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Abstract

A large jet encircling the inner core and carrying a significant part of the core
angular momentum and axial vortices of ~ 700 km diameter mainly clustering
around the cylinder tangent to the solid inner core, are inferred from geomagnetic
secular variation. These results are presented in the form of maps of axial vorticity
in an equatorial section. The study takes advantage of the high precision of recent
geomagnetic field models derived from satellite data. The tangent cylinder is con-
sidered as impenetrable to core flows and, outside of it, the same eddies account
for magnetic field induction at the core surface in both hemispheres. New regu-
larizations are suggested from dynamical considerations. It is found that medium
and small scale velocity fields contribute significantly to the large scale secular
variation. Accordingly, final models of core flows are calculated after an iterative
process, whereby the magnetic field variation produced by small scale stochastic
magnetic fields and medium to small scale computed velocity fields are incorpo-
rated into the inversion itself as modelling errors. This study represents a signifi-
cant step in an effort to join geomagnetic observations and the fluid core dynamics
on short timescales.

1 Introduction

Recent years have seen rapid advances in the understanding of the Earth’s fluid core dy-
namics, especially since fully three-dimensional dynamo numerical models produced
their first results (Glatzmaier & Roberts, 1995). One surprising outcome of these com-
plex numerical calculations is that, in many cases, the well-known dynamical rigidity
parallel to the direction of rotation, characteristic of motions in a rapidly rotating sys-
tem, is still present in spite of convection and magnetohydrodynamic effects (see e.g.
Olson et al. (1999)). During the same time, particularly for the last seven years, the
three satellites @rsted, SAC-C and CHAMP have been providing geomagnetic data,
in such a way that the overall database covers a 6, 5 yr period continuously (Olsen et
al., 2006; Maus et al., 2006; Thomson & Lesur, 2007). Never before had the geomag-
netic field been monitored with, simultaneously, such accuracy of individual measure-
ments, global density of observation points and long duration. It is expected that these



conditions add up to produce models of the Earth’s core Secular Variation (SV) with
unprecedented resolution of intermediate temporal and spatial scales. Therefore, this
seems to be the right time to put together dynamical results and observations and try
to compute Core-Mantle Boundary (CMB) flow models that are compatible with both
theoretical and observational constraints.

Experimental and numerical studies of fluid dynamics in rapidly rotating spherical
shells are a central issue for the understanding of planetary and astrophysical systems
in general, and the Earth’s core in particular (Busse, 1976). Columnar flows aligned
with the rotation axis, z, have often been seen to emerge in laboratory experiments, as
preferred self-organized structures (e.g. Cardin & Olson (1994), Aubert et al. (2001),
Gillet et al. (2007) ). Columnar axial vortices are the expression of Proudman-Taylor
theorem, which applies when the main force balance is dominated by the Coriolis
and pressure forces and implies a kind of dynamical rigidity on the fluid parallel to
the rotation axis, known as geostrophy (e.g. Tritton (1988)). As a result, a purely
geostrophic flow is two-dimensional in the plane perpendicular to the rotation axis. In-
side a spherical shell, it corresponds to cylindrical flows, coaxial with the rotation axis,
since any z-invariant radial component would violate the impenetrability condition on
the boundary. Spherical sloping impenetrable boundaries do impose compression of
fluid columns that move radially outward from the rotation axis, and stretching of in-
ward moving columns, thus inducing an ageostrophic (i.e., z-dependent) axial flow
component. This geometrical boundary effect is known as topographic -effect (e.g.,
Busse (2002)) and the resulting flow is quasi-geostrophic (QG). For studying the dy-
namics of the Earth’s liquid outer core, buoyancy and magnetic forces have necessarily
to be included (e.g., Gubbins & Roberts (1987)). These forces can induce radial flows,
liable to be affected by the topographic (-effect, and an ageostrophic flow component
can be expected. Yet, a number of analytical, numerical and experimental studies on
thermal, nonmagnetic, rotating convection, have shown that flows driven by a realis-
tic temperature or compositional gradient are almost two-dimensional, with convective
cells aligned with the rotation axis (see Jones (2007), for a review and Zhang et al.
(2007) for a reappraisal from the viewpoint of quasi-geostrophic inertial waves). Mag-
netoconvection numerical studies consider the impact of an imposed magnetic field on
convection of an electrical conducting fluid. In most of these studies, the columnar
convection still dominates, though rolls become thicker as the magnetic field effect
increases (e.g., Jones et al (2003)). Convection-driven numerical dynamos allow for
the modification of the ambient magnetic field by the back-reaction of the convective
flow. There, also, strongly columnar regimes have been observed, associated to dipole-
dominated external fields of the Earth’s type (Olson et al., 1999; Christensen & Aubert,
2006). The mechanism by which convective rolls generate magnetic field by dynamo
action, is discussed with detail in Olson et al. (1999).

One of us (Jault, 2007) has recently attempted to put these results in a general
framework. The study is motivated by the observation that the timescale of interest
for SV studies from satellite data is of the order 1-10 yrs. It relies on a numerical
calculation with imposed axial symmetry. It is found that the relevant parameter for
emergence of geostrophic cylinders when viscous and magnetic diffusive effects can be
neglected is the ratio, A\, between the periods of inertial and Alfvén waves in a rotating
system permeated by a magnetic field instead of the Elsasser number A. Then, it is



remarked that magnetoconvection and dynamo studies showing columnar flows aligned
parallel to the axis of rotation are all associated to values of A much smaller than unity
A < 3. x 1072, Hence, it is suggested that ) is the appropriate parameter to measure
the relative importance of magnetic and Coriolis forces, even for non-axisymmetric
systems. For the Earth’s core, A ~ 1074, suggesting a dominance of rotation upon
magnetic effects.

