor diogenites

(e.g., Dhofar 700 and MET 00436). In agreement with

previous analyses on bulk rocks, the diogenites display a wide

range of trace element abundances (Fukuoka et al. 1977; Wolf

et al. 1983; Mittlefehldt 1994, 2000). Such variations are

partly explained by the inhomogeneous distribution of

accessory phases such as sulfides and metal for chalcophile or

siderophile elements, and phosphates in some cases for

incompatible elements. Apart from a few samples that display

the fingerprint of light REE-rich phases (e.g., Johnstown

NWA 4272, MET 00425, MET 00436, and A-881839), the

range of incompatible element abundances, and particularly
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the range of Dy/Yb ratios in diogenites is best explained by

the diversity of their parental melts. Indeed, the data presented

here confirm that some diogenites formed from heavy REE-

enriched melts. The diversity of the parental melts required to

explain the chemical features of diogenites indicates that they

have not crystallized in a single magmatic system. 

To date, no possible parental melt for diogenites has been

identified among the 800 known HED meteorites. Compared

to the proportions of diogenites and howardites that contain

numerous clasts of diogenites (more than 40% of the HED

population), this lack of a potential parental composition is

disturbing. Why have such materials not yet been found? At

least three potential reasons can be suggested (Mittlefehldt

and Lindstrom 1998): (1) It could be suggested that these

melts have never been emitted as lavas on the surface of the

parent body, but rather crystallized at depth, below or into the

eucritic crust. If this were the case, we should have a

significant number of samples from these intrusive complexes

that crystallized from the residual liquids formed after the

extraction of diogenites, and such samples are also unknown.

Furthermore, a fine-grained diogenite that possibly cooled

faster than the other diogenites and formed within a small,

shallow intrusion has recently been identified (Barrat et al.

2006). Thus, this explanation seems unlikely. (2) It could be

proposed that these samples exist but have not yet been

identified because their particular features have been erased

by an extensive metamorphism and/or brecciation; (3)

alternatively, lavas genetically linked to diogenites are

exposed somewhere on Vesta, but are totally lacking in the

HED collection.

It is often assumed that the HED meteorites provide a

reliable picture of the lithologic diversity exposed at the

surface of Vesta. If rocks with the composition of the parental

melts of diogenites are not present in the HED collection, then

this assumption is probably invalid. Indeed, cosmic-ray

exposure ages for the HEDs suggest that all these meteorites

are associated with only five impact events (Welten et al.

1997), a number that is probably insufficient to sample all the

geological diversity of the entire surface of the body. The

recent discovery of K-rich impact glasses in howardites

demonstrates that the rocks that crop out on Vesta are

certainly not restricted to eucrites and ultramafic cumulates

(Barrat et al., Forthcoming). The remote sensing studies that

will be performed during the Dawn mission, should help to

confirm the petrological diversity of the exposed lithologies,

and identify the chemically different areas present on Vesta.
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