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Abstract 
Squeal is an example of noise caused by vibrations induced by friction forces that lead 

to dynamic instability of the brake system. Several experimental, theoretical and numerical 

works have been carried out over the last six decades. Certain of these works have focused on 

simplified brake systems and identified ‘lock-in’ instability as being the cause of squeal. This 

paper presents a short bibliography of previous works and the most recent application of 

research developed using a simplified brake system called TriboBrake.  

Commercial brake design is not capable of avoiding modal coupling due to ‘lock-in’ 

sensitivity to system dynamics, high modal density and uncertainties regarding the natural 

frequencies. This paper suggests an innovative approach for avoiding the growth of squeal 

vibrations, by making lumped structural modifications to the rotor. Experimental and 

numerical results are presented. 
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1 - Introduction 
In spite of decades of investigation (Kinkaid et al., 2003), brake squeal is still an 

unresolved problem. Many attempts (Akay, 2002) have been made by industry and 

researchers to establish a general approach aimed at preventing squeal in brake design. 

Different theories have been proposed to explain the self-excited vibrations that cause 

the emission of squeal sound: stick-slip instability, negative friction-velocity slope (Mills, 

1938), sprag-slip mechanism (Spurr, 1961), local hammering (Chen et al., 2003), modal lock-

in (Akay et al., 2000), frictional follower forces (Mottershead, 1998). Kinkaid et al. (2003) 

wrote an extensive review of the main works available in the literature while Ouyang et al. 

(2005) recently presented a review of the finite element methods applied to squeal prediction 

and simulation. 

Nowadays, the lock-in theory is one of the most accepted approaches for squeal 

generation and particular attention is given to the dynamics of brake systems. Moreover, one 

of the main difficulties encountered in studying squeal is the complexity of a real brake 

system. Thus many researchers approached the problem by conducting experimental and 

numerical analysis on simplified brake systems, and then trying to correlate the results with 

theoretical models.  

The first to introduce the concept of modal coupling for explaining squeal instability 

was North (1972), who proposed a two-degrees-of-freedom model able to reproduce the 

unstable coupling by using an asymmetric stiffness matrix at the contact and a constant 

friction coefficient. Akay (2000) named the unstable coupling ‘lock-in’ after his 

investigations on a beam-on-disc set-up, one of the first simplified brake systems. The beam-

on-disc consists of a cantilever beam and a rotating disc pressed against each other using a 

dead weight.  Similar systems were later used by Tuchinda et al. (2001) and Allgaier et al. 

(2002).  

The same modal coupling mechanism was reproduced with the ‘Laboratory Brake’ 

(Giannini et al., 2006), with the third component of the brake system being introduced by 

adopting a brake pad of reduced dimensions. Experiments on this set-up allowed analysing 

the ‘lock-in’ between a mode of the pad and one mode of the disc. Moreover, by introducing a 

second brake pad, is possible to investigate high frequency squeal and the influence of pad 

dimensions (Giannini et al., 2008). Massi et al. (2005) obtained similar results by using real 

brake pads; these results make it possible to extrapolate the results obtained from simplified 

systems to real brakes. 

The TriboBrake set-up (Massi et al., 2006a) is an evolution of the ‘laboratory-brake’. 

It was designed to develop a parallel dynamic and tribological analysis to take into account 

the interdisciplinary aspects of the problem. Massi et al. (2006a) showed that it is possible 

generate squeal by coupling the disc dynamics with either the pad or the caliper dynamics. 

Clear identification of coupling mode instability was reported and two necessary conditions 

were highlighted (Massi et al., 2006a; 2007) in order to obtain unstable coalescence: i) 

closeness in frequency between the two coalescing modes; ii) high tangential and normal 

deformation of brake substructures (disc, pad and caliper) at the contact zone. Thus the 

oscillation of normal and friction forces at the contact surface allows unstable modal 

coupling. 
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Massi et al. (2007) presented a numerical analysis for squeal prediction by using 

complex eigenvalue analysis; the values of the parameters that lead to instability are detected 

and introduced in a nonlinear finite element model developed with a code for explicit contact 

time simulation (Baillet and Sassi, 2002; Carpenter et al., 1991), to reproduce squeal 

vibrations. The nonlinearity of the contact is accounted for and the simulation results agree 

with the squeal behaviour encountered experimentally (Massi et al., 2006a). Moreover, the 

numerical simulations allowed calculating the behaviour of the local contact stresses during 

squeal, which are impossible to recover experimentally.  

Tribological analysis (Massi et al., 2008a) of the contact surfaces after squeal allowed 

verifying the numerical results. Local oscillations of the contact stresses at the squeal 

frequency induce fatigue at the contact surface, leading to the occurrence of superficial 

material exfoliations and cracks. 

The results obtained from tribological, dynamic investigations and simulations on the 

TriboBrake converge together, characterising squeal as a dynamic instability of the brake 

system due to unstable couplings between two modes of the brake components. Coupling 

occurs at the contact surface where the oscillations of the local contact stresses and the 

friction coefficient couple the normal and tangential vibrations of the brake components, 

causing self-excited vibrations of the system (Massi, 2006). 

In a recent work, the uncertainties of the parameters affecting the system dynamics 

have been introduced into numerical and theoretical models for squeal prediction (Culla et al., 

2007). 

An experimental analysis developed on a ‘beam-on-disc’ set-up allowed for 

investigating the relationship between squeal propensity and modal damping (Massi et al., 

2008b), highlighting the key role of the ratio between the modal damping of the two coupling 

modes; such results agree with theoretical and numerical investigations (Fritz et al., 2007; 

Duffour and Woodhouse, 2004).     