Quasi-geostrophic flows have to be distinguished from tangentially geostrophic sur-
face flows (Le Mouél et al, 1985; Jackson, 1997; Chulliat & Hulot, 2000; Pais et al.,
2004). The former affect the entire fluid volume where they obey an equation for axial
vorticity while the latter are restricted to the core surface where they are constrained
by a radial vorticity equation compatible, for example, with a thermal wind balance.
Calculations of tangentially geostrophic flows have been justified by the locally small
value of the Elsasser number A. Acknowledging that A is more appropriate than A to
measure Coriolis forces against magnetic forces when magnetic diffusion is negligible,
brings out the relevance of QG flows on short timescales.

For CMB flow inversion, the QG assumption has the advantage of eliminating the
well-known non-uniqueness of solutions (Backus, 1968) by providing new constraints
supported by dynamics. Indeed, the most obvious implication of the underlying dy-
namics for the kinematics of CMB flows is the equatorial mirror symmetry. It has
also been frequently noticed in dynamo calculations (Olson et al., 1999; Christensen &
Aubert, 2006; Sreenivasan & Jones, 2006), a decoupling of the flow inside and outside
the cylinder coaxial with the rotation axis and which touches the inner core equator,
usually called the tangent cylinder (TC). This result can be explained in the light of a
dynamical regime controlled by rotation, by stressing that the rapid change in length
of columns that cross the TC requires a strongly ageostrophic motion of which there
would be no source mechanism (Jones , 2007). A further implication is that length
scales associated to columnar flows are expected to be smaller than those dominating
standard CMB inverted flows, because tall thin columns minimize the violation to the
impenetrability condition at the spherical core surface and, accordingly, the departure
from geostrophy induced by the boundaries (e.g., Busse (1970)). As a summing up, we
can say that dynamical arguments favour i) equatorial mirror symmetry; ii) minimum
fluid transfer through the TC; iii) relatively short length scales for the flow.

A review of core-mantle flow modelling from inversion of geomagnetic data, with
discussion of the main aspects related to this procedure, is given by Whaler & Davis
(1997) for the classical spectral approach. We elaborate now on points i), ii) and iii)
referred above, where our inversions differ from the usual procedure.

Hulot et al. (1990) computed a tangentially geostrophic CMB flow for epoch 1980,
imposing symmetry about the center of the Earth and plane reflexion symmetry (or
mirror symmetry) about the equatorial plane. They could resolve different vortices, of
large diameter d ~ 7000 km, which they interpreted as the surface expression of colum-
nar flows. Using models derived from satellite data, Hulot et al. (2002) inverted a mean
MF/SV model over the 20 yr period that separated Magsat from @rsted satellite mis-
sions and reported a medium to high-latitude ring of vortices, approximately symmetri-
cal with respect to the equator. Also, Holme & Olsen (2006) noticed a strong equatorial
symmetry in surface core flows inverted from a geomagnetic field model, CO2003, de-
termined from the @rsted and CHAMP satellite data covering a 4.5yr period. They



related these highly symmetrical features to the convective features described by Busse
(1970). Note that this conclusion of both Hulot et al. (2002) and Holme & Olsen (2006)
contrasts with the remark of Amit & Olson (2004) that their core flows inferred from
the variation of the magnetic field between the epochs of Magsat and @rsted show little
evidence of non-axisymmetric Taylor columns. Amit & Olson (2004, 2006) relied on
studies of other geophysical flows to suggest new ways to invert for core flows. Their
helical and columnar flows hypotheses are used only to infer certain conditions on the
CMB flow that eliminate the associated non uniqueness. The flows are defined at the
core surface alone and no symmetry with respect to the equator is imposed. Previous
studies, using magnetic observatory data, had identified some important equatorially
asymmetric features in the computed flows, such as the strong westward drift under
Africa and under the South Atlantic and the gyratory flow below the Indian ocean (e.g.
Bloxham, 1989). Rau et al. (2000) inverted the secular variation from numerical dy-
namo models and compared the inverted flows to flows extracted from the numerical
model, below the outer Ekman boundary layer. They pointed out that the usual pattern
seen in standard inverted flows, namely strong westward currents within 30° latitude
and large gyres that do not close locally into complete vortices, may well be a spuri-
ous effect of limited resolution of the MF and SV, blurring an underlying equatorial
symmetric, columnar flow.

To our knowledge, the tangent cylinder has not yet been explicitly introduced in
core flow inversions. However, a possible influence of that imaginary cylinder on core
flows has been sought, either by direct inspection of core flow maps (Pais & Hulot,
2000; Hulot et al., 2002; Holme & Olsen, 2006), or by examination of high latitude
distribution of magnetic field time variations (Olson & Aurnou, 1999). All these studies
concluded that a large polar vortex is present at the North Pole. Another polar vortex
with possibly a weaker amplitude has also been inferred at the South Pole from plots
of the zonal toroidal velocity component as a function of latitude. Finally, the high
latitude ring of vortices of Hulot et al. (2002) clusters around the tangent cylinder.

