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[1] A temporal and spatial scaling analysis of Arctic sea ice deformation is performed
over timescales from 3 h to 3 months and over spatial scales from 300 m to 300 km. The
deformation is derived from the dispersion of pairs of drifting buoys, using the IABP
(International Arctic Buoy Program) buoy data sets. This study characterizes the
deformation of a very large solid plate (the Arctic sea ice cover) stressed by heterogeneous
forcing terms like winds and ocean currents. It shows that the sea ice deformation rate
depends on the scales of observation following specific space and time scaling laws.
These scaling properties share similarities with those observed for turbulent fluids,
especially for the ocean and the atmosphere. However, in our case, the time scaling
exponent depends on the spatial scale, and the spatial exponent on the temporal scale,
which implies a time/space coupling. An analysis of the exponent values shows that Arctic
sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e., it
cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead,
it suggests a deformation accommodated by a multiscale fracturing/faulting processes.

Citation: Rampal, P., J. Weiss, D. Marsan, R. Lindsay, and H. Stern (2008), Scaling properties of sea ice deformation from buoy

dispersion analysis, J. Geophys. Res., 113, C03002, doi:10.1029/2007JC004143.

1. Introduction

[2] The Arctic sea ice cover is a deforming solid which
extends during winter over about 14 million km, with an
average thickness of a few meters. Consequently, it can be
considered, from a mechanical point of view, as a two
dimensional plate (plane stress conditions are fulfilled). This
plate deforms under various stresses, mainly from winds
and ocean currents [Thorndike and Colony, 1982]. This
leads to the fracturing and faulting of the sea ice cover. The
overall sea ice deformation, along with thermodynamics,
controls the amount of open water as well as the ice
thickness distribution: divergent deformation is associated
with crack opening and new ice growth, whereas conver-
gent deformation causes ice to pile up and ridges to form.
Sea ice deformation is important for understanding the
momentum, mass, and energy balance in the Arctic and
more generally the influence of Arctic dynamics on the
Earth’s climate. Fracturing and divergence of the ice cover
decreases the albedo and allows more shortwave absorption
by the ocean, thereby shrinking the ice cover during
summer, and possibly reducing its strength and increasing
the fracturing [Zhang, 2001; Moritz et al., 2002] and the
faulting [Kwok, 2001, 2006]. On the other hand, fracturing

during winter enhances the thermodynamically driven pro-
duction of new ice and consequently modifies the heat and
salinity budget in the Arctic Ocean [Maykut, 1982]. These
complex processes are highly non-linear. As an example, in
an ice cover fractured with 0.5% of open water leads, 50%
of the thermal energy lost from the ocean occurs along these
leads [Heil and Hibler, 2002]. In what follows, we used the
term ‘‘fracturing’’ in a generic sense. I.e., it refers to tensile
fracturing (opening mode) as well as to shear faulting
indifferently.
[3] Sea ice dynamics models implemented in climate

models are based on a continuum mechanics modeling
framework initially developed by Hibler [1979], and share
a common viscous-plastic (VP) or elastic-viscous-plastic
(EVP; Hunke and Dukowicz, 1997) rheology. This rheology
implies that for stress states inside the plastic yield curve,
sea ice behaves as a viscous fluid (with an additional linear
elastic component for EVP rheology), while ice flows as a
perfect plastic when the stress state reaches the envelope,
without further increase of the stress. This viscous flow is
considered to result from the average effect of many
‘‘plastic’’ events [Hibler, 1977], and as such relies on an
hypothesis that the stress and strain are locally homoge-
neous or smoothly varying. This framework has been
widely used, as it is suited for a numerical coupling with
other fluid layers (ocean, atmosphere), and because of the
development of efficient methods to solve the momentum
equation employing this rheology [Zhang, 2001]. By con-
struction, it homogenizes the sea ice properties at the
discretization scale, and therefore ignores possible sub-grid
scale variability.
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[4] Recent analyses of deformation and fracturing fields
over the Arctic sea ice cover challenged this classical
modeling framework in two ways: the viscous-plastic rhe-
ology assumption and the homogeneous stress and strain
assumption. A detailed analysis of in situ ice stresses and
satellite-derived strain rates showed that stress states are
indeed confined in an envelope with Coulombic branches,
but its size is rate- and scale-dependent [Weiss et al., 2007].
Moreover, no correlation was observed between stress and
strain rate, in contradiction to a viscous behavior. A multi-
fractal analysis of strain rate fields obtained from RGPS
(Radarsat Geophysical Processor System [Kwok, 1998])
demonstrated the highly heterogeneous, scale-free character
of sea ice deformation [Marsan et al., 2004], therefore
raising doubts about the homogeneous assumption used in
sea ice models. Similarly, in situ ice stress records are highly
intermittent and scale-invariant in time [Weiss and Marsan,
2004]. All these observations argue for an elasto-brittle
behavior of the sea ice cover, as suggested by Nye [1973],
with a deformation accommodated by multiple fractures and
faults at various scales. However, these recent analyses had
limitations: RGPS has a limited time resolution of about
3 days, and in situ ice stress data are local and not necessarily
representative of the large areas. A comprehensive scaling
analysis of sea ice deformation, covering a wide range of both
time and spatial scales is therefore needed.
[5] In this paper, we describe the fracturing and faulting

