A. Agranier, C. A. Lee, X. A. Li, and W. P. Leeman, Fluid-mobile element budgets in serpentinized oceanic lithospheric mantle: Insights from B, As, Li, Pb, PGEs and Os isotopes in the Feather River Ophiolite, California, Chemical Geology, vol.245, issue.3-4, pp.230-241, 2007.
DOI : 10.1016/j.chemgeo.2007.08.008

URL : https://hal.archives-ouvertes.fr/insu-00238500

L. D. Benton, J. G. Ryan, and I. P. Savov, Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: Insights into the mechanics of slab-mantle exchange during subduction, Geochemistry, Geophysics, Geosystems, vol.208, issue.46, pp.10-1029, 2004.
DOI : 10.1029/2003GC000588

E. Bonatti, J. R. Lawrence, and N. Morandi, Serpentinization of oceanic peridotites: temperature dependence of mineralogy and boron content, Earth and Planetary Science Letters, vol.70, issue.1, pp.88-9410, 1984.
DOI : 10.1016/0012-821X(84)90211-5

M. Bostock, R. D. Hyndman, S. Rondenay, and S. M. Peacock, An inverted continental Moho and serpentinization of the forearc mantle, Nature, vol.70, issue.6888, pp.536-53810, 2002.
DOI : 10.1130/0091-7613(2000)028<0135:SAASII>2.3.CO;2

J. M. Brenan, E. Neroda, C. C. Lundstrom, H. F. Shaw, F. J. Ryerson et al., Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments, Geochimica et Cosmochimica Acta, vol.62, issue.12, pp.2129-214110, 1998.
DOI : 10.1016/S0016-7037(98)00131-8

J. M. Brenan, F. J. Ryerson, and H. F. Shaw, The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models, Geochimica et Cosmochimica Acta, vol.62, issue.19-20, pp.3337-334710, 1998.
DOI : 10.1016/S0016-7037(98)00224-5

M. R. Brudzinski, C. H. Thurber, B. R. Hacker, and E. R. , Global Prevalence of Double Benioff Zones, Global prevalence of double Benioff zones, pp.1472-1474, 2007.
DOI : 10.1126/science.1139204

D. Canil, Canada's craton: A bottoms-up view, GSA Today, vol.18, issue.6, pp.4-10, 2008.
DOI : 10.1130/GSAT01806A.1

M. Chaussidon and A. Jambon, Boron content and isotopic composition of oceanic basalts: Geochemical and cosmochemical implications, Earth and Planetary Science Letters, vol.121, issue.3-4, pp.277-29110, 1994.
DOI : 10.1016/0012-821X(94)90073-6

A. F. Cooper, L. A. Paterson, and D. L. Reid, Lithium in Carbonatites ??? Consequence of an Enriched Mantle Source?, Mineralogical Magazine, vol.59, issue.396, pp.401-408, 1995.
DOI : 10.1180/minmag.1995.059.396.03

C. M. Cooper, A. Lenardic, A. Levander, and L. Moresi, Creation and preservation of cratonic lithosphere: Seismic constraints and geodynamic models, Archean Geodynamics and Environments, 2006.
DOI : 10.1029/164GM07

H. W. Day, E. M. Moores, and A. C. Tuminas, Structure and tectonics of the northern Sierra Nevada, 96<436:SATOTN>2.0.CO, pp.436-45010, 1985.
DOI : 10.1130/0016-7606(1985)96<436:SATOTN>2.0.CO;2

S. Decitre, E. Deloule, L. Reisberg, R. James, P. Agrinier et al., Behavior of Li and its isotopes during serpentinization of oceanic peridotites, Geochemistry, Geophysics, Geosystems, vol.62, issue.1, pp.100710-1029, 2002.
DOI : 10.1029/2001GC000178

J. Escartin, G. Hirth, and B. Evans, Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges, Earth and Planetary Science Letters, vol.151, issue.3-4, pp.181-189, 1997.
DOI : 10.1016/S0012-821X(97)81847-X

