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ABSTRACT. This paper presents a mixed variational framework and numerical examples to 
treat a bidimensional friction contact problem in large deformation. Two different contact 
algorithms with friction are developed using the 2D finite element code PLAST2.  
The first contact algorithm is the classical node-on-segment, and the second one corresponds 
to an extension of the mortar element method to a unilateral contact problem with friction. In 
this last method, the discretized normal and tangential stresses on the contact surface are 
expressed by using either continuous piecewise linear or piecewise constant Lagrange 
multipliers in the saddle-point formulation. The two algorithms based on Lagrange 
multipliers method are developed and compared for linear and quadratic elements. 
 

RÉSUMÉ. Une étude numérique de différentes méthodes d’éléments finis avec multiplicateurs 
de Lagrange pour les problèmes de contact avec frottement de Coulomb en grand 
déplacement est menée dans cet article. Le problème de point-selle correspondant est 
approché par des éléments finis linéaires ou quadratiques. Les conditions de contact et de 
frottement discrétisées sont exprimées au sens faible (raccord de type intégral). Ces 
approches généralisent la méthode des éléments finis avec joints aux problèmes de contact 
frottants. La mise en oeuvre de ces techniques est réalisée dans la nouvelle version du code 
de calcul par éléments finis en deux dimensions PLAST2. Des comparaisons sont effectuées 
avec la méthode du raccord classique “noeuds-segments” initialement implantée dans 
PLAST2. 

KEY WORDS: contact, mixed finite element, friction, dynamic explicit, mortar elements. 

MOTS-CLÉS : contact, éléments finis mixtes, frottement, dynamique explicite, éléments joints. 
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1. Introduction 

In order to solve a contact problem with friction, it is necessary to possess 

numerical tools adapted to the strong non-linearity, the incompatibility of meshing 

on the contact zone and the evolutionary characteristics of the surfaces. 

Methods used differ by their contact algorithm, their time integration scheme and 

the construction of the global contact matrices obtained from the writing of the non 

interpenetration condition. The solution to a contact problem is obtained using 

various methods such as the penalisation or the Lagrange multiplier methods 

(Chaudhary, 1986), (Kikuchi, 1988), (Wriggers, 1995), (Zhong, 1992), (Wriggers, 

1990), (Rebel, 2002). Among these last methods one finds the gradient methods 

(Raous, 1992), (May, 1986), those of the increased Lagrangian or other mixed 

approaches (Klarbring, 1986), (Simo, 1992), (Alart, 1991). 

For the resolution of a contact problem without friction using the Lagrange 

multipliers method, the construction of the global contact matrices used for the 

calculation of contact stresses is not unique. Usually, the classical node-on-segment 

strategy (local type approach) is used. The mortar element method initially presented 

for domain decomposition has been used for the resolution of a unilateral contact 

problem (Hild, 1998-2000-2002). The introduction of another Lagrange multiplier 

related to the tangential friction stress following a Coulomb or Tresca law has been 

presented by the researchers (McDevitt, 2000), (Baillet, 2003). McDevitt and 

Laursen have used the mortar element method in the case of small deformations, by 

using the penalisation method and for problems of non evolutionary contact 

surfaces.  

In this paper, the contact treatment is based on the mortar-finite elements method 

(global type approach), it uses the Lagrange multiplier method and is developed for 

large deformation problems where the contact surface is evolutionary. These 

algorithms have been implemented and tested in the 2D finite element code 

PLAST2. PLAST2 includes large deformation and non linear material behavior. It is 

based on a Lagrangian-mesh Cauchy-stress formulation in conjunction with an 

explicit time integration scheme. The forward Lagrange multiplier method is used to 

treat the contact between deformable bodies. 