of the ice in terms of deformation. We show the time and
spatial scale invariance properties of sea ice deformation,
improving the time and spatial ranges of analysis compared
to previous studies. The resulting scaling laws and associ-
ated exponents are guidelines for understanding the under-
lying physics of the mechanisms of sea ice deformation and
dynamics.
[6] The consequence of sea ice fracturing and faulting is

that, like two particles in a gas or two people in a crowd,

two nearby pieces of sea ice gradually move apart and
disperse [Martin and Thorndike, 1985]. Thus to study the
dispersion of sea ice is a way to analyze its deformation.
Considering two pieces of sea ice, each of them holding a
buoy capable of reporting its position through time, we can
analyze the dispersion of sea ice in terms of the changes in
separation between this pair of buoys. This idea was first
proposed and applied to Arctic sea ice by Martin and
Thorndike [1985]. Their study revealed, in a statistical
sense, similarities between the dispersion properties of sea
ice and the dispersion of particles in turbulent fluids, even if
we expect that the underlying physics is not the same. The
dispersion process is a phenomenon which has been defined
and studied for a long time for turbulent fluids. Rather than
following buoys fixed to the sea ice, these studies of fluids
followed colored tracers in gases or liquids, balloons in
the atmosphere, or buoys at the surface of the ocean
[Richardson and Stommel, 1949; Batchelor, 1951; Okubo,
1971; Morel and Larchevèque, 1974; Martins et al., 2002;
Zhang et al., 2000; Jullien et al., 1999]. In this paper, we
follow the idea initially proposed by Martin and Thorndike
[1985], with a much larger data set, representative of the
entire Arctic Ocean. To study sea ice deformation, we
follow a methodology inspired from the analysis of fluid
turbulence, and particularly the analysis of oceanic and
atmospheric turbulence, which provide two main forcing
terms of sea ice dynamics. Similarities and differences
between sea ice dynamics and fluid turbulence are stressed
to understand the coupling between the different layers of
the system and the nature of sea ice deformation.

2. Data Set: Trajectories of Drifting Buoys

[7] The data set, provided by the International Arctic
Buoy Program (http://iabp.apl.washington.edu/), consists of
trajectories of drifting buoys which were deployed in the
Arctic between 1979 and 2002. A total of approximately
500 drifting buoys were installed over the entire Arctic
basin during this period. The buoys are fixed on the ice and
drift according to the ice motion. Buoy trajectories plotted
in Figure 1 clearly show that our data set is representative of
the whole Arctic Ocean. However, the lifetime of each buoy
is variable, from a few days to many months. We only kept
the positions contained in the Arctic basin, above the bold
arc drawn on Figure 1.
[8] We worked more specifically on pairs of simulta-

neously active buoys, approximately 680 pairs, or 500,000
three-hourly geographical positions obtained between 1979
and 2002: 70% were recorded in winter (i.e., from mid-
September to mid-June) and the remainder in summer. The
average sampling rate of the raw data was 1 position per
hour. The raw data were post-processed by the IABP by
determining a cubic interpolation of the geographical
positions and then re-sampling the interpolated trajectories
at 3-h intervals. Buoys that rely on the ARGOS system for
position estimates have a position uncertainty of about 100 to
300 m (depending on the measurement quality), while those
that use GPS have an uncertainty of about 100 m.
[9] In their analysis of buoy dispersion, Martin and

Thorndike [1985] used a similar, although much smaller,
data set. It consisted of two sets, each of about a dozen
drifting buoys, which were launched in the Bering and

Figure 1. Map of the Arctic basin showing approximately
500 buoy tracks from the IABP (International Arctic Buoy
Program) data set, recorded between 1979 and 2002. The
bold arc represents the lower geographical limit of the data
used in our analysis.

C03002 RAMPAL ET AL.: DISPERSION OF SEA ICE

2 of 12

C03002



Beaufort Seas in the winter, and which recorded their
positions during several days with a sampling rate of 1
position per hour. They analyzed the dispersion within the
scale ranges of 1 h to 4 days, and from a few km to
60 km.
[10] As another point of comparison, Marsan et al.