B. W. Evans, Metamorphism of Alpine Peridotite and Serpentinite, Annual Review of Earth and Planetary Sciences, vol.5, issue.1, pp.397-447, 1977.
DOI : 10.1146/annurev.ea.05.050177.002145

B. W. Evans, J. Johannes, H. Oterdoom, and V. Trommsdorff, Stability of chrysotile and antigorite in the serpentinite multisystem, Schweiz. Mineral. Petrogr. Mitt, vol.56, pp.79-93, 1976.

. Lee, distribution of boron and lithium in serpentines 10, 1029.

S. Gao, X. Liu, H. Yuan, B. Hattendorf, D. Günther et al., Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, Geostandards and Geoanalytical Research, vol.29, issue.2, pp.181-196, 2002.
DOI : 10.1111/j.1751-908X.2002.tb00886.x

Y. Gao, J. Hoefs, R. Przybilla, and J. E. Snow, A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B, Chemical Geology, vol.233, issue.3-4, pp.217-234, 2006.
DOI : 10.1016/j.chemgeo.2006.03.005

M. S. Ghiorso, M. M. Hirschmann, P. W. Reiners, and V. C. Kress, The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa, Geochemistry, Geophysics, Geosystems, vol.73, issue.46, p.103010, 1029.
DOI : 10.1029/2001GC000217

T. L. Grove, N. Chatterjee, S. W. Parman, and E. Medard, The influence of H2O on mantle wedge melting, Earth and Planetary Science Letters, vol.249, issue.1-2, pp.74-89, 2006.
DOI : 10.1016/j.epsl.2006.06.043

B. R. Hacker and S. Peacock, Comparison of the Central Metamorphic Belt and Trinity terrane of the Klamath Mountains with the Feather River terrane of the Sierra Nevada, Geol. Soc. Am. Spec. Pap, vol.255, pp.75-92, 1990.
DOI : 10.1130/SPE255-p75

B. R. Hacker, S. M. Peacock, G. A. Aber, and D. Holloway, Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?, Journal of Geophysical Research: Solid Earth, vol.102, issue.46, pp.203010-1029, 2003.
DOI : 10.1029/2001JB001127

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.513.829

R. Halama, W. F. Mcdonough, R. L. Rudnick, J. Keller, and J. Klaudius, The Li isotopic composition of Oldoinyo Lengai: Nature of the mantle sources and lack of isotopic fractionation during carbonatite petrogenesis, Earth and Planetary Science Letters, vol.254, issue.1-2, 2007.
DOI : 10.1016/j.epsl.2006.11.022

E. H. Hauri, T. P. Wagner, and T. L. Grove, Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts, Chemical Geology, vol.117, issue.1-4, pp.149-16610, 1994.
DOI : 10.1016/0009-2541(94)90126-0

C. D. Herd, A. H. Treiman, G. A. Mckay, and C. K. Shearer, The behavior of Li and B during planetary basalt crystallization, American Mineralogist, vol.89, issue.5-6, pp.832-840, 2004.
DOI : 10.2138/am-2004-5-618

N. Hilairet, Y. Reynard, I. Wang, S. Daniel, N. Merkel et al., High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction, Science, vol.318, issue.5858, pp.318-1910, 2007.
DOI : 10.1126/science.1148494

URL : https://hal.archives-ouvertes.fr/hal-00338854

G. Hirth and D. L. Kohlstedt, Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere, Earth and Planetary Science Letters, vol.144, issue.1-2, pp.93-10810, 1996.
DOI : 10.1016/0012-821X(96)00154-9

G. Hirth and D. L. Kohlstedt, Rheology of the upper mantle and the mantle wedge: A view from the experimentalists , in Inside the Subduction Factory, Geophys. Monogr. Ser, vol.138, pp.83-106, 2004.

