An improved neighborhood algorithm: Parameter conditions and dynamic scaling - Archive ouverte HAL Access content directly
Journal Articles Geophysical Research Letters Year : 2008

An improved neighborhood algorithm: Parameter conditions and dynamic scaling

(1)
1

Abstract

The Neighborhood Algorithm (NA) is a popular direct search inversion technique. For dispersion curve inversion, physical conditions between parameters V s and V p (linked by Poisson's ratio) may limit the parameter space with complex boundaries. Other conditions may come from prior information about the geological structure. Irregular limits are not natively handled by classical search algorithms. In this paper, we extend the NA formulation to such parameter spaces. For problems affected by non-uniqueness, the ideal solution is made of the ensemble of all models that equally fits the data and prior information. Hence, a powerful exploration tool is required. Exploiting the properties of the Voronoi cells, we show that a dynamic scaling of the parameters during the convergence to the solutions drastically improves the exploration.
Fichier principal
Vignette du fichier
2008GL033256.pdf (585.42 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-00335912 , version 1 (11-03-2021)

Identifiers

Cite

Marc Wathelet. An improved neighborhood algorithm: Parameter conditions and dynamic scaling. Geophysical Research Letters, 2008, 35 (9), pp.NIL_26-NIL_30. ⟨10.1029/2008GL033256⟩. ⟨insu-00335912⟩
60 View
26 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More