[2004] used the RGPS data which is derived from synthetic
aperture radar (SAR) images. These images are used to
track the trajectories of about 40,000 points over the entire
Arctic for periods of up to 6 months. The points are initially
spaced 10 km apart and are organized into four-cornered
cells. From these trajectories, the strain rates can be calcu-
lated over each cell, at an average sampling interval of
3 days. This allows analysis of the scaling of sea ice
deformation from 10 km to 1000 km, at the timescale of
3 days. This timescale represents a limitation of the RGPS
data set for scaling analyses [Marsan et al., 2004].
[11] Compared to these former analyses, our data set

presents (i) a much greater spatial coverage and statistical
representation, as well as larger temporal and spatial ranges
than the Martin and Thorndike [1985] data set and, (ii) a
much better time resolution than the RGPS data set, allow-
ing small timescales to be explored.

3. Methodology

[12] The methodology used in this work to analyze the
deformation of a solid plate from the dispersion of
passive tracers is inspired by a classical methodology
developed in fluid turbulence [Richardson and Stommel,
1949; Batchelor, 1951]. We study how the dispersion of
pairs of buoys depends on both (1) their initial separation
L, and (2) the time t during which they disperse. In
Figure 2, two buoys A and B with absolute positions ~X 1

and ~X 2 respectively, and with separation ~Y = ~X 2 � ~X 1,
are considered. If these two buoys initially separated by
L = k~Y (0)k are observed after a time t = t, a change in
separation is observed. Our notations are: ~Y (0) has
magnitude L and ~Y (t) has magnitude l(t). We define
the change in separation Dr as:

Dr ¼ ~Y tð Þ
�� ��� ~Y 0ð Þ

�� �� ¼ l tð Þ � L ð1Þ

In fluid mechanics, the dispersion process is characterized
by the mean square change in separation hDr2i. Except for
section 3, this variable is not considered here. From a solid
mechanics perspective, it appears more pertinent to consider
the rate _D = Dr/Lt instead of the change in separation Dr.
_D is analogous to a deformation rate, measured in day�1.
Neither Dr nor _D are sensitive to solid rotations. They only
quantify the deformation due to divergence, convergence,
and/or shear.
[13] When analyzing the whole Arctic basin (see

section 4), we made a distinction between winter (from
mid-September to mid-June) and summer. Separately for both
seasons, we computed the distributions of _D for various L and
t ranging from a few kilometers to 500 km and from 3 h to
several months (one month for summer). For each space-time
interval, the associated distribution is characterized by its
standard deviation s

_D
, which is a function of L and t. In this

way, we measure how a cluster of passive tracers of initial
size L typically disperses after a time t or, in other words,
how the associated region containing these tracers deforms
(We will show in the next section two examples of how
deformation and dispersion can be linked). The choice of
the standard deviation of _D rather than its mean is partly
motivated by the fact that in the limit of small deformation
rate (i.e., for large time and spatial scales), only the standard
deviation allows to characterize the deformation process.
We checked this by calculating the two parameters for each
computed distribution of _D (i.e., corresponding to each L �
t interval). We observed that the standard deviation of _D
evolved over the entire L and t ranges, whereas the mean
remained insensitive to sea ice deformation at large spatial
scales. In addition, the choice of the standard deviation was
motivated by an analogy with the methodology used in fluid
turbulence to characterize the dispersion of passive tracers.
[14] The number N of measurements available in each

L � t interval for the distribution of _D is extremely
variable, ranging from 920 to 812,405 in winter, and
from 6 to 257,871 in summer. From these N measurements,
many values can come from a single pair of buoys and thus
are not independent. Indeed, the autocorrelation analysis of
_D time records for an initial separation of L � 300 km
shows a correlation time of approximately 10 h. Thus we only
kept one _D-value in three provided by each pair of buoys.
Moreover, the distributions of _D are clearly not Gaussian,
with significantly slower decays toward large values (this
aspect will be detailed in future work). All these observations
suggest that we would under-estimate the errorsDs

_D
on s

_D
if

we were to estimate it as Ds
_D
/s

_D
� N�0.5, i.e., using the

central limit theorem. Instead, we estimated Ds
_D
from a

bootstrap method described in Appendix 1, which led us to

Figure 2. For a pair of buoys located at X1
�!

, X2
�!

, the
separation Y

!
= X2

�! � X1
�!

yields the dispersion Dr =
kY!(t) � Y

!
(0)k at time t.
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consider, instead of the number of samples, the number of
pairs of buoys as an independent variable.