D. R. Janecky, W. E. Seyfried, and J. , Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry, Geochimica et Cosmochimica Acta, vol.50, issue.7, pp.1357-1378, 1986.
DOI : 10.1016/0016-7037(86)90311-X

M. Kaliwoda, T. Ludwig, and R. Altherr, A new SIMS study of Li, Be, B and d 7 Li in mantle xenoliths from Harrat Uwayrid, Lithos, 2008.

A. J. Kent and G. R. Rossman, Hydrogen, lithium, and boron in mantle-derived olivine: The role of coupled substitutions, American Mineralogist, vol.87, issue.10, pp.1432-1436, 2002.
DOI : 10.2138/am-2002-1020

C. A. Lee and W. Chen, Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth's mantle, Earth and Planetary Science Letters, vol.255, issue.3-4, pp.357-366, 2007.
DOI : 10.1016/j.epsl.2006.12.022

C. A. Lee, A. D. Brandon, and M. D. Norman, Vanadium in peridotites as a proxy for paleo-fO2 during partial melting, Geochimica et Cosmochimica Acta, vol.67, issue.16, pp.3045-306410, 2003.
DOI : 10.1016/S0016-7037(03)00268-0

C. A. Lee, A. Harbert, and W. P. Leeman, Extension of lattice strain theory to mineral/mineral rare-earth element partitioning: An approach for assessing disequilibrium and developing internally consistent partition coefficients between olivine, orthopyroxene, clinopyroxene and basaltic melt, Geochimica et Cosmochimica Acta, vol.71, issue.2, pp.481-496, 2007.
DOI : 10.1016/j.gca.2006.09.014

C. A. Lee, P. Luffi, T. Höink, Z. A. Li, and A. Lenardic, The role of serpentine in preferential craton formation in the late Archean by lithosphere underthrusting, Earth and Planetary Science Letters, vol.269, issue.1-2, pp.96-104, 2008.
DOI : 10.1016/j.epsl.2008.02.010

W. P. Leeman and . Bebout, Boron and other fluid-mobile elements in volcanic arc lavas: Implications for subduction processes, in Subduction Top to Bottom, Geophys. Monogr. Ser, vol.96, pp.269-276, 1996.

W. P. Leeman and V. B. Sisson, Geochemistry of boron and its implications for crustal and mantle processes, in Boron: Mineralogy, Petrology and Geochemistry in the Earth's Crust, pp.645-707, 1996.

Z. A. Li and C. A. Lee, Geochemical investigation of serpentinized oceanic lithospheric mantle in the Feather River Ophiolite, California: Implications for the recycling rate of water by subduction, Chemical Geology, vol.235, issue.1-2, pp.161-185, 2006.
DOI : 10.1016/j.chemgeo.2006.06.011

H. R. Marschall and T. Ludwig, The low-boron contest: minimising surface contamination and analysing boron concentrations at the ng/g-level by secondary ion mass spectrometry, Mineralogy and Petrology, vol.81, issue.3-4, pp.265-27810, 2004.
DOI : 10.1007/s00710-004-0037-5

J. D. Mayfield and H. W. Day, Ultramafic rocks in the Feather River Belt, northern Sierra Nevada, in Field Guide to the Geology and Tectonics of the Northern Sierra Nevada, Calif. Div. of Mines and Geol, pp.1-15, 2000.

W. F. Mcdonough and S. Sun, The composition of the Earth, Chemical Geology, vol.120, issue.3-4, pp.223-25310, 1995.
DOI : 10.1016/0009-2541(94)00140-4

Y. Niu, Bulk-rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-melting Processes Beneath Mid-Ocean Ridges, Journal of Petrology, vol.45, issue.12, pp.2423-2458, 2004.
DOI : 10.1093/petrology/egh068

L. Ottolini, B. L. Fevre, and R. Vannucci, Direct assessment of mantle boron and lithium contents and distribution by SIMS analyses of peridotite minerals, Earth and Planetary Science Letters, vol.228, issue.1-2, 2004.
DOI : 10.1016/j.epsl.2004.09.027

C. R. Ranero, J. Phipps-morgan, K. Mcintosh, and C. Reichert, Bending-related faulting and mantle serpentinization at the Middle America trench, Nature, vol.425, issue.6956, pp.367-37310, 1038.
DOI : 10.1038/nature01961

. Lee, distribution of boron and lithium in serpentines 10, Earth Planet. Sci. Lett, vol.223, pp.17-34, 1029.