Hulot et al. (2002) have been the first to use high precision satellite data to inspect
intermediate to small length scales of the CMB flow. The smallest high latitude vortices
obtained by these authors from inversion of Magsat to @rsted field changes in the At-
lantic hemisphere, have a diameter of about 1000 km. Holme & Olsen (2006) inverted
the CO2003 model truncated at degree 14 for more detailed flow images at the CMB.
Their computed flows show much more small scale structure than previously published
flows. In both studies, flows were strongly regularized. Nonetheless, they didn’t show
a clear convergence at the truncation degrees 13 (Hulot et al., 2002; Eymin & Hulot,
2005) nor 14 (Holme & Olsen, 2006), suggesting that a higher truncation degree should
be used. When trying to assess smaller scale flows, as pointed out by Eymin & Hulot
(2005), we are confronted with a crucial limitation of the inversion model, as we have
to deal with only a partial knowledge of the main field. This discussion is expanded in
section 3.

The aim of this paper is to investigate the possibility that secular variation, contin-
uously monitored by satellites since only a few years ago, is due to advection of the
geomagnetic field by QG vortices. The features of our method that are in common use
are expounded in section 2, together with a discussion of available data. In section 3,
we explain how we estimate modelling errors to invert for flows in a self-consistent



way. In section 4, we describe the kinematics of a QG flow model inside the core, and
derive the expressions to describe its core surface signature. In section 5, we present
the different kinds of constraints used in the inversion. Section 6 is for the presentation
of results, conclusions and discussion are presented in section 7.

2 Inversion of geomagnetic data

2.1 Data

Recent models for the near-Earth magnetic field, such as CHAOS (Olsen et al., 2006)
and POMMES3 (Maus et al., 2006), have been derived using high-precision satellite
data from @rsted, CHAMP and SAC-C satellites in the former case, and only CHAMP
satellite in the latter case. A special emphasis has been given to the fact that a precise
monitoring of geomagnetic field variations during a 6.5 yr and a 5 yr time periods, re-
spectively, might translate into resolution of small time and spatial scales with unprece-
dented accuracy. Although CHAOS SV model is considered reliable up to spherical
harmonic degree 15 (Olsen et al., 2006), a relatively flat tendency in the corresponding
Mauersberger-Lowes spectrum curve can be easily identified above degree 13 (fig. 2
from (Olsen et al., 2006)). This flat tendency is usually associated to the emergence
of the noise level (see e.g. (Maus et al., 2006)) and the reason why it is absent from
the POMME3 SV model is the imposed damping of degrees n > 14. Finally, we note
that presently available main field models derived from satellite data significantly un-
derfit the field variations as it has just been shown for the CHAOS model by Olsen &
Mandea (2007) (see their Figure 3). As to the main core field, it is well-known that,
while dominating at long wavelengths, it is masked by the crustal field above spherical
harmonic degree 14 (e.g., (Langel & Estes, 1982)). Global crustal magnetic field mod-
els computed from satellite magnetic measurements rely on data subtracted from an
internal field model up to degree 14 or 15 (Maus et al., 2006), and will inevitably also
include the short length scales of the core field. Accordingly, and at the present stage,
they can’t be used to extract the crustal field from the total geomagnetic field data.

In our study we use CHAOS as MF and SV models, both truncated to degree 13,
and concentrate on the equally spaced epochs 2001.0,2002.5 and 2004.0, avoiding the
edges of the model time interval, where spurious effects from using cubic B-splines can
show up. We also consider SV models from POMMES3 as alternative realizations to
CHAOS SV models for corresponding epochs. We then use as a conservative estimate
of the SV error the differences between CHAOS and POMME3 which we subsequently
refer to as the “pessimistic” SV uncertainties. As another possible estimate of the SV
error, though probably too optimistic, we use the noise level of 0.02 nT?/yr? appearing
in the SV spectrum for CHAOQOS, at the model middle epoch 2002.5 (Olsen et al., 2006),
hereinafter referred to as the “optimistic” SV uncertainties.

2.2 The regularized least squares approach

The formalism and notation is the same as in Pais et al. (2004) and is rather standard
in conventional flow inversion spectral methods (see Whaler & Davis (1997) for a re-



view). The Helmholtz representation of the tangential velocity uy in terms of poloidal
S(0, ¢) and toroidal 7 (6, ¢) components is:

ug(0,9) =rVugS —r. t AVaT ) (1)
where 7 is the core radius, (7, 0, ¢) are spherical angular coordinates and Vi = V —
rd/0r is the horizontal gradient operator on a spherical surface. We use (s)"¢, s7%)

and (¢7¢, ¢ %) for the degree n, order m poloidal and toroidal spherical harmonic
coefficients of the flow under the Schmidt semi-normalization of the associated Leg-
endre functions. Using the same normalization, the main magnetic field B and its SV
are described in terms of the spherical harmonic coefficients (g,*, h]"*) and (g,", hzl ,
respectively.

Truncating the main field and the SV at n = L and n = L,, respectively, and the
flow at n = L, and substituting into the frozen-flux radial induction equation at the
core surface,

1o}
OB = -Vi-(unB) @

gives the linear equation
Ax=y, 3

where y is the vector of the (g;, h?) SV Gauss coefficients, x is the vector of the
) and s™°) flow coefficients, and A is the interaction matrix whose elements
account for the importance of each elementary flow in generating each coefficient of
the SV.