4. Introduction to the Dispersion Process: Two
Examples of Buoy Dispersions

[15] Most buoys are typically not clustered sufficiently
well to determine the deformation as a cluster, although they
can be easily grouped into pairs to estimate the dispersion
(detailed in section 2). However, two field projects
(‘‘SHEBA’’, Surface Heat Budget of the Arctic Ocean, and
‘‘SIMI’’, Sea Ice Mechanics Initiative) provide an opportu-
nity to determine the relationship between two-point disper-
sion estimates of the deformation and multipoint (cluster)
deformation estimates found by fitting a linear function of the
velocity to the buoy positions. The buoys were deployed by
the Cold Regions Research and Engineering Laboratory (the
data sets are available on the Web: www.crrel.usace.army.
mil/sid/SeaIceDynamics/).
[16] The experiments took place in the western Arctic

close to the Alaskan coast (Figure 3a) in winters 1997–1998
for SHEBA and 1993–1994 for SIMI. For each experiment,
a set of Nb buoys is considered (Nb = 6 and 13 respectively),
and we use the positions of the buoys over a period of
approximately one month. At the beginning of this
period the buoys form clusters of different initial sizes,
L2 � 300 km2 for SIMI and 8000 km2 for SHEBA. Through
time, these clusters deform. The two sets of trajectories are
drawn on Figure 3b and Figure 3c with the positions of the
clusters at the beginning and at the end of the period
indicated.We illustrate here the link between the deformation
of the underlying solid plate and the dispersion of buoys:
[17] We follow a cluster of buoys between times t and

t + Dt (Dt = 1h) and estimate at various times t the strain
tensor eij(t) from each set of buoys. The actual deformation of
the two sets of buoys shows spatial variability: it is not
homogeneous over the whole region encompassed by the
buoys. However, here we follow the deformation at the scale
of those regions (�300 km2 and �8000 km2), and therefore
assume a smooth, i.e., homogeneous, process for these
observables. So we calculate the best coefficients of the
matrix Mij which minimizes

P
k

(~Uk � Mij
~X k)

2, where ~Uk is

the displacement vector of the kth buoy during Dt and ~X k

its position at time t. Mij is the matrix of the displacement

gradients. We compute the strain tensor eij from Mij as:

eij ¼
1

2
Mij þMji

� �
ð2Þ

Figure 3. (a). Map showing the ‘‘SHEBA’’ and ‘‘SIMI’’
regions, and the initial positions of the buoys. An estimate
of the surface area delimited by the two sets of buoys
is �300 km2 for SIMI and �8000 km2 for SHEBA.
(b). Tracks of the six SHEBA buoys. These correspond to
a 30-day drift from the 27th of October to the 24th of
November, 1997. The smallest ellipse including all the buoys
at t = 0 and t = 30 days is drawn in black. Its form evolves
through time, illustrating the sea ice deformation of the
respective region, with combination of shear and divergence
components. (c). Same as (b) for the 13 SIMI buoys.
Compared to SHEBA, the deformation is weaker.
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[18] Then we compute two invariants of the deformation,
the divergence and the shear strain:

div ¼ tr eij
� �

ð3Þ

shr ¼ e11 � e22ð Þ2þ e12 þ e21ð Þ2
h i1=2

ð4Þ

[19] Finally, we deduce the magnitude of the total defor-
mation as:

etot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
div2 þ shr2

p
ð5Þ

[20] Figure 4 shows this deformation etot along with the
standard deviation sD of the deformation D = Dr/L derived
from the dispersion of the SHEBA buoys over a period of
100 days. We obtain a correlation coefficient of 0.91
between them, although sD is systematically smaller than
etot. It can be shown by simple Monte-Carlo simulations
assuming homogeneous deformation that etot is typically
greater than sD by a factor of 4 on average with a standard
deviation of about approximately 3. These simulations do
not take into account the existing spatial correlations of the
buoys trajectories. Therefore this factor of proportionality is
an upper bound estimate. For example, in a realistic case
like SHEBA, the buoys trajectories are spatially correlated,
i.e., disperse less than one would expect for an equivalent
cluster with uncorrelated trajectories, and this factor is less
(i.e., approximately 2) (see the inset graph in Figure 4). We
note also the large standard deviation associated with this
ratio (i.e., 3). Consequently, the value of 2.25 obtained for
SHEBA is not necessarily representative of the general case.
In the case of SIMI, we look at the deformation of a
‘‘small’’ initial region (about 300 km2) compared to the
SHEBA’s one (about 8000 km2). Then, the dispersion is

expected to be smaller too in magnitude (see details in the
next paragraph), i.e., the relative displacements leading to
this dispersion are smaller. This implies that the ‘‘signal
over noise’’ (e.g., due to the position uncertainty) ratio is
larger for SIMI than for SHEBA. Consequently, we found a
less good correlation between etot and sD for SIMI (e.g.,
�0.65). In conclusion, this evidence shows that the sea ice
deformation can be approximated by following the disper-
sion of pairs of passive tracers.
[21] We also compute the mean square change in separa-