J. G. Ryan and C. H. Langmuir, The systematics of lithium abundances in young volcanic rocks, Geochimica et Cosmochimica Acta, vol.51, issue.6, pp.1727-174110, 1987.
DOI : 10.1016/0016-7037(87)90351-6

I. P. Savov, S. Guggino, J. G. Ryan, P. Fyer, and M. J. Mottle, Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP Sites 1200 and 778 ? 770, South Chamorro and Conical seamounts, Proc. Ocean Drill. Program, Sci. Results, pp.1-49, 2005.

I. P. Savov, J. G. Ryan, M. D. Antonio, K. Kelley, and P. Mattie, Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones, Geochemistry, Geophysics, Geosystems, vol.140, issue.22, pp.4-1510, 1029.
DOI : 10.1029/2004GC000777

M. Scambelluri, P. Bottazzi, V. Trommsdorff, R. Vannucci, J. Hermann et al., Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle, Earth and Planetary Science Letters, vol.192, issue.3, pp.457-47010, 2001.
DOI : 10.1016/S0012-821X(01)00457-5

URL : http://hdl.handle.net/1885/91432

M. Scambelluri, O. Müntener, L. Ottolini, T. T. Pettke, and R. Vannucci, The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids, Earth and Planetary Science Letters, vol.222, issue.1, pp.217-234, 2004.
DOI : 10.1016/j.epsl.2004.02.012

H. Seitz and B. J. Woodland, The distribution of lithium in peridotitic and pyroxenitic mantle lithologies ??? an indicator of magmatic and metasomatic processes, Chemical Geology, vol.166, issue.1-2, pp.47-64, 2000.
DOI : 10.1016/S0009-2541(99)00184-9

W. E. Seyfried, W. E. Jr, and . Dibble-jr, Seawater peridotite interaction, an experimental study at 300°C, 500 bars: Implications for the origin of oceanic serpentinites, Geochim. Cosmochim. Acta, vol.4480, pp.309-32110, 1980.

W. E. Seyfried, X. Chen, and L. Chan, Trace Element Mobility and Lithium Isotope Exchange During Hydrothermal Alteration of Seafloor Weathered Basalt: An Experimental Study at 350??C, 500 Bars, Geochimica et Cosmochimica Acta, vol.62, issue.6, pp.949-96010, 1998.
DOI : 10.1016/S0016-7037(98)00045-3

J. E. Snow and H. J. Dick, Pervasive magnesium loss by marine weathering of peridotite, Geochimica et Cosmochimica Acta, vol.59, issue.20, pp.4219-423510, 1995.
DOI : 10.1016/0016-7037(95)00239-V

E. Tenthorey and J. Hermann, Composition of fluids during serpentinite breakdown in subduction zones: Evidence for limited boron mobility, Geology, vol.32, issue.10, pp.865-86810, 1130.
DOI : 10.1130/G20610.1

P. B. Tomascak, Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences, in Geochemistry of Non-Traditional Stable Isotopes, pp.153-195, 2004.

A. B. Woodland, H. Seitz, and G. M. Yaxley, Varying behaviour of Li in metasomatised spinel peridotite xenoliths from western Victoria, Australia, Lithos, vol.75, issue.1-2, pp.55-56, 2004.
DOI : 10.1016/j.lithos.2003.12.014

. Lee, distribution of boron and lithium in serpentines 10, 1029.