Finally, the works on the simplified brake system allowed investigating and 

numerically reproducing squeal instability. Also dependence on several system parameters 

has been investigated. Nevertheless the conclusion of the authors, when accounting for the 

findings, is that it is not possible to design a ‘squeal-free’ brake system since the complexity 

of brake dynamics in the frequency range of interest, the uncertainties on system parameters 

due to industrial production, variable operating conditions (brake pressure, wear, external 

environment, etc.) and the different damping factors due to several surfaces in contact, do not 

allow for a reliable design capable of avoiding unstable coupling between system modes. This 

observation is the motivation for the present work, in which the authors propose an alternative 

approach to the problem. 

2 – Lumped rotor modifications 
The instability occurring in brake systems when two eigenfrequencies of the system 

coalesce and become unstable is known as mode lock-in (Akay et al., 2000): when changing 

the system parameters, two modes of the system can have similar frequencies and coalesce to 

make the system unstable. The two eigenvalues of the system keep the same frequency, but 

one of them reaches positive values of the real part, i.e. it is unstable (see Figure 12): 

therefore the system vibrations increase at the natural frequency of the unstable mode. The 

eigenvalues coalesce until the parameter variation makes them shift again to different 

frequencies and both the modes return to be stable (lock-out). 

The main strategy adopted in brake design to predict and prevent squeal frequencies is 

parametrical complex eigenvalue analysis performed on the assembled system by FEM (Finite 

Element Modelling) (Ouyang et al., 2005; Cao et al., 2004; Massi et al., 2007). This approach 

consists in individuating the possible unstable coalescences and design modifications so as to 
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either avoid the frequency coincidence between the two modes, or modify the geometrical 

coupling of the modes at the contact interface.  

Nevertheless, commercial brakes are very complicated systems, characterised by 

several parts connected together and by high modal density. Moreover, due to mass 

production and variable operating conditions (wear, brake pressure, etc.), such systems suffer 

from high variability which is not easy to model. Because of these reasons, numerical 

eigenvalue analysis alone cannot lead to solving the problem. 

Therefore, since it is impossible to produce brakes characterised by well defined 

dynamics in order to avoid coalescence, this paper proposes a different approach to the 

problem by using the introduction of lumped structural modifications on the disc. This allows 

continuous modification of the dynamics of the system thanks to disc rotation. The disc mode 

frequencies periodically shift back and forward between two values, depending on the 

position of the lumped modification with respect to the mode shapes. Therefore, if the mode 

of the disc is close in frequency to the other coalescing mode, they coalesce and separate 

periodically. The vibrations due to the lock-in between the pair of modes do not have enough 

time to increase due to repetitive look-out and they can be reduced until they completely 

disappear. 

First the experimental investigation developed on the TriboBrake set-up is presented 

after which a theoretical and numerical analysis for predicting the instability and reduction of 

unstable coupling is presented.  

 

3 – The TriboBrake COLRIS 
 

3.1 Experimental set-up 
The set-up, named TriboBrake COLRIS (COllaboration Lyon-Rome for Investigation 

on Squeal) , consists of a rotating disc (the brake rotor) and a small friction pad pushed 

against the disc by weights positioned on the pad support used to represent the brake caliper 

(Figure 1). 

FIGURE 1 

Figure 1 - Experimental set-up TriBobrake COLRIS. 

The disc is an automotive disc brake (internal diameter 140 mm, external diameter 264 

mm, thickness 13 mm) assembled on the shaft by two thick hubs that ensure the rigid 

behaviour of the connection. The brake pad is made of commercial friction material, obtained 

by machining standard brake pads. The support (central cylindrical body in the Figure 1) is 

also made of steel and its shape is chosen for its simple dynamics. The normal force between 

pad and disc (braking pressure) can be varied, by adding weights from 25 and 225 N on the 

top of the support (average contact pressure from 0.25 to 2.25 MPa). Two thin plates hold the 

pad support in the tangential direction. This solution permits obtaining low (negligible in non 

deformed vertical condition) stiffness in the normal direction and high stiffness in the 

tangential direction, which is necessary to oppose the friction force. A complete description of 

the TriboBrake along with the experiments carried out to characterise the squeal behaviour is 

presented in (Massi et al., 2006a). 

 

3.2 Set-up dynamics 
Because of its key role in the occurrence of squeal, the dynamics of the set-up is 

identified and monitored during the experimental tests. A preliminary EMA (Experimental 

Modal Analysis) is performed on the assembled system, i.e. when the pad is in contact with 

the disc. The analysis leads to distinguishing three different substructures: disc, support and 

pad. The dynamics of the assembly can be analysed as the sum of the disc, pad, and support 
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dynamics. In fact the reduced contact surface (10mm×10mm) between the pad and the disc 

allows low coupling between the tangential dynamics of the pad (or support) and the normal 

(bending) dynamics of the disc. Therefore, when referring to the whole system, the following 

notation is used: the modes of the coupled system that involve bending vibration of the disc 

are called “disc modes”, since the greater part of the energy is concentrated on the disc. Also, 

the modes involving the bending vibration of the pad (or support) are named “pad (or support) 

modes”.  When the modes draw close in frequency, both substructures vibrate (Massi et al., 

2006a). 

In particular, attention is focused on three sets of system modes that are considered to 

be the cause (Massi et al., 2006a; 2007) of the squeal instability of the set-up: the bending 

modes of the disc (normal direction with respect to the friction surface), the bending modes of 

the support (tangential direction with respect to the friction surface) and the tangential modes 

of the friction pad. 

The bending modes of the disc are characterised by nodal diameters and nodal 

circumferences: the (n,m) mode of the disc is characterised by n nodal circumferences and m 

nodal diameters. The disc is characterised by an axial symmetry: therefore the modes of the 

disc are generally double modes. When placed in contact with the pads, the disc looses its 

axial symmetry, so that the modes of the disc are no longer double modes and they split 

(Massi et al., 2006a). 