tion hDr2i = h(r(t + t) � r(t))2i as a function of t (Figure 5).
The number of values of Dr for each distribution ranged
from 465 to 109,122. hDr2i is a quantity which character-
izes the dispersion process [Richardson, 1926]. The mag-
nitude of the dispersion is larger for SHEBA than for SIMI.
However, Martin and Thorndike [1985] obtained, for an
initial cluster of intermediate size (�2500 km2), greater
magnitudes than those for SHEBA and SIMI. We can
reasonably imagine that stronger wind-forcing and a thinner
ice cover in the Bering Sea region (marginal sea of the
Arctic basin) can lead to such large magnitudes of disper-
sion. The evolution of hDr2i can be approximated by a
power law scaling hDr2i � tg, with g ranging between
1 and 3. We find that g ’ 1.6 for SHEBA whereas, for
SIMI, g ’ 1.6 for t < 1 day, and g ’ 0.6 for t > 1 day. We
note here that molecular dispersion is characterized by
hDr2i � t [Einstein, 1905], whereas atmospheric turbu-
lence is characterized by hDr2i � t3 [Richardson, 1926]. In
other words, sea ice deformation in these two regions is
found to be characterized by a super-diffusive regime,
although there is a hint for a sub-diffusive regime in the
SIMI experiment for timescales greater than 1 day.
[22] The significant variation of g from one experiment to

another stresses the need to consider ensemble averages
over the whole Arctic basin rather than particular regional

Figure 4. Standard deviation sD of the deformation D (computed from the dispersion of pairs of
buoys), and of the strain etot versus time t, for the SHEBA experiment. The inset plot shows the
proportionality between the both (the slope of the dashed line is about 2.25 +/� 0.01).
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experiments in order to obtain a global characterization of sea
ice deformation. A comparison with the results ofMartin and
Thorndike [1985] illustrates this idea: they showed that for an
area of about 2500 km2 located in the Bering Sea hDr2i � t2

for t < 1 day, and hDr2i � t for t > 1 day. The SIMI
experiment is in relative agreement with this former study,
whereas we obtained a different power law without any
change in regime within the 3 h-30 days interval for
SHEBA.
[23] A hDr2i � t regime implies separation velocities

increasing as Dr/t � Dr�1 with decreasing Dr. Physically,
this velocity cannot increase indefinitely toward small
scales. So a change in regime, so that the velocity becomes
constant (ballistic regime, with hDr2i evolving as t2), is
expected to occur at short timescales [Taylor, 1921]. We did
not observe this regime change with SHEBA, because the
transition must occur at a characteristic time that is less than
our resolution (i.e., for t < 1 h).
[24] Finally, we calculate the standard deviation s

_D
of the

deformation rate _D = Dr/Lt, as well as the strain rate _etot
(Figure 6). Here, we consider the characteristic scale L
instead of L2. The magnitude of s

_D
is larger for the small

cluster (i.e., SIMI) than for the large one (i.e., SHEBA), at
short times t, implying a stronger deformation rate at small
spatial scales. In addition, s

_D
reasonably fits a power law

s
_D
� t�a(L). The exponent a is different for the two

experiments, with a = 0.7 for small spatial scale (SIMI), and
a = 0.2 for the large spatial scale (SHEBA). These exponents
are consistent with the exponents found for hDr2i in the
following way:

s _D � t�a � _D � Dr=Lt � tg=2�1 ð6Þ

[25] Hence a = 1 � g/2. For the SHEBA experiment, we
can effectively check that: a = 1 � (1.6/2) = 0.2. The
systematic dependence of a with respect to L (or L2) is
discussed in section 5. We also note that the two calcula-
tions of deformation rates, the first one from the strain rate
tensor and the second one from the dispersion rate, lead to
very similar power law trends. This confirms that one may
use the dispersion of buoys to accurately estimate sea ice
deformation rates, and the associated scaling laws.
[26] To summarize, this analysis of two clusters of buoys

shows that:
[27] (i) Arctic sea ice disperses as the result of deformation.

Our two examples and the one of Martin and Thorndike
[1985], which correspond to different periods and regions of
the Arctic, show similar qualitative trends but significantly
different scaling exponents. This illustrates the strongly
heterogeneous character of sea ice deformation, thus the
need for ensemble averages to estimate robust scaling.
Moreover, deformation rates decrease with the increasing
time interval t considered, highlighting the intermittency of
this process.
[28] (ii) The intensity of the dispersion and the magnitude

of the deformation rates depend on both spatial and tem-
poral scales.
[29] (iii) Both dispersion and deformation rates scale with

the time interval t as power laws.
[30] (iv) These exponents depend on the spatial scale L

(or L2). As L increases, the dispersion increases whereas the
deformation decreases. This implies a non-trivial coupling
between space and time in the dispersion/deformation
process.
[31] These two experiments only concern limited spatial

and timescales, and specific regions of the Arctic basin.

Figure 5. hDr2i versus the time interval t for the SHEBA and SIMI clusters. The dashed line shows the
results of Martin and Thorndike [1985] for their initial cluster of 2500 km2. The lines with slope 1 and 3
are for reference only.
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Thanks to the exceptional data set provided by IABP, we
can extend the analysis to the whole Arctic Ocean and up to
a timescale of several months.