The paper is organized as follows. First we introduce the equations modeling the 

Signorini problem with friction, continuous mixed variational formulation and 

contact algorithms are presented. Then several numerical simulations which include 

contact between deformable bodies are performed. Comparisons of the two contact 

algorithms, the choice of the discretized normal and tangential stresses and the 

choice of the element (linear Q1 or quadratic Q2) are carried out. The numerical 

examples illustrate the accuracy and robustness of the proposed mortar-finite 

element formulation for a contact problem with friction in large deformation. 
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2. Continuous problem and functional framework  

One considers the deformation of two elastic bodies occupying, in the initial 

configuration, two domains jΩ , j=1,2. For j=1,2 the boundary jΓ  of each solid is 

the union of three non-overlapping parts j

c

j

g

j

u

j Γ∪Γ∪Γ=Γ . The displacement field 

is known on j

u
Γ  (one can suppose, for example, that the jΩ  solid is embedded in 

j
uΓ ). The j

g
Γ  boundary is submitted to a density of forces noted 2j2j ))(L(g Ω∈ . 

Initially the two solids are in contact on the common part of their boundary 
2

c

1

cc
 Γ=Γ=Γ . The jΩ  body is submitted to 2j2j ))(L(f Ω∈  forces. The normal unit 

outward vector on jΩ  is noted jn  as one designated by 0≥µ  the friction 

coefficient (supposed constant on 
c

Γ  by simplification). 

The Coulomb problem of contact with friction consists in finding the ju  

displacements and the )u( jσ  stresses which verify the following equations and 

conditions 

, in )u(D)u( jjjj Ωε=σ  [1] 

, in 0f)u(div jjj Ω=+σ  [2] 

, on gn)u( j

g

jjj Γ=σ  [3] 

, on 0u j

u

j Γ=  [4] 

in which )u( jε  represents the linearized strain tensor, 
jD  is the fourth order 

tensor satisfying the usual symmetry and ellipticity conditions in elasticity. 

Equations [1], [2], [3] and [4] respectively designate the behaviour relation, the 

equilibrium equation and the Neumann and Dirichlet condition. 

To introduce the equations onto the 
c

Γ  contact zone, the following notations are 

adopted 

,)t u(n)u(n)u(       , uu un)n.u(u j

t

jj

n

jjj

t

j

n

j

t

jjjj σ+σ=σ+=+=  
[5] 

where  u j

n
 and  u j

t
 respectively represent the normal and tangential 

displacements and  )u( j

n
σ  and  )u( j

t
σ  respectively designate the normal and 

tangential stresses where t is a unitary fixed tangent vector. 

The equations modelling the unilateral contact on 
c

Γ  become 

.0]u)[u(        ,0)u(        ,0]u[
nnnn

=σ≤σ≤  
[6] 

The ]u[ n  notation represents the )n.un.u( 2211 +  jump of the normal 

displacement through the 
c

Γ  contact zone. The [6] conditions, expressing the 

unilateral contact between the two bodies, describe respectively the non-penetration 

condition, the sign condition on the normal stress and the complementary condition. 
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The conditions of Coulomb’s friction on cΓ  are written 










λσ−=≥λ∃⇒σµ=σ

=⇒σµ<σ

σµ≤σ

).u(]u[   s.t.   0  )u()u(

,0]u[  )u()u(

,)u()u(

ttnt

tnt

nt

&

&  

 

[7] 

Here ]u[
t

&  represents the jump of the tangential velocity through 
c

Γ . 

Remark: in this paper, we are interested in the discrete formulation with 

Lagrange multipliers of the friction. Then we restrict ourself to the displacement 

formulation of the friction and we replace ]u[
t

&  in [7] by ]u[
t

. 

Let us consider K as the closed convex cone of admissible displacements which 

satisfies the conditions of non penetration 

{ }
{ }j

u

2j1jj

cn

21

21

   on   0 v,))(H(vV where

    on   0]v[ ;VV)v,v(vK

Γ=Ω∈=
Γ≤×∈==

. 