The following notation is used to denote the split modes (Table 1): 

- mode (n,m-) a nodal diameter is coincident with the contact point; 

- mode (n,m+) an anti-node is coincident with the contact point. 

The support modes are analysed by an SIMO (Single-Input-Multi-Output) analysis, 

exciting the support in the tangential direction close to the contact area. Five tangential modes 

of the support are recognised in the frequency range of interest (Massi et al., 2006a). Only the 

second and the third modes of the support are characterised by the largest tangential 

displacement at the contact area and, consequently, they are the only modes of the support 

involved in squeal instability (Massi et al., 2006a). The second mode is a rigid rotational 

mode of the support, while the third mode is the first bending mode of the support (II and III 

support modes in Table 1). 

The friction pad is the third substructure to be investigated; its dynamics is easily 

recognisable in the assembled dynamics. Figure 2 shows the PSD (Power Spectral Density) of 

the pad acceleration in the tangential direction during brake tests without squeal. The first 

three peaks in frequency correspond to three support modes. The others two peaks at 4 kHz 

and 11.1 kHz correspond to the modes of the pad (I and II in Table 1).  

 

FIGURE 2 

Figure 2 - PSD of the tangential acceleration of the pad during braking phase without squeal. 

During experiments, in order to achieve the coincidence in frequency between two 

appropriate modes of the system, the variation of the normal load is used to modulate its 

dynamics. The ranges covered by each mode are reported in table 1. 

 

TABLE 1 

Table 1 – Ranges of frequency covered by the system modes. Frequency range corresponds to 

the variation of the normal load. 
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4 - Model of the set-up 
 

4.1 Linear finite element model 
The geometry of the FE (Finite Element) models of the TriboBrake is reported in Fig. 

3. ANSYS®, commercial FE software, is used to investigate the dynamics of the brake 

system and to calculate its complex eigenvalues as a function of the system parameters. The 

element SOLID45 (3D brick element with linear shape functions) is adopted to mesh all the 

solid components of the system. The brake disc is clumped at the internal circumference, 

where the hubs hold it into the experimental set-up. The brake pad consists of a cube 

(10mm×10mm×10mm). The pad support is modelled by a beam (10mm×10mm×100mm) and 

a thin layer (5 mm) of high density is attached to the top of the support and simulates the mass 

added by the weights placed on the experimental set-up. Four rows of springs, two on each 

side, hold the beam in the horizontal (friction force) direction, and model the thin aluminium 

plates that hold the pad support in the experimental set-up. 

 

FIGURE 3 

Figure 3.  Finite element model of the experimental set-up. 

To introduce the sliding contact between disc and pad the contact elements 

CONTA173 and the target elements TARGE170 have been introduced at the pad and disc 

contact surfaces respectively. A ‘surface to surface contact’ model of ANSYS is adopted. A 

prestressed modal analysis is performed to account for the system deformation and the contact 

distribution into the stationary sliding condition. The load at the top of the support is applied 

in an initial load step after which the rotation of the disc is imposed and, finally, a modal 

analysis on the deformed system is performed.    

 

4.2 The substructured model 
Because of the large number of solutions needed to perform the parametrical analysis 

and because of the considerable computational effort necessary to obtain each solution of the 

asymmetric problem, the FE model has been substructured. Substructuring is a procedure that 

condenses a group of finite elements into one element represented as a matrix. The 

substructure routine of ANSYS is used. 

Three main substructures of the brake system are considered here: the support 

(caliper), the pad and the disc. The single-matrix element is referred to as a super-element. 

Each super-element is made of the same elements and nodes as in the complete model; 

moreover, the master nodes connect the super-element to the other parts of the model and 

approximate the eigenvectors of the corresponding substructure.  

The disc is characterised by a mapped mesh of 12600 elements. The super-element 

representing the support includes the beam and the mass at the top (426 elements). The pad is 

modelled by 1725 brick elements. The substructures are then connected and constrained in the 

final model. In particular, the same contact elements described above are used to reproduce 

the contact. A preliminary parametrical eigenvalue analysis was performed with the complete 

and substructured models: the percentage error on the eigenvalues of interest is less then 2%.  

 
5 – Experimental results 
 

5.1 System dynamic modification  
The tests reported below highlight the effect of lumped structural modifications 

introduced into the disc on the system dynamics. In particular the addition of a lumped mass 
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is analysed here. The lumped mass is attached with a layer of wax at the disc periphery. The 

idea is to introduce an asymmetry that changes continuously position respect to the disc 

modes, varying continuously the system dynamics as reported below. 

Two asymmetries are then introduced regarding the axial-symmetric structure of the 

disc: the contact with the friction pad and the lumped mass. During the braking phase the 

former is fixed in space; on the contrary, the mass rotates with the disc.  

The authors showed in (Massi et al., 2006a) that the (n,m-) and (n,m+) modes of the 

disc are fixed in space having a node and an anti-node of vibration respectively at the contact 

point with the pad. While the disc rotates, the relative position between the two asymmetries 

(pad and mass) changes. Because of the larger effect due to the contact with the pad, the 

modes stay fixed with the stationary frame, while the mass rotates with the disc. When 

referring to the position of the lumped modification (on the outer circumference of the disc) 

with respect to the disc (stationary) modes, the following notation is used in this paper: 

position A is the node of vibration of the mode (n,m+), and anti-node of vibration of the mode 

(n,m-); position C is the anti-node of vibration of the mode (n,m+), and node of vibration of 

the mode (n,m-); position B is between A and C. The closer the lumped modification is to the 

anti-node of vibration, the more it affects the mode frequency. Consequently the lumped 

modification affects the frequency of mode (n,m+) when it is at the position C; it affects the 

frequency of mode (n,m-) when it is at the position A. Due to the low value of the 

modification the modes of the disc are slightly modified by its introduction; this is why in the 

following they are considered to be fixed with the stationary frame (pad) and the analysis is 

focused only on the shift of the natural frequencies.  