The method used in this study relies on the Regularized Least Squares (RLS) crite-

rion, where an estimate X is sought that minimizes the objective function
O(x) = (Ax—y)  Cy' (Ax—y) + > Ax"Ci'x . (4)

In the expression above, the first term on the right is a least squares discrepancy
between data and model estimation, normalized by the covariance matrix for the sec-
ular variation, C,,. The terms xTCi_lx are the regularization norms and )\; are the
corresponding penalization parameters. This method is suitable to accommodate the a
priori on the core flow that are discussed in section 5.

3 Taking into account under-parameterization of the
MF and of the flow

3.1 Effect of MF small scales

There is no point in trying to achieve a very small misfit M = \/ (Ax —y)" (Ax—y)
when inverting for CMB flows, since it is well known that i) errors in SV coefficients
due to observational and modelling limitations (e.g. Pais & Hulot (2000)); ii) under-
parameterization of the MF and of the inverted flows related to the use of truncated



series (Hulot et al., 1992; Celaya & Wahr, 1996; Rau et al., 2000; Eymin & Hulot,
2005); iii) inability of the model to treat the effects of diffusion (Holme & Olsen,
2000), are to be expected. Nevertheless, it is possible to estimate the effects due to
each one of these unavoidable error sources, and simply accept that the inverted flow
solutions can explain the observed SV only up to the uncertainty level of the estimated
errors. This amounts to tuning the penalizing parameters \; in (4) in such a a way that

N, &)

~ \/ (Ax-y)" Cy' (Ax —y)
X = ~1
X is the normalized weighted misfit, IV, is the number of spherical harmonic coeffi-
cients used to describe the SV and Cy, is the covariance matrix, properly modified to a
form which more accurately accounts for all error sources and in particular unsolved-
for parameters.

Though this has been the usual approach when dealing with SV errors (item 1), see
e.g. Pais & Hulot (2000), it is not usually done for the other two error sources in CMB
flow computations. In this study, we focus on error source ii) and follow Holme &
Olsen (2006) in quantifying error source iii).

Hulot et al. (1992) estimated the contribution of high degree terms of the MF and
of the flow to the observed large scales of SV, in the frozen-flux approximation. Crit-
ical to their study are the assumptions made on the statistical properties of the flow,
which require that the spectrum of the flow decays with n~2. Celaya & Wahr (1996)
considered the problem of spatial but also temporal under-parameterization of the flow
in frozen-flux core-surface flow inversions. They tested synthetic flows with differ-
ent energy spectra and different time variations, to finally conclude that only if the
spectra fall off as n~2 or faster, and the steady-motion constraint is relaxed, can under-
parameterization effects (aliasing) be neglected. Whether these conditions are satisfied
or not by CMB real flows is, of course, a completely different issue. Rau et al. (2000)
and recently Amit et al. (2007), could test different inversion assumptions using core
flows taken from self-consistent 3-D dynamos calculated for high values of the Ekman
number (compared to what is presently achievable) and producing dipole-dominated
fields. They identified as a main problem that, in case the numerical model core flow
contains substantial energy at intermediate scales, the resolution below degree 14 of
the magnetic field would produce serious artifacts of the computed flows. These arti-
facts would be seen even at long flow wavelengths. Eymin & Hulot (2005) estimated
the SV induced by unresolved small-scale flows interacting with both the known and
the unknown scales of the MF and by large-scale flows interacting with the unknown
small-scale magnetic field, which they called non-modelled secular variation. They
tested different a priori extrapolations of the flow spectra and used a reasonable extrap-
olation for the MF spectra. They also identified as the main source of non-modelled
secular variation, the lack of knowledge of the small scales of the MF (components
above degree 14).

The MF spectrum at a certain distance 7 from the Earth’s center, in a region where
the field is irrotational, is given by R(n) = (n+1)(a/r)** > " _ [(gm)? + (h1")?],
where a is the Earth’s reference radius, taken as 6371.2 km. Following Langel & Estes
(1982) and Eymin & Hulot (2005), we use as a model for the non-dipole observational



MF spectrum at the Earth’s surface the simple formula

I\ 2n+4
R*(n) = R (r—) , ©)

a

corresponding to a straight line in a semilogarithmic graph, with Rg in nT?/yr? and r’
in km (see Voorhies et al. (2002) for a somewhat more complex core-source magnetic
spectrum). We derive the two parameters (R°, ') from all the MF coefficients from
n = 2ton = 13, by using a least square procedure, for epochs 2001.0, 2002.5 and
2004.0. The values (14 x 10%,3.39 x 10%) apply for the whole time interval. The
extrapolation of the MF spectrum to degree Ly = 30 assumes that model R*(n) de-
scribing the behaviour of the MF that can be known, remains valid for degrees larger
than 13. We adopt an isotropic statistical model for the non-dipole field, where the
set {g, h"} of non-dipole coefficients are treated as independent Gaussian centered
variables (e.g. Eymin & Hulot (2005)). We thus use a zero mean Gaussian random

generator, with the variance o2 associated to each degree n > 13 coefficient given by

o2 = R*(n)
" (n+1)(2n+1)