[8] 

The variational formulation corresponding to problem [1]-[7], obtained by 

Duvaut and Lions (Duvaut, 1972) consists of finding u which verifies 

Kv   , )uv(L)u,u(j)v,u(ju)-vu,(a  ,Ku ∈∀−≥−+∈  
[9] 

where 

∫
Ω

Ωεε=+=
j

jjjj21 , d))v(:)u(D()vu,(a   , v)u,(a)vu,(av)u,(a  [10] 

∫∑∫ ∫
Γ= Ω Γ

Γσµ=Γ+Ω=
c

tn

2

1j j j
u

jjjj , d]v[)u(v)u,(j       , dv.gdv.f)v(L  [11] 

are defined for all u and v in Sobolev’s standard space 21 ))(H( Ω . The functional 

j(.,.) translates friction. 
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3. Mixed variational formulation of the discrete problem 

Let j

h
ℑ  be a regular family of partitions of jΩ  into triangles (or quadrangles) κ  

U
j
h

j .

ℑ∈κ

κ=Ω  
[12] 

The discretisation parameter 
j

h  on jΩ  is given by 

κ
ℑ∈κ

= hmaxh
j
h

j
 

[13] 

where κh  denotes the diameter of the triangle (quadrangle) κ . Let 

)h,hmax(h
21

= . For any integer 0q ≥ , the notation )(P
q

κ  denotes the space of the 

polynomials with the global degree q≤  on κ . The finite element space used in jΩ  

is then defined by 

{ } 2,or  1q , 0 v ,))(P( v , ,))(C(vV
j
u

j

h

2

q

j

h

j

h

2jj

h

j

h
==κ∈ℑ∈κ∀Ω∈=

Γκ  [14] 

and the approximation space of V becames 2

h

1

hh
VVV ×= . 

The contact zone 
c

Γ  inherits two independent regular families of 

monodimensional meshes. The set of nodes belonging to triangulation j

h
ℑ  are 

denoted 

{ }j

)h(N

j

1)h(N

j

1

j

0

j

h
xx...xx <<<<=ξ − . 

[15] 

In order to express the constraints by using conveniently chosen Lagrange 

multipliers on the contact zone, we have to introduce first the space describing the 

degree of the polynomial approximation 

{ } )(W)(WVv,v)(W
c

j,1

htc

j,1

hn

j

h

j

h

j

chc

j,1

h
Γ×Γ=∈=Γ Γ  

] [( ) )(W)(WN(h)i0 , z,z P ,)(W
c

j,0

htc

j,0

hn

j

1k

j

k0j
1k

z,
j
k

zhhc

j,0

h
Γ×Γ=







 ≤≤∈µµ=Γ +







+
 

 

[16] 

where 
j

0

j

0
xz = , j

)h(N

j

1)h(N
xz =+  and for k=1,...,N(h)-1, 

j

k
z  denotes the middle of 

segment [ ]j

K

j

1k

j

1k
x ,xT −− = . 
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The Lagrange multipliers associated to the normal and tangential stresses on the 

Γc contact surface either belong to the space )(W
c

1

h
Γ  consisting of continuous 

piecewise linear functions either belong to the )(W
c

0

h
Γ  space consisting of constant 

piecewise functions (figure 1). 

kk+1 k-1

kψ
1k+ψ1k−ψ

)1k(
h

+λ
)k(hλ

)1k(h −λ

 

Lagrange multipliers )(W c

1

h Γ∈  

kk+1 k-1

k
ψ 1k+ψ1k−ψ

)1k(h −λ

)k(hλ
)1k(h +λ

 
 

Lagrange multipliers )(W c

0

h Γ∈  

Figure 1. Graphic representation of the two Lagrange multiplier spaces 

Next, we introduce the convex cones associated to the normal and tangential 

stresses on the contact zone 
c

Γ . Let 1

ht

1

hn

1

h
MMM ×=  be the convex sets of 

continuous piecewise linear Lagrange multipliers 













Γ≥ψΓ∈ψ∀≥ΓψµΓ∈µ= ∫
Γ

chc

1

hnh

c

hhc

1

hnh

1

hn
 on 0 ,)(W  ,0d ),(W M , 













Γ∈ψ∀Γψ≤ΓψµΓ∈µ= ∫∫
ΓΓ

)(W  ,dsd ),(WM
c

1

hth

c

hh

c

hhc

1

hth

1

ht
, 

 