Figure 4-a shows the respective FRFs (Frequency Response Functions) measured for 

the three different positions of the mass (A, B and C) with respect to mode (0,4). Figure 4-b 

shows the FRFs for the three different positions with respect to mode (0,7). When the lumped 

mass (10 gr) passes through a node of the mode (0,4+) (position A in Figure 4-a) its natural 

frequency is at 3250 Hz, which is equal to its frequency without the mass. If the mass moves 

toward its anti-node of vibration (position C) the natural frequency decreases to 3220 Hz. The 

greater the deformation at the point where the mass is added, the more the frequency 

decreases. The same effect is visible for mode (0,4-) passing from position C to position A. 

On the contrary, Figure 4-b shows that mode (0,7+) increases in frequency (from 8730 

to 8760 Hz) when the lumped modification is at its anti-node of vibration (position C in 

Figure 4-b). This behaviour can be explained by the fact that the mass is attached by a layer of 

wax and it has finite dimensions: thus the modification cannot be considered just as a lumped 

mass. The behaviour of the mode frequencies of the set-up respect to the addition of the mass 

is function of the mode order (frequency) and it is repeatable; therefore it is used for the tests 

 

FIGURE 4 

Figure 4: FRFs for different positions of the mass (C is the anti-node of vibration of the modes 

(n,m+), A its node of vibration); the arrows indicate the shift of the mode frequencies when the 

mass passes from position A to position C. 

 

Figure 5 shows the behaviour of the frequencies of modes (0,4+) and (0,7+) as a 

function of the value of the added mass when the mass is added at their anti-node of vibration 

(position C). The effect of the modification is clear: the greater the mass, the greater the 

expected shift in frequency. 

 

FIGURE 5 
Figure 5: FRFs for different values of the mass in position C (anti-node of vibration of modes 

(n,m+); the arrows indicate the shift of mode frequencies with increasing mass. 
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During the braking phase the lumped mass moves 2m times from a node to an anti-

node of the (n,m+) mode and vice versa, at each complete rotation of the disc. Thus the 

natural frequency of the (n,m+) mode shifts backwards and forwards with an oscillation 

period equal to 2m times the period of the disc rotation.  

The lumped structural modification thus allows continuously modifying the disc 

dynamics, oscillating all the natural frequencies of the disc bending modes between two 

extreme values.  

 

5.2 Squeal reduction by the addition of mass 
Once the system parameters (normal load equal to 44 N) are set for the frequency 

coincidence between the second pad mode and the (0,7+) mode, squeal occurs at 8730 Hz 

during every braking phase. A harmonic acoustic emission over 100 dB is recognised.  

The lumped mass is then attached to the periphery of the disc. In view to not 

introducing eccentricity on the disc, the added mass is split into two equal parts that are 

attached diametrically at the disc periphery. The effect on the bending modes of the disc is 

equal, due to the axial symmetry of the modes. 

During the braking phase, the tangential (friction direction) velocity of the pad is 

measured by a laser vibrometer. Figure 6-a presents the squeal vibrations measured during the 

braking phase with an added mass of 5 gr; at 12 seconds the mass is suddenly removed, and 

the squeal is continuous. Because of the sensitivity of squeal to the system parameters, all the 

measurements presented below are performed into the same way: the mass is detached during 

the braking phase at the end of each measurement, to make sure that comparable squeal 

conditions, characterised by the same frequency and vibration amplitude, are obtained. Figure 

6-a shows a periodic increase (8745Hz) and decrease (8730Hz) of the squeal vibrations until 

the mass is detached: the squeal vibrations are significantly reduced.  

Lock-in/lock-out periodicity (Td/2m) is visible in Figure 6-b, which shows the 

normalised spectrogram of the velocity of the pad during squeal. The spectrogram in Figure 6-

b is normalized to the value of the maximum peak in frequency at each time interval, in order 

to clearly track the vibration frequency of the system. The vibration frequency follows the 

frequency oscillation of mode (0,7+) between the two extreme values (Figure 4-b and Table 

2). This oscillation is due to the rotation of the mass with the disc: the mass passes 

periodically by vibration anti-node and node of mode (0,7+). The system dynamics is 

characterised by successive lock-in and lock-out configurations. When the disc natural 

frequency draws close to the pad natural frequency (8730 Hz), the squeal vibrations increase 

(lock-in); while they decrease when the disc natural frequency moves to larger (8745 Hz) 

frequencies (lock-out). The period of the lock-in occurrence is equal to the disc rotation 

period Td ratio twice the number of nodal diameters (2m). Figure 6-c shows the spectrogram 

of the non-normalized velocity, to highlight the decrease of squeal vibrations during the lock-

out periods. The vibrations are almost eliminated. As soon as the mass is removed (12 s) the 

squeal vibrations return to the original amplitude at a constant frequency.  

 

FIGURE 6 

Figure 6: Tangential velocity of the pad (a), normalized spectrogram (b) and classical 

spectrogram (c)  when a mass of 5 gr is attached at the disc periphery; the mass is removed 

suddenly at 12 s and the squeal vibrations increase again. Unstable coupling between the II pad 

mode and the mode (0,7+) with disc velocity of 15 rpm. Td is the period of rotation of the disc. 