5. Sea Ice Dispersion and Deformation Over the
Whole Arctic Ocean: Results

[32] We now consider the time and spatial scaling of sea
ice deformation rate for the whole Arctic Ocean, based on
the dispersion of pairs of buoy trajectories (Figure 1).

5.1. Time Scaling

[33] Figure 7a and Figure 7b show the standard deviation
of the deformation rate s

_D
versus the time interval of

observation t for winter and summer, respectively. Because
of the small number of independent observations for some
distributions, the errors on s

_D
can be very large, as

mentioned in section 2. The estimation of these errors bars
is detailed in Appendix 1; they increase as the timescale
increases and the spatial scale decreases. We observe a
power law scaling, s

_D
� t�a(L), over 3 orders of magnitude.

[34] The exponents a were determined using a weighted
least squares algorithm (The weights depending on the error
bars). The corresponding errors in the calculation of the
slopes range from 7% to 25%. The exponents a increase
with decreasing initial separation L, ranging from 0.89 for
L = 1 km to 0.30 for L = 300 km in winter and from 0.87
for L = 1 km to 0.25 for L = 300 km in summer (Figure 8).
Thus we note that the seasons cannot be distinguished in
terms of scaling exponents.
[35] The apparent change of slope value between the

power law for L = 10 km the one for L = 30 km, i.e., over
a very short range of scales, is discussed in section 5
through an analysis of the spatial scaling.

5.2. Spatial Scaling

[36] Figure 9a and Figure 9b show s
_D
versus the initial

separation L, for winter and summer respectively. Errors of
s

_D
are once again very large and increase as timescale

increases and spatial scale decreases.
[37] Similar to the dependence with time, we observe for

both seasons a power law spatial scaling, s
_D
� L�b(t), over

3 orders of magnitude although this scaling is far from being
as well-defined as in the temporal case. In the temporal
case, the pairs of buoys considered do not change as we
consider different temporal scales, i.e., we look at
approximately the same regions for two different t. In
contrast, as L changes, we sample different regions of the
Arctic, as the pairs of buoys considered are not the same. So
first, this could partly explain the noise seen in the spatial
scaling. Second, we expect inhomogeneous forcing at large
time or space scales and the influence of the coasts to be
possible causes for a bias on the s

_D
-values. The inhomo-

geneous forcing arises from the large-scale variability in the
mean wind and water stresses over the basin [Steele et al.,
1997].
[38] The exponents b were determined using a weighted

least squares algorithm. The corresponding uncertainty in b
ranges from 15% to 80%. The exponent b increases with
decreasing timescale t, ranging from 0.85 for t = 1 h to
0.35 for t = 1 month in winter and from 0.85 for t = 1 h to
0.42 for t = 1 month in summer (Figure 10). Once again,
winter and summer cannot be distinguished on this basis.

6. Discussion

[39] As a generalization of the examples studied in
section 3, the magnitudes of the deformation rates have

Figure 6. Strain rate _etot and its proxy s
_D
(standard deviation of _D) versus t for the SHEBA and SIMI

experiments. The horizontal line and the line with slope �0.5 are for reference only.
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Figure 7. (a). s
_D
versus t for L � 1, 10, 30, and 300 km, and the winter season. The L-values

correspond to the spatial bins: 0.3–2 km, 2–16 km, 16–64 km, and 64–512 km respectively. Error bars
are estimated by a bootstrap method (Cf Appendix 1). The gray dashed lines show the best power law fit
(in the least squares sense) to the 4 data sets. (b). Same as Figure 7a, for summer.

Figure 8. Power law exponent a versus initial separation L for winter (circles) and summer (squares).
Dashed lines represent the a -values corresponding to (i) an extremely intermittent deformation process
(temporal fractal dimension equals to zero), (ii) a non-intermittent viscous flow, and (iii) atmospheric
turbulence.
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been shown to depend on L and t: Deformation rate
increases as L and t decrease. As a point of comparison,
the deformation rate in winter for L > 100 km and t = 3
days is about 10�2 day�1, which is in close agreement with
the estimate of Marsan et al. [2004] from RGPS data.

6.1. Time Scaling

[40] Following expression (6), we estimate the exponents
g for the time scaling of the dispersion (i.e., for hDr2i �
tg), from the exponents a observed for the time scaling of
the deformation. We find 0.22 < g < 1.44, from small to
large spatial scales L. The deformation of Arctic sea ice
appears to follow different regimes, from sub-diffusive (at
L < � 10 km) to super-diffusive (at L > � 10 km).
However, for any particular scale L, we cannot define a
characteristic time at which a change in regime occurs. This
shows that the time scaling of the dispersion found by
Martin and Thorndike [1985] and the one found in the SIMI
case (see section 3) cannot be considered, in a statistical
sense, as representative of general sea ice dynamics. In other
words, a variety of time scaling can be found locally, and
depends on the spatial scale considered.
[41] The evolution of the time scaling exponent a with

increasing spatial scale L (Figure 8) can be interpreted if one
considers the deformation of sea ice to be accommodated by
a multiscale fracturing process [Marsan et al., 2004]. The
exponent a is then a measure of the degree of intermittency
of the deformation process: at small L, this process is highly
intermittent, and a is close to the unit case a = 1
corresponding to deformation accommodated ‘‘by a single
fracturing event’’. As L increases, the average effect of an
increasing number of fractures causes the deformation to
become ‘‘smoother’’ in time, i.e., a decreases. However, a
is positive even at the largest spatial scale considered here