 

[17] 

where sh is the given slip bound on 
c

Γ . We then consider the convex sets of 

piecewise constant Lagrange multipliers denoted 
0

ht

0

hn

0

h
MMM ×=  and defined on 

c
Γ  as follows 













Γ≥ψΓ∈ψ∀≥ΓψµΓ∈µ= ∫
Γ

chc

1

hnh

c

hhc

0

hnh

0

hn
 on 0 ,)(W  ,0d ),(W M , 













Γ∈ψ∀Γψ≤ΓψµΓ∈µ= ∫∫
ΓΓ

)(W  ,dsd ),(WM
c

1

hth

c

hh

c

hhc

0

hth

0

ht
. 

 

 

[18] 

In order to solve the Coulomb’s frictional contact problem [9] with Lagrange 

multipliers method, we introduce the following intermediary problem with a given 

slip limit sh (see (Baillet, 2002-2003) for detailed study) 
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,MM),(                                   

 ,0d]u)[(d]u)[(

,Vv   ),v(Ld]v[d]v[)v,u(a

: thatsuch MMV),,u( Find

hthnhthn

c

hththt

c

hnhnhn

hhh

c

htht

c

hnhnhh

hthnhhthnh

×∈νν∀

≤Γλ−ν+Γλ−ν

∈∀=Γλ−Γλ−

××∈λλ

∫∫

∫∫

ΓΓ

ΓΓ
 

  

 

[19] 

where 
0

hn

1

hnhn
Mor  MM =  and 

0

ht

1

htht
Mor  MM = . 

The discrete mixed problem P(sh) admits a unique solution (see (Haslinger, 

1982)). It becomes then possible to define a map Φh as follows 

hnh

hnhnh

s           

M M:

λ→
→Φ

 
[20] 

where ),,u(
hthnh

λλ  is the solution of P(sh). The introduction of this map allows 

the definition of a discrete solution of Coulomb’s frictional contact problem [9]. 

4. Matrix formulation of the global type approach 

The matrix formulation of the mixed problem of two bodies 1Ω  and 2Ω  in 

contact is given by fixing h, the element lengths. One then has a discretization 

including N=N1+N2 nodes where N1 is the number of nodes belonging to 1Ω . The N 

basic functions of Vh are noted 
i

ϕ , i=1,…,N so that if )u,u(u 2

h

1

hh
=  we have  

∑∑
+==

ϕ=ϕ=
N

11Ni

i

2

h

2

1N

1i

i

1

h

1 )i(uu  and  )i(uu . 
[21] 

We designate by m the number of nodes (i=1,…m) on 1

c
Γ  (slave surface) 

belonging to the 1Ω  mesh and by n (i= N1+1,…N1+n+1) the number of nodes on 
2

c
Γ  (master surface) belonging to the 2Ω  mesh. The discrete multipliers of the 

normal and tangential contact stresses are defined on 1

c
Γ  as follows 

∑∑
==

ψλ=λψλ=λ
m

1k

khtht

m

1k

khnhn
)k(   and  )k( , 

[22] 

where 
k

ψ  are the m basic functions on 1

c
Γ  at the k nodes. 