 

Table 2 shows the frequency interval as a function of the added mass in position C. By 

increasing the added mass, the frequency interval covered by the (0,7+) mode, during disc 
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rotation,  increases. The natural frequency of the (0,7-) mode is not affected by the mass, 

which falls at its node of vibration. 

 

TABLE 2 

Table 2: Frequency ranges covered by the (0,7+) mode. 

Because the period of variation is fixed with the number of the nodal diameters and 

the disc velocity, the velocity of the frequency shift increases with the wideness of the interval 

covered (Table 2).  

Figure 7 shows the tangential velocity measured at the pad side during the braking 

phase when different values of the added mass are used. The black plot is pad acceleration 

during braking phase when 1gr is attached to the disc periphery. A low modulation of the 

squeal amplitude is recognised, but the mass is too light to significantly affect the vibrations. 

The blue and the green plots are the pad velocity during braking phase when 2.5 and 5 gr 

respectively are attached to the disc periphery. In this case the frequency range covered by the 

natural frequency of the disc is larger and the squeal vibrations increase and decrease 

periodically, with a periodicity equal to 14 times (2m times) the period of the disc rotation. 

When increasing the added mass, the disc natural frequency moves faster (same period but 

larger interval of the frequency shift), and the squeal vibrations do not have enough time to 

increase (the lock-in configuration is maintained for a shorter time). Figure 7 shows that 

squeal vibrations are reduced by increasing the mass. Finally, the red plot shows the pad 

velocity when the added mass is equal to 10gr and the squeal vibrations are completely 

eliminated. 

Again, to verify the continuity of squeal the mass is detached (after 6.5 seconds for the 

measure with 10gr in Figure 7), and squeal restarts at its original amplitude and frequency.  

 

FIGURE 7 

Figure 7: Tangential velocity of the pad when 1gr (black), 2.5gr (blue), 5gr (green) and 10gr are 

attached to the disc periphery. The mass is detached after 6.5 seconds for the measurement with 

10gr. Unstable coupling between the II pad mode and the mode (0,7+). 

 

5.3 Effect of disc velocity  
The effect of increasing the value of the mass is to increase the frequency range 

covered by the disc mode during the same period and consequently to reduce the time for 

lock-in. Another way to reduce time for increasing vibrations during lock-in (with lumped 

modifications) is to increase the disc rotational velocity, i.e. to decrease the period of the 

frequency oscillation (Td/2m). 

Figure 8-a shows the pad velocity during squeal when a mass of 5gr is added to the 

disc and the disc velocity is increased from 6 rpm (DISC VELOCITY A) to 12rpm (DISC 

VELOCITY B) and finally to 50rpm (DISC VELOCITY C). The figure shows the reduction 

of the lock-in /lock-out period when passing from velocity A to velocity B; moreover a 

reduction of the squeal vibration amplitude is observed. When the disc rotates at the higher 

velocity the squeal emission almost disappears and the pad velocity gets lower (Figure 8-a, 

21s<t<27s).  When the mass is detached (the arrows in figure 8) the squeal vibration return to 

the original amplitude and frequency.   

Figure 8-b shows the same test with an added mass of 7.5gr; the same behaviour is 

highlighted, but for the disc velocity value C, squeal disappears completely (Figure 8-b, 

13s<t<20s). In fact, in this case the time for lock-in and for vibration to increase is reduced by 

both increasing the disc velocity and increasing the amplitude of the frequency shift.  
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It is opinion of the authors that this behaviour is the reasons why automotive squeal 

only occurs at low velocity. Numerically (Baillet et al., 2006) and experimentally (Giannini et 

al., 2006) it has been shown that squeal amplitude increases linearly with disc velocity up to a 

maximum value and then stays constant when disc velocity increases. In fact, the simplified 

set-ups are designed to have constant boundary conditions, i.e. constant dynamics during the 

braking phase. Real brakes under real operational conditions are characterised by non constant 

dynamics; in particular the imperfect balancing of the brake disc allows continuously 

changing lock-in conditions during disc rotation. Therefore, the absence of squeal for high 

velocity could be due to the quick shift of the system’s natural frequencies and thus to the less 

time in which the vibration can increase.     

FIGURE 8 

Figure 8: Tangential pad velocity for three different values of the disc rotational velocity 

(A=6rpm, B=12rpm; C=50rpm), when masses of 5gr (a) and 7.5gr (b) are added to the disc 

periphery. The arrows indicate when the mass is detached. 

 
5.4 Effect of mode order 

The results presented here for squeal events due to coalescence between the II pad 

mode and the (0,7+) mode (squeal at 8730Hz), were also obtained for the other squeal 

frequencies that involve disc bending modes. Figure 9 shows the squeal vibrations when a 

mass of 5gr is added to the disc periphery. The black plot is the pad velocity for the case 

presented above when the (0,7+) mode couples with the pad mode. The grey plot is the 

support tangential acceleration measured during squeal when the (0,4+) mode of the disc 

couples with a bending mode of the support at 3.24kHz. The effect of the addition of the mass 

is the same, while the period of the lock-in / lock-out cycle changes with the mode order m, as 

shown in Figure 9. The comparison between the squeal amplitudes cannot be performed 

because of the completely different coupling conditions.    

FIGURE 9 

Figure 9: Pad velocity for squeal at 8.7 kHz and 5 gr of added mass (black); support tangential 

acceleration (scaled) for squeal at 3.25 kHz and 5 gr of added mass. 

 

6 – Numerical results 
 
6.1 Theoretical analysis 

For lumped modifications the problem related to both the prediction and optimization 

aspects was completely solved. The prediction problem allows estimating the response of the 

new system once the dynamics of the original system and the dynamics of the modifications 

are known (Sestieri and D'Ambrogio, 1972; Rivin and D'Ambrogio, 1990; D’Ambrogio and 

Sestieri, 2001). The inverse (optimisation) problem allows calculating the modification that 

brings about the desired dynamic behaviour of the system.  

