Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, Epiciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Journal articles

Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability?

Abstract : Non-planar solid-fluid-solid interfaces under stress are very common in many industrial and natural materials. For example, in the Earth's crust, many rough and wavy interfaces can be observed in rocks in a wide range of spatial scales, from undulate grain boundaries at the micrometer scale, to stylolite dissolution planes at the meter scale. It is proposed here that these initially flat solid-fluid-solid interfaces become rough by a morphological instability triggered by elastic stress. A model for the formation of these unstable patterns at all scales is thus presented. It is shown that such instability is inherently present due to the uniaxial stress that promotes them, owing to the gain in the total elastic energy: the intrinsic elastic energy plus the work of the external forces. This is shown explicitly by solving the elastic problem in a linear stability analysis, and proved more generally without having resort to the computation of the elastic field.
Document type :
Journal articles
Complete list of metadata

Cited literature [6 references]  Display  Hide  Download
Contributor : Pascale Talour Connect in order to contact the contributor
Submitted on : Wednesday, January 14, 2009 - 10:25:12 AM
Last modification on : Monday, December 13, 2021 - 11:34:06 AM
Long-term archiving on: : Tuesday, June 8, 2010 - 8:04:22 PM


Files produced by the author(s)



Eric Bonnetier, Chaouqi Misbah, François Renard, Renaud Toussaint, Jean Pierre Gratier. Does roughening of rock-fluid-rock interfaces emerge from a stress-induced instability?. The European Physical Journal B: Condensed Matter and Complex Systems, Springer-Verlag, 2009, 67 (1), pp.121-131. ⟨10.1140/epjb/e2009-00002-2⟩. ⟨insu-00352886⟩



Record views


Files downloads