P(sh) 
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The first discrete formulation equation of the contact problem with friction on 

the 1Ω  domain has the following matricial form 

11

T

1

N

11 F

0

G

G

UK =Λ
















− , 
[23] 

where 1K  designates the elastic rigidity matrix linked to 1Ω , 1U  designates the 

vector whose components are the nodal values of 1

h
u  and ),(

TN
ΛΛ=Λ  the vector 

of components )k(
hn

λ , )k(
ht

λ  for k=1,…,m. The vector of exterior forces is noted 
1F  whereas 1

T

1

N
G ,G  are the coupling symmetrical matrices (of order m) between 

multipliers and displacements. The coefficients of 1

T

1

N
G and G  matrices are 

respectively defined by 

.mj i,1 ,dt.a

,mj i,1 ,dn.a

j

1

c

i

1

j,i

j

1

c

i

1

j,i

≤≤Γψϕ=

≤≤Γψϕ=

∫

∫

Γ

Γ
 

 

[24] 

Remark : for a fixed choice of all the multipliers, the 1

T

1

N
G nda G  matrices are 

identical and will be noted 1

T

1

N

1 G GG == . In the same manner, the system of 

unknown equations 2U  and Λ  on Ω2 is written 

21,2

T

1,2

N

22 F

0

G

G

UK =Λ
















− , 

 

 [25] 

1,2

T

1,2

N

1,2 G GG ==  is a rectangular matrix of n lines and m columns whose 

coefficients are 

.mj1et    1nNiN  ,dn.a
11j

2

c

i

1,2

j,i
≤≤++≤≤Γψϕ= ∫

Γ

 [26] 

Finally the problem of contact with friction between the two bodies is written 
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2

1

1,2

1

2

1

2

1

F

F

0

G

0

G

U

U

K0

0K
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[27] 

The interest now is in the matricial writing of the contact and friction conditions 

∫∫
ΓΓ

∈νν∀≤Γλ−ν+Γλ−ν
c

hhthnhththt

c

hnhnhn
M),(   ,0d]u)[(d]u)[( , [28] 

with 
1

ht

1

hnh
MMM ×=  or 

0

ht

0

hnh
MMM ×= . Let 

N
U  and 

T
U  be the vectors 

whose components are respectively the nodal values of ]u[
hn

 and ]u[
ht

. It can be 

shown (Baillet, 2003) that the preceding inequation is written 

















≤−+Λ

=−+⇒Λµ−<Λ

Λµ−≤Λ

≤−+Λ
≤−+
≤Λ

−

−

−

−

.0  )U)G()G(U()G(

,0)U)G()G(U(                           )()G(

,)(                                             )G(

,0 )U)G()G(U()G(

,0               )U)G()G(U(

,0                                              )G(

i

2

T

t1,2111

TiT

1

i

2

T

t1,2111

TiNiT

1

iNiT

1

i

2

N

t1,2111

NiN

1

i

2

N

t1,2111

N

iN

1

 

 

 

[29] 

4.1 Construction of the G
1
 and G

2,1
 matrices 

In the case of the basic functions kψ  on 1

c
Γ , continuous piecewise linear (P1) or 

constant piecewise (P0) and for the Q1 finite elements, the construction of the 
1G and 1,2G  matrices is described in this paragraph. The 1G  matrix coefficients for 

functions 
k

ψ  of the P0 and P1 type are shown on figure 2 and 3 respectively. 

The 1,2G  matrix is the matrix coupling the m slave nodes of the 1

c
Γ  surface and 

the n master nodes of the 2

c
Γ  surface. To determine the expression of the 

coefficients of this coupling matrix, in the case when the surfaces are not smooth 

(figure 4.a), it is necessary to proceed first of all to a projection of the interface 

nodes onto a curvilinear abscissa that is noted “s” (figure 4.b). 
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s=0s=L a

kk-1

1
kψ

kϕ

 
 

2

L
a,                                  L

8

3
a

2

L
a,  )1

L2

a
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k,k

a

0

kkk,k

>=

≤+−=ψϕ= ∫
 

s=0s=L a

kk-1

1
1k−ψ

kϕ

 