As the original structure is known by its modal data (natural frequencies and mode shapes) or 

by its FRF matrix measured on a set of points, the relationships describing the dynamics of 

the new modified system can be written. 

The original structure has the following classical equation of motion: 

0 0 0x x x f+ + =M C K�� �      (1) 

Where 0x  is the coordinate vector, f  is the forces vector, M and K are the mass and 

stiffness matrices, and the proportional model for the damping of the structure is 

assumed: α β= +C M K . 
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LetΦ  and Λ  be the eigenvectors and the eigenvalues matrices of the undamped original 

structure, respectively, 
0

q  the modal coordinate vector and ˜ f  the modal forces vector. 

Equation (1) can be rewritten in the modal frame as follows: 

( )
0 0 0

q q q fα β+ + + =I I Λ Λ ��� �      (2) 

Let ∆M  and ∆K  be the mass and the stiffness matrices of the modifications. The modified 

structure equation of motion has the following formal shape: 

( ) ( ) ( ) ( )x x x fα β+ ∆ + + ∆ + + ∆ + + ∆ =  M M M M K K K K�� �   (3) 

which in modal coordinates is: 

( ) ( ) ( ) ( )T T T Tq q q fα β + ∆ + + ∆ + + ∆ + + ∆ = I Φ MΦ I Φ MΦ Λ Φ KΦ Λ Φ KΦ ��� �  (4) 

By solving the new eigenproblem, a new set of mode parameters are calculated: NΦ  

and NΛ . Equation (4) can be rewritten as follows: 

( ) T

N N NN N N
q q q fα β+ + + =I Λ Λ Φ ��� �    (5) 

The natural frequencies of the modified structure can be calculated by NΛ  and the 

eigenvectors of the new structures are: N=Ψ ΦΦ  (Sestieri and D'Ambrogio, 1972). In fact, 

since x  is the vector of the physical coordinates then: 
N

x q=Ψ . 

In general the mass and stiffness matrices of the system are not known and the 

dynamics of the structure is known by the FRF matrix achieved by measurements. Let H  be 

the FRF matrix of the original system, i.e. x f=H , and ∆B  the matrix of the modifications 

(D’Ambrogio and Sestieri, 2001), i.e. ( )2 jω ω α β∆ = − ∆ + ∆ + ∆ + ∆B M M K K .  

Let ( )1

Nx f− + ∆ =H B  the formal relationship of the modified structure where Nx  is 

the coordinate vector of the new system. ∆B  and 1−
H  are calculated at the same degrees of 

freedoms. Therefore, the new FRF matrix is ( ) 1
1

N

−−= + ∆H H B . By performing algebraic 

calculations it is possible to calculate the FRF matrix of the new modified structure by 

reducing the number of inversions (D’Ambrogio and Sestieri, 2001), thus the following 

relationship is adopted: 

( ) 1

N

−= + ∆H I H B H      (6) 

Relationships (5) and (6) allow solving the direct problem, in other words they give 

the dynamics of the modified structure (mode parameters or FRF matrix) by providing 

knowledge of the original system and of the dynamics modifications. 

The goal of the case studied in this paper is the shift of the resonances of the (n,m+) 

modes in order to avoid lock-in. One way of achieving this is to consider a lumped structural 

modification and verify the efficiency of the modification by Equation (3). To reproduce the 

effect of the added mass in the experimental tests presented above a lumped modification 

corresponding to a mass-damper-spring system is introduced. Indeed since the mass added 

experimentally is attached to the disc by a layer of wax for accelerometers and has finite 

dimensions, it would be not correct to model it by a lumped mass. 

A set of measurements are performed on the disc and a matrix of FRF of the 

unmodified structure can be considered. Since the modification involves only one point of the 

structure, the modification matrix ∆B  is zero everywhere except for the element 

corresponding to the position of the lumped mass-damping-spring system. Moreover, the 

drive point is at the position selected for adding the one degree of freedom system. So, by 
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calling the drive point 1, a simple relationship can be calculated for element 
11NH  of the new 

system FRF matrix: 
1

11 11 112
1N

c k
H H m j H

ω ω

−
  = + − − ⋅  

  
    (7) 

where m, c, k are the coefficients of the lumped mass-damper-spring. 

In Figures 10 and Figure 11 the original FRFs measured on the experimental set-up 

without added mass are plotted in black; the corresponding FRFs of the modified system 

calculated by Equation (7) are shown in grey. Figure 10a and 10b show the FRFs measured at 

position C (anti-node of vibration) of modes (0,4+) and (0,7+) respectively. As expected 

from the experimental tests (Figure 5) mode (0,4+) decreases in frequency while mode (0,7+) 

increases in frequency (by about 30 Hz with a mass of 10 gr). Figure 11 shows the measured 

(black) and modified (grey) FRFs when the modification is added at position B of mode (0,4). 

In this case the measured FRFs show both modes (0,4+) and (0,4-); the introduction of the 

modification at position B allows shifting both mode frequencies, as found by the tests 

(Figure 4a). When introducing the lumped modification, the amplitude of the response of the 

mode also decreases, as measured experimentally (Figure 4). 

 

FIGURE 10 

Figure 10: Comparison between the FRFs of the original system (experimental) and the 

modified structure by the addition of a lumped mass-damping-spring modification (mass of 

10gr). The modification is introduced at the anti-node of modes (n,m+). 

 

FIGURE 11 

Figure 11: Comparison between the FRFs of the original system (experimental) and the 

modified structure by the introduction of the lumped mass-damping-spring modification (mass 

of 10gr) at position B of mode (0,4). 