(L � 300 km), i.e., sea ice deformation is always intermit-
tent and does not mimic viscous flow. This shows that the
hypothesis of viscous flow in sea ice models [Hibler, 1977]
is not fulfilled, even at very large spatial scales. On the other
hand, we are far from the case of atmospheric turbulent
dispersion (a = �0.5), corresponding to the ‘‘t3 law’’
[Richardson, 1926].

6.2. Spatial Scaling

[42] Just as the time scaling exponent a depends on L, the
spatial scaling exponent b depends on the timescale t
(Figures 9a and 9b).
[43] Turbulence theory predicts a characteristic time at

which the regime of dispersion changes. Batchelor [1960]
and Kraichnan [1966] showed that, for small t hDr2i � L2/3,
and for large t hDr2i � L4/3. Translated in terms of defor-
mation rate, this means that, for small t s

_D
scales as L�2/3,

and for large t s
_D
scales as L�1/3. In our case, a

characteristic time cannot be distinguished. The exponent
b decreases continuously as t increases (Figure 10). This
leads to the conclusion that time and space scales are
strongly coupled and cannot be separated for Arctic sea ice
deformation, or, in other words, that the scaling of s

_D
does

not reduce to L�bt�a.
[44] As a is a measure of the degree of temporal

intermittency, b is a measure of the degree of spatial
heterogeneity of sea ice deformation. The boundary value
b = 2 would correspond to a highly localized deformation
process, e.g., a single fracture in an elastic medium, whereas
b = 0 indicates homogeneous deformation (e.g., elastic or
viscous). Here, b is always far from the boundary value b =
2 and decreases toward large timescale t, as more and more
fracturing events are taken into account. However, it never
reaches the homogeneous case (b = 0), even at large

Figure 9. (a). s
_D
versus the initial separation L for 3 h � t � 12 h, 1 � t � 4 days, 8 days � t �

16 days, 32 days � t � 128 days, for the winter season. Error bars are estimated by the bootstrap method
of Appendix 1. The gray dashed lines show the best power law fit (in the least squares sense) to the 4 data
sets. (b). Same as Figure 9a, for summer. The time intervals are redefined as: 3 h � t � 12 h, 1 � t �
4 days, 8 days � t � 16 days, 32 days � t � 64 days.
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timescales (t � 2 months). Once again, the viscous flow
hypothesis is not fulfilled.
[45] Considering the role of oceanic driving, Okubo

[1971] found from the analysis of buoy dispersion that
hDr2i � L1.1 for surface oceanic turbulence. This translates
into b = 0.45. This is close to the value obtained at large
timescales (Figure 10) for both winter and summer seasons.
In other words, sea ice dispersion mimics a free drift,
oceanic dispersion only at large timescales (i.e., >1 month).
At smaller scales (i.e., <1 month), the elasto-brittle behavior
of Arctic sea ice results in a much more heterogeneous and
localized deformation. This transition at �1 month can
therefore be viewed as an integral scale at which the sea
ice deformation is driven by oceanic forcing.
[46] As shown above, the results of Figure 9a and

Figure 9b are compatible, within the large error bars, with
a single spatial scaling. However, it is possible to differen-
tiate two different regimes, separated by a transition scale of
about 10 km (Figure 11a). The evolution of the corre-
sponding slopes b<10km and b>10km with increasing timescale
t is shown in Figure 11b. A possible interpretation of a
change of dispersion regime is related to ocean dynamics.
Indeed, this 10 km scale is known to be consistent with a
class of dynamical structure in the ocean: an estimation of
the internal Rossby radius at northern latitudes leads to the
same order of spatial scale. Therefore this possible regime
change could indicate the role of oceanic dynamical struc-
tures such as eddies. However, owing to the fact that both
interpretations (1 or 2 dispersion regimes) are compatible
with our results and the associated uncertainties, further
studies are needed to definitively answer this question.