2

L
a ,                       

8

L
a

2

L
a , 

L2

a
dsa

1k,k

22

L

a

1kk1k,k

<=

≥=ψϕ=

−

−− ∫  

Figure 2. Coefficient of 1G  for P0 shape functions kψ  

s=0s=L a

kk-1

1kψ
kϕ

 

)1
L

a

L3

a
(adsa

2

2a

0

kkk,k
+−=ψϕ= ∫  

s=0s=L a

kk-1

11k−ψ kϕ

 

)
L2

a

L3

a
(adsa

2

2a

0

1kk1k,k
+−=ψϕ= ∫ −−  

Figure 3. Coefficient of 1G  for P1 shape functions kψ  

jj-1 j+1

ΩΩΩΩ1

ΩΩΩΩ2

k k-1k+1

j-2

(a) 

jj-1 j+1

k k-1k+1

j-2

s s=0

 
(b) 

Figure 4. a. Contact surfaces 1

cΓ  and 2

cΓ  at time t ; b. Projection of the contact 
surfaces 1

cΓ  and 2

cΓ  on the curvilinear abscissa s 

If one wishes to fill the 1,2G  matrix column corresponding to the k slave node, 

one calculates the curvilinear abscissa of the nodes of 
1

c
Γ  and 

2

c
Γ  by fixing the 

origin s=0 to the node k. 
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jj-1 j+1

k k-1k+1

j-2

kψ

jϕ

 
a. P1 shape functions 

k
ψ  

jj-1 j+1

k k-1k+1

j-2

kψ

jϕ

 
b. P0 shape functions 

k
ψ  

Figure 5. Coefficient calculation of the matrix 1,2G  for the slave node k 

The non null coefficients of 1,2G  for the k slave node are 1,2

k,1j

1,2

k,j

1,2

k,1j

1,2

k,2j
a ,a ,a ,a +−−  or 

1,2

k,j

1,2

k,1j

1,2

k,2j
a ,a ,a −−  if one chooses the 

k
ψ  basis functions of the P1 type (figure 5.a) or 

of the P0 type (figure 5.b). 

5. Numerical Results 

In this section, one studies and compares numerically the performances of the 

methods shown previously in the case of contact with friction or without friction ; 

the analysis of the quality of approximation of these methods having been presented 

in (Coorevits, 2002) (Baillet, 2002). These methods have been implemented into 

PLAST2 (Bruyère, 1997), (Baillet, 2002) a finite elements code in explicit dynamics 

based on the method of the Lagrange multipliers. This code deals with contact and 

friction conditions with either the Lagrange interpolation operator (local type 

approach) or the mortar-finite element approach (global type approach). For the first 

approach, contact is defined for each node of the slave surface by using the 

intervention of the closest segment defined by 2 nodes of the master surface. This 

gives to the condition (also called node-on-segment contact condition), a very local 

characteristic observed on the different chosen tests. 

5.1. First numerical test 

In this numerical test, one considers the contact problem shown in Figure 6. The 
1Ω  domain is a part of a disc of 1 mm radius, the 1Ω  domain is a rectangle of 1.8 

mm x 0.3 mm. On each domain, the behavior law is that of Hooke for the isotropic 

and homogeneous materials. For k=1,2 

, )u(
1

E
)u(

)1)(21(

E
)u( kk
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mmij
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ij
ε

ν+
+εδ

ν+ν−
ν=σ  [30] 

with E1=70000MPa, E2=7000MPa and ν1=ν2=0.3. 
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Figure 6. Finite element model Figure 7. Normal stresses with the local 
type approach 

The 1Ω  domain is embedded in the 2

u
Γ  boundary. The displacement imposed on 

1

u
Γ  is vertical and its value is -0.1581mm. The displacement of 1

u
Γ  versus time is a 

parabolic trajectory. Its maximum value corresponds to the time where the 

derivative is zero. 

On each solid, one uses rectangular finite elements of the Q1 type (4 node 

quadrangles) or of the Q2 quadratic type (8 node quadrangles) in plane strains  

(Ciarlet, 1978). Let us note that the normal and tangential stresses are represented on 

each figure for a maximum indentation of -0.1581mm. 