 

The goal of the case studied in this paper is to shift the resonance of the disc in order 

to avoid lock-in. The prediction problem solved above gives the same behaviour as that 

obtained by the tests. The inverse problem can be reformulated to optimize the structural 

modifications in order to obtain the desired frequency shift of the rotor modes. This 

theoretical method for analysing and predicting the effect of lumped modification is 

particularly useful because it can be formulated for both the experimental (FRFs) and 

numerical (eigenvectors) data of the brake system. 

 

6.2 Complex eigenvalue analysis 
The complex eigenvalue analysis provides the tool for tracing the instability regions of 

the system. The numerical eigenvalue extraction is performed with the QRDamped Method 

by ANSYS and repeated as a function of the driving parameters. In (Massi et al., 2007) the 

Young’s modulus of the pad material and the stiffness of the springs that hold the support 

have been chosen as the driving parameters that allow reproducing the dynamic behaviour of 

the experimental set-up as a function of normal load. Thus the extraction of the eigenvalues of 

the system is performed as a function of these two parameters to perform the parametrical 

analysis and identify squeal instabilities. Squeal is characterised by lock-in (Figure 12-a) 

between two eigenvalues of the system that start to have the same imaginary part (frequency), 

though they have opposing real parts with respect to the starting value (structural damping). 

Also, one of them succeeds in having a positive real part (Figure 12-b), i.e. it is unstable. A 

complete parametrical analysis for squeal prediction between 1 and 20 kHz has been 
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presented in (Massi et al., 2007) and (Massi et al., 2006c). In this section instability due to the 

coupling (lock-in) between mode (0,4+) and the third tangential mode of the support is 

analysed. The same lock-in has been obtained experimentally and gives the origin of the 

squeal at 3240 Hz (Figure 9).  In figure 12, the mode of the support increases in frequency 

until reaching mode (0,4+), when they couple and one of the modes become unstable. On the 

contrary, mode (0,4-) stays constant in frequency because contact with the pad is at its nodal 

diameter and it is not affected by the variation of the parameters chosen. The friction 

coefficient adopted for the analysis is equal to 0.4. A detailed analysis of the relationship 

between the friction coefficient and squeal prediction is reported in (Massi et al., 2007). 

 

FIGURE 12 

Figure 12: Lock-in between mode (0,4+) and the mode of the support: a) eigenvalues as a 

function of the system parameters; the black dot are the eigenvalues with a positive real part 

(unstable); b) in the locus plot one of the two modes reaches the positive real semi-plane and 

becomes unstable. 

 

The effect of a lumped modification is investigated here by adding a lumped mass to 

the periphery of the model. In particular, to reproduce the modification used in the 

experimental set-up an element with dimensions (5mm×5mm×5mm) is attached to the 

periphery of the disc and its density is modified to perform a sensitivity analysis of the 

complex eigenvalues and thus of squeal lock-in.  

The analysis has been performed for three positions of the mass with respect to mode 

(0,4+): position A falls at the vibration node of mode (0,4+); position C falls at the anti-node 

of vibration of mode (0,4+); position B is in between A and C (Figure 4-a). 

Figure 13 shows the behaviour of the eigenvalues when varying the value of the added 

mass and the other system parameters are fixed to have instability (E = 4200MPa and k = 3.85 

10
7
 N/m in Figure 12). When no mass is added, the system is unstable at 3410Hz, where 

mode (0,4+) couples with the support modes. Mode (0,4-) is at 3340Hz.  

In Figure 13-a the mass is added at position C, mode (0,4+) is affected by the mass 

and it shifts to lower frequencies. The system became stable because of lock-out. This is what 

occurs when the mass passes by the anti-node of vibration and squeal vibrations decrease 

(Figure 9); the greater the mass, the greater the distance in frequency (Figure 13) between the 

unstable couple of modes.  

In Figure 13-c the mass is added at position A, mode (0,4-) shifts to lower frequencies 

and mode (0,4+) stays at the frequency of coincidence with the support mode. The system is 

unstable, independently of the value of the mass. This is what occurs when the mass passes by 

the node of vibration and the squeal vibrations increase (Figure 9); 

Figure 14 shows the same analysis when the system parameters are fixed to not have 

instability (E = 4010 MPa and k = 3.66 10
7
 N/m in Figure 12). The system is stable without 

the added mass. By increasing the added mass in position C, mode (0,4+) decreases in 

frequency until it reaches the support mode and the instability appears. In fact, the aim of the 

lumped modification is not to avoid unstable coupling, but to periodically modify the system 

dynamics to avoid continuous lock-in and thus avoid increasing the squeal vibrations. 

 

FIGURE 13 

Figure 13: Effect of the addition of mass on the eigenvalues when the system parameters are set 

to obtain squeal without mass: a) when the mass is added in position C (anti-node of mode 

(0,4+)); b) the mass is added in position B; c) the mass is added in position A. In this last case 

squeal is not affected because the mass is at the node of mode (0,4+). 



 14 

 

FIGURE 14 

Figure 14: Effect of the addition of mass on the eigenvalues when the system parameters are set 

to obtain no squeal without mass (First solution on the x axis of Figure 12): a) the mass is added 

in position C; b) the mass is added in position B; c) the mass is added in position A. 

 

Concluding remarks 
Nowadays, complex modal analysis for squeal prediction is one of the most commonly 

adopted approaches for reducing unstable conditions. Nevertheless, the high modal density 

characterising commercial brakes and the uncertainties on their dynamics due to mass 

production, do not allow developing a predictive tool for brake design without squeal. 

