Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability? - Archive ouverte HAL Access content directly
Journal Articles The European Physical Journal B: Condensed Matter and Complex Systems Year : 2009

Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability?

(1) , (2) , (3, 4) , (5) , (6)
1
2
3
4
5
6

Abstract

Non-planar solid-fluid-solid interfaces under stress are very common in many industrial and natural materials. For example, in the Earth's crust, many rough and wavy interfaces can be observed in rocks in a wide range of spatial scales, from undulate grain boundaries at the micrometer scale, to stylolite dissolution planes at the meter scale. It is proposed here that these initially flat solid-fluid-solid interfaces become rough by a morphological instability triggered by elastic stress. A model for the formation of these unstable patterns at all scales is thus presented. It is shown that such instability is inherently present due to the uniaxial stress that promotes them, owing to the gain in the total elastic energy: the intrinsic elastic energy plus the work of the external forces. This is shown explicitly by solving the elastic problem in a linear stability analysis, and proved more generally without having resort to the computation of the elastic field.
Fichier principal
Vignette du fichier
2009_EPJB_Bonnetier.pdf (742.88 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

insu-00352886 , version 1 (14-01-2009)

Identifiers

Cite

Eric Bonnetier, Chaouqi Misbah, François Renard, Renaud Toussaint, Jean Pierre Gratier. Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability?. The European Physical Journal B: Condensed Matter and Complex Systems, 2009, 67 (1), pp.121-131. ⟨10.1140/epjb/e2009-00002-2⟩. ⟨insu-00352886⟩
322 View
374 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More