5.1.1. The local type approach: comparison of PLAST2 and ABAQUS_Standard 
codes 

The aim is to compare PLAST2 and ABAQUS codes on a problem of contact 

without friction using the classical node-on-segment approach. This allows us firstly 

to validate the PLAST2 code and to show the limits of the local type approach for 

dealing with the contact conditions. Let us note that to solve problem [27] using a 

dynamic code, one replaces the displacement cycle imposed on 1

u
Γ  by a very weak 

vertical speed (damping and inertia terms are therefore negligible) subjected to the 

same surface that puts the two solids under the same deformation cycle. Since the 

contact surface deforms during this cycle, it is necessary to update the 1,21 G nda G  

coupling matrixes at each time step increment. 

Figure 7 represents the distribution of the contact normal stresses for a maximum 

indentation when 1

c
Γ  or 2

c
Γ  is the slave surface. One will note the similarities of the 

stresses calculated by the two codes and the asymmetrical results obtained when the 

slave surface is changed. It is clear that on this test the local type approach has 

shown its limits. 
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5.1.2 The global type approach in PLAST2 with Q1 finite elements type 

In this paragraph, another technique to approximate contact problems 

implemented in PLAST2 is presented, called global type approach. One considers 

first of all the problem of contact without friction. This involves studying the 

behavior of the global type approach whether 1

c
Γ  or 2

c
Γ  is chosen as a slave surface. 

By considering the case of piecewise constant multipliers on the contact interface 

( 0

h
M ), the symmetrical behavior of the global type approach compared to the local 

one is observed on the distribution of the contact stresses (Figure 8) obtained for the 

maximum indentation and for the choice of whatever slave surface ( 1

c
Γ  or 2

c
Γ ). 
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Figure 8. Normal contact stresses 
(maximum indentation) when 1

cΓ  or 
2

cΓ  is the slave surface with the 
global type approach 

Figure 9. Normal contact stresses 
( 0

hnhn MM =  or 1

hnhn MM = ) for 1

cΓ  
slave surface 

The comparison of figures 7 and 8 shows that the global type approach makes 

the management of the contact more symmetrical when slave surfaces are 

interchanged. 

On figure 9, one will note the similarities of the contact normal stresses when 
0

hnhn
MM =  and 1

hnhn
MM =  (P0 and P1 multipliers respectively). 

Let us now consider the case of a problem of contact with Coulomb’s friction. 

One has to insure the correct behavior of the global type approach by using the 

different convex approximations ( 0

hh
MM =  or 1

hh
MM = ) linked to normal and 

tangential stresses. In this case, the preceding comments apply. In particular, the 

shape of the normal and tangential stresses is similar (Figure 10) for the two types of 

approximations of 
h

M  and for different µ friction coefficients. 
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(a) : Coulomb friction = 0.5 
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(b) : Coulomb friction = 0.05 

Figure 10. Normal and tangential stresses ( 0

hnhn MM =  or 1

hnhn MM = ) for different 
Coulomb friction 

5.1.3. The global type approach in PLAST2 with Q2 finite elements type 

The global type approach has been implemented into PLAST2 for quadratic 

finite elements Q2 to simulate the problem of contact with Coulomb’s friction 

between two elastic solids (see (Moussaoui, 1992)) for a problem of unilateral 

contact without friction). 