With this statistical model for the small scale magnetic field (BS), we can gauge
the SV produced by BS interacting with a core surface flow model, as done by Eymin
& Hulot (2005). In all computations, we use truncation of flow scalar series at the
maximum degree, L, = 26, that can be constrained (even if only slightly) by the first
13 degrees of the MF and of the SV, on account of the triangle rule applying for the in-
teraction integrals used to compute the elements of matrix A (e.g. Hulot et al. (1992)).
Figures 1a) and 1b) refer to a tangentially geostrophic flow, X;, computed in a standard
way (e.g. Pais et al. (2004)) for 2001.0, using as data only the first 8 degrees of CHAOS
SV model (Figure 1a, solid line). The variance attributed to these SV coefficients con-
forms to the ‘pessimistic’ perspective (Figure 1a, circle-dashed line) and the standard
strong regularization of Bloxham (1988) was used, in order to ease the comparison
with other studies. Only the large scale and known magnetic field (BL) contributes to
the elements of the interaction matrix A. The choice of the attenuation parameter A
(the Lagrangian multiplier applied to the regularization norm, see eq. (4)) was deter-
mined by x = 1.0. As we can see in Figure 1b), where the mean energy per degree of
poloidal (grey diamonds) and toroidal (black circles) coefficients is represented, only
the first 10 or 11 degrees of the inverted flow are constrained by the SV coefficients, the
knee in the spectrum showing the degree above which the solution is constrained by
the regularization alone. Figure 1a) shows that the misfit errors (star-dashed line) are in
accordance with the precision attributed to the data. But Figure 1a) also shows that the
SV produced by this flow interacting with BS (dot-dashed line) is much a more impor-
tant signal. The situation is even more critical if we compute a flow that explains the
SV model up to degree 13, attributing the same ‘pessimistic’ uncertainty to the CHAOS
model coefficients. Then, as shown in Figure 1d), smaller flow scales are required, up
to about degree 16, and only for higher degrees does regularization effects prevail. By
advecting BS, such flow can produce a SV signal much higher than the uncertainty
attributed to the model coefficients. These results unveil an internal inconsistency that
we propose to eliminate.



3.2 Iterative estimation of the modelling error

Using two different sets of damping parameters \; (see eq. 4), we compute two differ-
ent flow solutions, 1) and 2), truncated at the same degree, that both account well for
the observed SV. These are 1) flow X;, obtained using the known MF up to degree 13
and 2) flow X5, obtained using the observed MF up to degree 13 and an extrapolated
BS from degree 14 to degree 30. We use the two solutions 1) and 2) to iteratively
calculate x;, as we explain in the following (see also the chart displayed in Figure 2).
We start with the covariance matrix Cy(o) , defined with diagonal elements given by

an estimation of SV observational errors. Let y§0> = A f<§°> be the SV induced by

flow 1) advecting the MF up to degree 13 and ygo) = A, f{éo) be the SV induced by
flow 2) advecting the known MF but also the extrapolated smaller scales up to degree
30. The secular variation recovered from the two flows are similar, y§0> ~ yéo), within
the uncertainty expressed by the covariance matrix Cy(o). Let us now compute the
SV induced by advection of the known part of the MF by )A(go) ,ie., y;(o) = A, 5{;0)'
At this point, we have a guess of how different from A, )A(go) can be the SV signal re-
sulting from interaction of the flow with the (known) large scale MF, when our model

incorporates more information on the MF small scales. The difference

v\ — g (7

gives us an estimate of the error on SV due to our ignorance of the small MF scales
(BS). We fit a straight line to the mean difference per degree, and use this as an esti-
mate of the modelling errors in SV due to under-parameterization of the MF, assumed
isotropic. We compare these modelling errors with the corresponding diagonal ele-

ments of C§,0) , and construct a modified Cy(l) with the highest of corresponding er-

rors. Note that we use the same covariance matrix Cy(l) to calculate the flows fcgl)

and f{él) so that the calculated modelling error obtained from the difference between
the recovered secular variation signals y1(") and y»(*) would be zero for vanishing

small scale magnetic field. The new covariance matrix is used in the next iteration,

and all the process repeated, until C§,7' ) does not change from one iteration to the other.
At this stage, say iteration ¢ = k, the computation has converged for flow solutions
fcgk) and ;zgk), which are both consistent with the SV errors represented by Cg,k). The
reasoning we rely on assumes that the essential features of small MF scales can be
assessed with the MF truncated at degree 30.

In Figures 3 and 4, we show how this procedure modifies the flow solutions previ-
ously shown in Figure 1. First, in Figure 3, we show that the prediction from converged
flows 1) and 2) are close to each other, but at a distance to the CHAOS model clearly
higher then the initial error. The difference between the signal produced by flow 1 and
flow 2 advecting BL,is A ;%X — A ;X9, very similar to the signal due to flow 2 advecting
BS, computed from (A2 — A)Xs. Either one can be used to estimate the modelling
error, that is also shown. In Figure 4, we show how the inconsistency appearing in
Figure 1 was corrected. Small flow scales were iteratively constrained to produce a
lower large scale SV signal. From comparison of the spectra obtained before and after
iterative estimation of the modelling error (continuous lines and circles/diamonds, re-
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spectively, in Figures 4b) and 4d)), we can describe the effect of this procedure on the
final flow as a small shift to lower degrees of the regularization effect, while the spectra
are slightly reshaped. Now, the misfit obtained with the converged flow 1 is consistent
with the modelling error used as an estimation for the distance of prediction to data.

Two important results can be outlined. Firstly, the slope changes in the spectra
(see Figures 4b) and 4d)) mark the degree up to which the flow model coefficients
are constrained by the data. It stands out that SV model coefficients between degrees 8
and 13 require more small scales than below degree 8. Secondly, the iterative procedure
deteriorates significantly the misfit to the SV model. This is the price to pay to compute
flows in a model space limited by our actual knowledge of the MF (flows 1), which are
nevertheless consistent with flows computed in a larger, reasonably extrapolated, model
space (flows 2).