6.3. Seasonal Dynamics of Sea Ice

[47] On the basis of the scaling properties summarized in
Figure 8 and Figure 10, winter and summer sea ice
dynamics cannot be differentiated. Whatever the time or

spatial scales considered, the magnitudes of s
_D
are very

similar in winter and summer, from 10 day�1 for small time
and spatial scales, to 10�3 day�1 for large scales. This might
appear, at first glance, in contradiction with the expectation
that a loose summer ice pack would disperse and deform
according to a free drift regime. As shown above, this free
drift regime is only recovered at large timescales in both
winter and summer. Even if the loose assembly of ice floes
characterizing the marginal ice zone bordering the perennial
ice pack might behave differently, our results suggest that
the perennial sea ice cover of the central Arctic basin (from
which most of the buoy observations come; see Figure 1)
behaves as a fractured solid plate, just as the winter ice
cover does, and not as a free assembly of floes. This may
have major implications in terms of global sea ice drift or
sea ice mass balance.

6.4. Perspectives for Future Studies

[48] We recall that for the homogeneous deformation of a
typical solid (i.e., elastic deformation or viscous flow), the
deformation rate does not depend on the time and spatial
scales (i.e., a = 0 and b = 0). The present observations
argue for sea ice deformation characterized by both inter-
mittency and heterogeneity, and by a strong space-time
coupling. The next step would be to quantify this space-
time coupling, searching for a general link between the
distributions of strain rates at different space and timescales.
Then it might be possible to completely characterize the
scaling properties of the sea ice deformation and deduce, by
downscaling or upscaling, useful information for modelers
to use for model validation.

7. Conclusions

[49] In summary, the primary conclusions of our analysis
of buoy trajectories are:

Figure 10. Power law exponents b versus time interval t for winter and summer. Dashed lines represent
two characteristic deformation processes, from a homogeneous one to a highly localized one (spatial
fractal dimension equals to zero).
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[50] (i) The deformation of sea ice is the result of a highly
intermittent and heterogeneous dispersion process.
[51] (ii) The deformation depends on both space and

timescales. We showed that it follows a power law model
that is scale invariant over several orders of magnitude in
time and space.
[52] (iii) The values of the exponents of the power

functions depend on both time and space scales. This leads
us to conclude that time and space scales are coupled.

[53] (iv) Even for large timescales, i.e., several months,
and for the Arctic basin scale, i.e., 1000 km, we showed that
Arctic sea ice deformation does not mimic viscous flow, a
contradiction to the classical sea ice modeling assumption.

Appendix A: Estimating uncertainties

[54] Time correlations (memory effects) are present in ice
velocity records [Thorndike, 1986a, 1986b], and can also be

Figure 11. (a). Same as Figure 9a, but with power law fits assuming a regime change at �10 km. (b).
Same as Figure 10, but separating the two space intervals L < 10 km and L > 10 km (Cf Figure 10).

Figure A1. Standard deviation S of s
_D
versus the number of pairs n, for the spatial bin 256–512 km and

three different time intervals t. The dashed lines are the best power law fit to the data. The black line with
slope �0.5 shows S(n) if the central limit theorem would apply.
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found in time series of ice deformation rates as measured by
the dispersion of pairs of buoys. An autocorrelation reveals
a decorrelation time of about 10 h for an initial separation of
L � 300 km. This decorrelation time becomes smaller for
small L. In addition, strong spatial correlations are present
in the deformation field [Marsan et al., 2004]. Consequently,
the errors on the estimation of s

_D
cannot be obtained

directly from the central limit theorem and the number N of
samples, as it is usually assumed that those N samples are
independent of each other. Instead, we estimate these errors
from a bootstrap method. It can be shown that the number
of pairs of buoys Np taken into account in each distribution,
rather than the number of samples N, should be used as the
number of independent variables. Np ranges from 3 to 686
for winter, and from 1 to 463 for summer. In order to
empirically find how the error Ds

_D
/s

_D
depends on Np, we

selected those distributions that contain Np  100 pairs.
Then, we randomly picked q times (q 10), all the s

_D
-values

coming from n independent pairs of buoys, taking care not to
pick the same pair twice, with the condition q � n ’ 0.75 �
Np. Then, we obtain, for each couple (L, t), q distributions
of s

_D
-values for which we calculate their standard

deviation S. In other words, the S-values correspond to
the dispersion of around its mean, for a given n. Figure A1
shows the results of this method for 3 different distribu-
tions corresponding to 3 different couples of scales (L, t).
Finally, we obtain that S decreases with n as:

S ¼ Ds _D ¼ f ðs _D; nÞ ¼ A� s _D=n
l ðA1Þ

where s
_D
is the value of the standard deviation found for a

particular distribution, A is about 0.9, and l is approxi-
mately equal to 0.4. In our analysis, we use this relation to
estimate the uncertainty in s

_D
.

[55] We note that this expression is similar to the error
estimate given by the central limit theorem, with the
important difference that the number of pairs of buoys Np

is considered instead of the number of samples N. Also, the
values of A and l differ slightly from A = 1 and l = 0.5 as
would be expected if the central limit theorem would apply.
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