The convexes of Lagrange multipliers are continuous piecewise linear functions 

(
1

h
M ) or constant piecewise functions (

0

h
M ) on 

c
Γ . The use of such finite elements 

gives hope for a better precision of calculation compared to rectangular or linear 

elements (Moussaoui, 1992). Figures 11 and 12 validate the correct behavior of the 

global type approach for problems of contact with or without friction. In the same 

manner for finite elements of the Q1 type, the results are identical for the Lagrange 

multipliers 
0

hh
MM =  or 

1

hh
MM = . 
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Figure 11. Normal stresses 
( 0

hnhn MM = ) for Q1 and Q2 element 
type without friction 

Figure 12. Normal and tangential 
stresses ( 0

hnhn MM =  or 1

hnhn MM = ) 
for Q2 element type and µ=0.05 
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5.2. Second numerical test 

In the case of contact with friction of a deformable body on a rigid surface, one 

studies numerically the performance of the methods shown above for 0

hh
MM =  and 

1

hh
MM = . The numerical tests have been carried out on the finite element code 

PLAST2. In the numerical tests, the behavior law is that of Hooke for isotropic and 

homogeneous materials 

, )u(
1

E
)u(

)1)(21(

E
)u(

ijmmijij
ε

ν+
+εδ

ν+ν−
ν=σ  [31] 

with E=7.104 MPa et ν=0.3. 

The Ω domain is a rectangle measuring 1.3 mm x 0.3 mm. The discretisation is 

carried out with finite rectangular elements of the Q1 type in plane strains. The 

origin of the curvilinear abscissa is defined from the point O in the trigonometric 

direction. A total displacement of 2.10-3mm is imposed on the 1

u
Γ  and 2

u
Γ  (see 

Figure 13). The horizontal displacement is null on 1

u
Γ . The vertical displacement on 

2

u
Γ  is free which enables a detachment of the deformable body for a curvilinear 

abscissa superior to 0.7mm (see Figure 15.a). The Tresca threshold stress is equal to 

200MPa. 

 

 

 
 

 

 

 

Figure 13. Vertical displacement on 
the reference mesh 

Figure 14. Convergence rates of 
the two approach 0

hh0 MM =  and 
1

hh MM =  
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Figure 15. a. Normal ; b. tangential stresses for various h and for 0

hh MM =  

Having no analytic solution for the problem treated, the 
h

uu −  error in the 

energy is numerically estimated by 
href

uu − . The reference solution is calculated 

on a reference mesh containing 9678 elements. 

On Figure 14 the convergence order of the different methods for different 

discretisation parameter h is represented. It can be seen that the convergence is 

similar for the two approaches. On Figure 15, one can see that the normal stress is 

not a negative function over all the interface, this is due to the use of slightly 

negative Lagrange multipliers. However this method enables the singularities of the 

stresses edges to be attenuated. 

5.4. Third numerical test 

This test enables the global type approach to be validated when compared to the 

local one, in the case of a simulation of three deformable bodies in contact with one 

another and with a rigid surface (Figure 16). The bodies have an elasto-plastic 

behaviour ( ( ) 03.0p2

eq
10 2.348 ε+=σ − ). Penetrations of the master nodes into the slave 

surface appear in the simulation using the local type approach and they generate a 

divergence of the calculation whereas the simulation with the global one is carried 

out without problems. 
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Imposed velocity

µ=0.

µ=0.5

 
 

 
Local type approach  

 
Global type approach 

Figure 16. Comparison between local and global type approach on a forging 
simulation of three deformable bodies 

6. Conclusion 

For the management of a problem of friction contact with the mortar-finite 

element method and for the construction of a matrix expressing the friction contact 

of deformable bodies, one can choose form functions (linked to Lagrange 

multipliers) which are continuous piecewise linear (P1) or constant piecewise (P0). 

These two approaches have been implemented in PLAST2. Mathematically and 

numerically on problems of contact with friction, the results of normal and 

tangential contact stresses are similar when using both approximations (P0 or P1) of 

Lagrange multipliers. 

For a discretisation with quadrilateral elements of the Q1 or Q2 type, it has been 

established on various numerical tests, that the mortar-finite element method makes 
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the management of the contact much more symmetrical when slave surfaces are 

exchanged, thus closer to physics. Finally, it has been shown that the formulation of 

this global type approach is also appropriate for Q1 or Q2 finite elements. 
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