3.3 Effect of regularization and initial errors on the converged flow

To further illustrate the method using standard regularizations, we consider the compu-
tation of tangentially geostrophic flows for 2001.0 when minimizing the kinetic energy
of the surface flow (weak regularization) or the second derivatives of the surface flow
(strong regularization) (see e.g. Pais et al. (2004)). In this case, a single A value is
to be considered for each inversion 1) and 2), which is chosen to guarantee that the
converged X; and X3 give a x value of 1.0. The evolution, during the iterative process,
of the straight line fitted to the mean modelling SV error per degree, is represented

in Figure 5. The black circles correspond to the initial errors in the diagonal of Cg,o),

(1)
y

the dashed line to the first iteration errors in the diagonal of Cy’ and the solid line to

the converged errors in the last iteration matrix Cg,k). In Figure 5, we also show the
effect of regularization and of the initial errors specified for each SV harmonic degree:
while the left column refers to results obtained when using the strong regularization,
the right column shows results when using the weak regularization; the first line is for
computations starting from ‘pessimistic’ and the second line from ‘optimistic’ initial
SV error estimations. As we can tell from Figure 5, small scale flows advecting BS
do contribute significantly to large scale secular variation, thus increasing the intercept
of the final modelling error straight line (solid black lines). As might be expected, the
weak regularization amplifies this effect by allowing smaller flow scales to appear. But
using very small values for the initial specified SV errors has an analogous, though
more tenuous, effect. It suggests that trying to explain the SV data very closely from
the beginning requires an important contribution from small flow scales, and that these
are kept in all the following iterations.

Following Holme & Olsen (2006), we also represent in Figure 5 the estimate of dif-
fusion effects based on the free-decay modes of the conducting core, assumed spherical
and surrounded by an insulating mantle (e.g. Roberts & Gubbins (1987)). This dif-
fusion contribution to SV modelling errors depends on the degree n and also on the
decay-mode order, [, according to:

.m,l | N m
Agdiffn = _(kiz)Qr_an ®)
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where 7 = 5 x 10° Sm~! is the core magnetic diffusivity and k!, is the I-th zero of
the spherical Bessel function of order n. Supposing, as suggested by Holme & Olsen
(2006), similar values for the radial and lateral length scales of the poloidal component
of the MF, we represent in Figure 5 the estimate of diffusive effects based onthe | = n
decay-modes.

4 Quasi-geostrophic modelling

In this section we outline the quasi-geostrophic approach on which we rely. It amounts
to stating that the vorticity of the flow is predominantly axial and independent of the
height z above the equatorial plane. Discussion of quasi-geostrophic modelling in deep
spherical shells and reports of numerical simulations using this approximation - outside
the tangent cylinder - can be found in e.g. Busse (1970), Cardin & Olson (1994),
Aubert et al. (2003), Gillet & Jones (2006), Gillet et al. (2007).

The model considered for the Earth’s core is that of a spherical shell container,
rotating at angular velocity Q = Q2. A cylindrical polar system of coordinates (s, ¢, 2)
with the rotation axis as the polar axis is convenient to study rotation effects, where s is
the distance to the axis, ¢ is the azimuthal angle and z is the height above the equatorial
plane. The outer boundary corresponds to the core mantle interface, with shape defined
by z = H.(s) and z = —H_(s) for the top and bottom boundary functions, where
H.(s) = \/r? — s2. In the same way, the inner boundary corresponds to the inner core
surface, with shape defined by z = +H;(s), where H;(s) = \/r? — s2 and r; is the
inner core radius. At the core surface, the rim of the TC is defined by the polar angle
0 = 0y, such that r; /r. = sin 6.

The two vectors normal to the top and the bottom external boundaries of the liquid
core are, respectively,
dH.(s)

ds

We note 7.(s) the slope |dH.(s)/ds| = s/ H. of the outer boundary. A related param-
eter, widely used because of its equivalence to the latitudinal variation of the Coriolis
parameter that enters the 3-plane equations is

Plepg, =2 — 5 . C)]

_ e
=

B(s) (10)

Likewise, we note 7);(s) the slope |dH;(s)/ds| = s/H; of the inner core boundary.

4.1 The classical expansion of the solution in powers of 7).

Let us first consider the region outside the tangent cylinder. We follow the discussion
by Busse (1970) of instabilities in systems of slightly changing depths. Consider an
expansion in powers of 7).(s) for the velocity field. At the lowest order, the flow is
assumed to be geostrophic,

2007 x u’ = —-vp® , (11)
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where p is the fluid density, and obeys the Taylor-Proudman constraint (z - V) u® = 0.
The solution (11) is completed by an expression for ug,

u =0, (12)

which corresponds to the no-penetration condition at the lowest order 7.(s) = 0, ie.,
for constant depth. The solution of eq. (11) can be written, in cylindrical coordinates

(s, 9, 2):

; u(s,0) = § 2552
u’(s,6) = 2 A VU(s,0) & { w(5,) — _2V(e) (13)

where U = —p°/(2p0) is the streamfunction describing the Oth-order flow. Taking
into account the variation of H. with s, the solution (11) does not satisfy the no-
penetration condition u’ - # = 0 at the boundaries. As a result, the term u! has to
be added to the boundary condition for the flow at the next order.