By the understanding of the lock-in instability, the approach presented in this paper 

aims to eliminate squeal vibrations by introducing a structural modification in the rotor. The 

goal is to prevent vibrations from increasing at different squeal frequencies (all the squeals 

that involve bending modes of the disc) by a simple and inexpensive solution. In fact, the 

asymmetry introduced in the rotor (the added mass in this paper) makes the natural 

frequencies of the disc bending modes shift backwards and forwards, thus with continuous 

lock-in and lock-out configurations. Experimental tests show that by introducing a large 

enough modification it is possible to completely eliminate squeal vibrations.  

The period of mode frequency oscillations is a function of disc rotational velocity and 

the number of nodal diameters. The amplitude of frequency oscillation is a function of the 

value of the lumped modification. It has been shown that increasing either the disc velocity or 

the value of the modification allows reducing the time for squeal vibrations to increase 

(reduced time for lock-in), and permits the elimination of squeal. The absence of squeal in 

real brakes at high velocity can be attributed to quick variations of system dynamics, due to 

the non constant dynamics with the disc rotation, which prevents vibration from increasing. 

This can explain why squeal occurs only at low rotational velocity.  

Any lumped modification can be used to achieve the same results as those presented 

above. For instance, a well-arranged distribution of disc perforations, usually introduced to 

reduce heating, could be designed. Particular attention should be given to the distribution of 

the lumped modifications, in order to avoid the introduction of eccentricity in the disc, and to 

correctly assigning all the bending modes assumed to be involved in squeal.  

A further investigation is scheduled to recover the optimal distribution of the 

modifications and to reproduce by a nonlinear numerical model the squeal suppression with 

lumped modifications.  
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MODE FREQUENCY RANGE MODE FREQUENCY RANGE 

II support 1200 2100 (0,4+) 3141 3259 
III support 2400 3350 (0,5-) 4720 4741 

I pad 3750 4500 (0,5+) 4720 4802 
II pad 7300 12100 (0,6-) 6600 6606 
(0,2-) 1071 1071 (0,6+) 6600 6635 
(0,2+) 1071 11321 (0,7-) 8700 8700 
(0,3-) 1900 1900 (0,7+) 8700 8730 
(0,3+) 1900 2120 (0,8-) 11000 11000 
(0,4-) 3141 3147 (0,8+) 11000 11020 

Table 1 – Ranges of frequency covered by the system modes. Frequency range corresponds to 

the variation of the normal load. 
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MASS [g] FREQUENCY 

EXTREMES [Hz] 

FREQUENCY 

RANGE [Hz] 

0 8730 – 8730 0 

2,5 8730 - 8740 10 

5 8730 - 8745 15 

10 8730 - 8760 30 

Table 2: Frequency ranges covered by the (0,7+) mode. 



 19 

 

 

Figure 1 - Experimental set-up TriBobrake COLRIS. 
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Figure 2 - PSD of the tangential acceleration of the pad during braking phase without squeal. 
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Figure 3.  Finite element model of the experimental set-up. 
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Figure 4: FRFs for different positions of the mass (C is the anti-node of vibration of the modes 

(n,m+), A its node of vibration); the arrows indicate the shift of the mode frequencies when the 

mass passes from position A to position C. 
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Figure 5: FRFs for different values of the mass in position C (anti-node of vibration of modes 

(n,m+); the arrows indicate the shift of mode frequencies with increasing mass. 
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Figure 6: Tangential velocity of the pad (a), normalized spectrogram (b) and classical 

spectrogram (c)  when a mass of 5gr is attached at the disc periphery; the mass is removed 

suddenly at 12s and the squeal vibrations increase again. Unstable coupling between the II pad 

mode and the mode (0,7+) with disc velocity of 15rpm. Td is the period of rotation of the disc. 
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Figure 7: Tangential velocity of the pad when 1gr (black), 2.5gr (blue), 5gr (green) and 10gr are 

attached to the disc periphery. The mass is detached after 6.5 seconds for the measurement with 

10gr. Unstable coupling between the II pad mode and the mode (0,7+). 
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Figure 8: Tangential pad velocity for three different values of the disc rotational velocity 

(A=6rpm, B=12rpm; C=50rpm), when masses of 5gr (a) and 7.5gr (b) are added to the disc 

periphery. The arrows indicate when the mass is detached. 
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Figure 9: Pad velocity for squeal at 8.7kHz and 5gr of added mass (black); support tangential 

acceleration (scaled) for squeal at 3.25kHz and 5gr of added mass. 
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Figure 10: Comparison between the FRFs of the original system (experimental) and the 

modified structure by the addition of a lumped mass-damping-spring modification (mass of 

10gr). The modification is introduced at the anti-node of modes (n,m+). 
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Figure 11: Comparison between the FRFs of the original system (experimental) and the 

modified structure by the introduction of the lumped mass-damping-spring modification (mass 

of 10gr) at position B of mode (0,4). 
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Figure 12: Lock-in between mode (0,4+) and the mode of the support: a) eigenvalues as a 

function of the system parameters; the black dot are the eigenvalues with a positive real part 

(unstable); b) in the locus plot one of the two modes reaches the positive real semi-plane and 

becomes unstable. 
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Figure 13: Effect of the addition of mass on the eigenvalues when the system parameters are set 

to obtain squeal without mass: a) when the mass is added in position C (anti-node of mode 

(0,4+)); b) the mass is added in position B; c) the mass is added in position A. In this last case 

squeal is not affected because the mass is at the node of mode (0,4+). 
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Figure 14: Effect of the addition of mass on the eigenvalues when the system parameters are set 

to obtain no squeal without mass (First solution on the x axis of Figure 12): a) the mass is added 

in position C; b) the mass is added in position B; c) the mass is added in position A. 

 