The momentum equation, at the next order, gives us additional information on u’:

0w

ot
Equation (14), where the viscous term is neglected, reflects our choice to emphasize a
possible effect of the magnetic force on the core flow. We focus our attention on this
term, and use (14) as a guide to derive regularization matrices for the flow inversion,
because i) magnetic energy probably exceeds kinetic energy in the Earth’s core ii) direct
observations of the magnetic field changes point at the work of magnetic forces. Note
that the importance of the buoyancy force, which is not included above, on the SV
timescale is a very open question. Using the continuity equation V - u' = 0, equation
(14) can be readily transformed into an equation for the axial vorticity, where u! enters
only through Oul /9z. Assuming that this latter term is z-independent, it can be derived
from the boundary condition on u'. Using (9), the no-penetration boundary condition
yields:

2007z x u' + Vpl = —p —p’ vVl +jxB . (14)

u-tlig, =0S ullin, = Fneul(s, o). (15)
Finally, we obtain

z sz

ui(s,qﬁ,z) = = u8(87¢) ﬁ = H2 Ug

(s, ) . (16)

From (14), (16) and (10), the vorticity equation averaged over the axial direction
reduces to:
d¢

2 419840 =
a2

1 1
p 2H,

H.
/ z-VAGAB) dz (17
—H,.

where ( is the axial vorticity of the flow:
10 0 1 92
C=—-ViU(s,o,t), with V2 ( ) + (18)

B 505 \"0s) T 2042
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The terms omitted assuming 7. < 1 have been shown to be not very important
even when 7). is O(1) in many instances (Jones , 2007). A necessary condition for the
z-independent axial vorticity to dominate over other vorticity terms is

Ne K % (19)
where [ is a length scale in the equatorial plane. Finally, there is also a contribution to
the stretching of vertical fluid lines, which is due to the pumping induced by mass con-
servation in the Ekman layer just below the CMB. This effect is negligible compared
to the effect of impenetrable boundaries and it won’t be considered here (see e.g. Scha-
effer & Cardin (2005) for details or Olson et al. (2002) for a discussion in the context
of core flow calculations).

4.2 The solution inside the tangent cylinder

It is well known (Heimpel et al., 2005) that the tangent cylinder corresponds to an
important discontinuity for turbulent flows in rapidly rotating spherical shells. Some
numerical studies show that convection may be organized differently respectively in-
side and outside the tangent cylinder (e.g., Sreenivasan & Jones (2006)). “Thermal”
winds, possibly driven by composition gradients and modified by the magnetic field,
may prevail within the tangent cylinder. On the other hand, it has been shown in a
study of the motions spawned by an impulse of the solid inner core, that propagation of
geostrophic shear inside the TC is also possible for Earth-like values of the parameter
A (see the Introduction) and of the Lundquist number, measuring magnetic dissipation
(Jault, 2007).

Here, we consider, for want of anything better, that the main force balance there
remains the same as outside the TC, and accordingly z-invariance of the equatorial
flow in each hemisphere, separately, can still be foreseen.

Inside the tangent cylinder, fluid columns extend from the inner core to the outer
core boundaries and must adjust to the two impenetrable surfaces. The two boundary
conditions u - t|,—,, = 0 and u - ¢|,—,, = 0 give for the u} component inside the TC:

ot |:z:|: (H1+Hc):| — s [Z:F (H7+Hc)] Oi(s,(ﬁ) 5 (20)

+
’U,i (37 ¢7 Z) =i J7i o H Ug

where the plus and minus signs as superscripts in u. and u? refer to the northern and
southern hemispheres, respectively. ud* = s~1OW*(s,$)/0¢ is the northern and

S
southern geostrophic radial component inside the TC. For a core interior point inside
this region, both the external and the internal liquid core solid boundaries contribute
to determine the axial flow and, near the TC, it’s the inner core slope which is crucial.

Note that equation (17) remains valid with § defined as:

B(s) = - 1)



4.3 Application to the calculation of the flows inside the fluid outer
core responsible for the observed secular variation

The neat expansion in powers of 7.(s), 7;(s), outlined above, has to be modified in
order to be coupled with equation (2). Indeed, this equation has been written using
u -t = 0, which is not valid at the lowest order. Thus, it is necessary to add to the
lowest order flow u® some part of the first order flow u'.
The minimal modification consists in adding to u® the term ! z, with u! given by

the expressions (16) and (20):
uge = —2AVY(s,¢) +ul(s,¢,2)2 . (22)

Outside the TC, u! is of the order 7. and the whole flow depends on a single scalar
streamfunction W(s, ¢). Inside the TC, u! is of the order 7; (the main slope effect)
and two scalar functions U+ (s, ¢) and ¥~ (s, ¢) are required due to the decoupling of
northern and southern hemispheres.

From equations (13) and (16), putting s = r. sinf, z = +H, and taking into
account that 9/9s|,, = (r. cos§)~10/00 we can write for the trace of QG columns at
the core surface, just below the Ekman layer and outside the TC:

1 0

— 04 1z . ) _— @@ @@

u9(97¢) - (’LLSS-I-’LLZZ) 0 e sin 6 cos 6 8¢\II(97¢)
1 0

— 0 _ _

us(6,9) =g = re cosf 89@(9’@ ’
which in condensed vectorial form yields
1
ug = — f‘/\vH\I’(Q,¢) . (23)
cos 6

In the same way, from (13) with U instead of ¥ and from (20), the flow at the top of
the core and inside the TC is:

uf = — FAVETE(®D, p) . (24)

cosf
The non-penetration condition on the velocity imposes that, at the intersection of
the inner core and outer core boundaries with the Earth’s equatorial plane, u%(s =

r;) = u2(s = r.) = 0. From (13) this gives:

V(s =r;,¢) = const. ,
V(s =7, ¢) = const. . (25)

It is readily apparent that the definition (22) of ugg implies
Vi - (uge,m cosf) =0, (26)

at the core surface. This condition is well-known as describing a core surface flow
which is compatible with a force balance dominated by the horizontal components of
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the Coriolis and pressure gradient forces as, for instance, the thermal wind balance.
Such a flow, known as tangentially geostrophic, is also described in terms of a stream-
function linearly related to the pressure, just as in (23). Here, the above condition is
much more restrictive since the underlying streamfunction ¥ is defined in the whole
core and not only at the core surface. As a result of the z-invariance of ¥, uy must also
be equatorially symmetric outside the TC. Acknowledging that the flow ugq verifies
at the core surface a condition widely used to invert geomagnetic models (tangentially
geostrophic assumption) makes it easy to adapt already existing codes for our present
purposes.

5 Specifying the regularization terms

5.1 Geometrical constraints directly derived from the physical model

The penalizing terms we use are consistent with the underlying dynamics. Accordingly,
purely geometrical constraints typical of quasi-geostrophic vortices led to constrain the
surface flow to be equatorially symmetric, not to cross the surface trace of the TC and
to be tangentially geostrophic.

5.1.1 Tangential geostrophy

As discussed above, tangential geostrophy of the surface QG flow results from adopting
the simplest modification of the leading order flow in order to meet the impermeabil-
ity condition at the CMB and at the ICB. Yet, other choices could be made. For their
definition of “columnar flows” Amit & Olson (2004) chose instead the first-order modi-
fication to the geostrophic flow u so that it is divergence-free. The difference between
the two approaches is negligible if .{/H. < 1, where [ is the length scale of the
flow in the equatorial plan (see Appendix A for a comparison between divergence-free
and non divergence-free QG flows). Both Amit & Olson (2004) columnar flow and
the quasi-geostrophy approaches are less well grounded for the largest scales of the
core flow. It is thus fortunate that the QG approach blends at the core surface with the
tangential geostrophy approach. Furthermore Gubbins (1991) and Jackson (1996) have
shown that the radial vorticity equation at the core surface yields, under quite general
hypotheses, a finite set of constraints that are obeyed by tangentially geostrophic flows.

In this study, the tangential geostrophy constraint is imposed as in Pais et al. (2004),
by penalizing the integral [, , [V - (ucos 0)]> dS that can be written as x” Rgx.
The penalizing factor that multiplies this term is made sufficiently high to guarantee
that this condition is satisfied in practice all over the CMB.

5.1.2 Equatorial symmetry outside the rim of the tangent cylinder

Mirror symmetry of the core surface flow for reflection about the equatorial plane im-
plies

ug(0) = ug(m —0)
ue(G) = —UQ(W — 9) s (27)
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i.e., the azimuthal component is symmetric, whereas the latitudinal component is anti-
symmetric. If equatorial symmetry was to be imposed over the whole CMB, the above
conditions would require selection of only the m + n even poloidal coefficients and
only the m + n odd toroidal coefficients. However, the special treatment of the volume
inside TC leads to impose it only for 8 > 6y, where 6 is the colatitude of the rim of
the tangent cylinder at the core surface. We then consider a grid of Ng,.;q values of
0o < 0 < /2, where the following system of 2(2L,, + 1) equations is to be satisfied:

ap?
2 n o1 1) O,CZ
an—de [+ (=) £ =0

Z —— P [1— (—1)"Tm] sl £ Z —ddpgm [+ (=1)"Fm] ¢ =0, m=1,..,L,

sin 0

> i [1— (1)t syl £33 T pm [T+ (—1)"m] e =0, m=1,..,L,.
(28)

According to these equations, both m + n odd poloidal and m + n even toroidal coef-
ficients may be present. Altogether, this gives a system of 2N,.;4(2L, + 1) equations
which, in matrix form, yields

Sx=0

where Sis a 2Ny;q(2L, + 1) X 2L,(L, + 2) matrix and x the vector of 2L, (L, + 2)
poloidal and toroidal coefficients of the flow. The related quadratic form in x that is
penalized in the inversion is x” Rgx, where Rg = S”'S.

3

5.1.3 Zero latitudinal flow on the rim of the tangent cylinder

As already pointed out, the impermeability condition on the inner core surface requir-
ing that ug = 0 at s = r;, implies that uyg = 0 at the CMB, on the rim of the TC,
ie.,

u9(90a ¢) =0
uo(r —00,0) =0 . 29)

This yields the following system of 2L, + 1 equations to be verified for § = 6, and
0=m— 90,

1 dPO
— 82,0 =0
m 2 do "
de m
n_ .m,c(s) § pm m,s(c) _ =1,....L
n do on n sinf ™ tn 0 m ) HE ’ (30)
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and that can be written, in matrix form,
Tx=0

The first relation in (30) is trivially satisfied by tangentially geostrophic flows. T is a
2(2L, +1) x 2L, (L, + 2) matrix. The quadratic form to be penalized in the inversion
is xTRrx, where Ry = TTT.

5.2 Constraints used as proxies of a comprehensive dynamical model

Having simplified the vorticity equation into the equation (17) for axial vorticity, it
should eventually be possible to estimate core flows that both account for SV observa-
tions and evolve in response to magnetic and rotation forces. In the meantime, we con-
sider this study as an intermediate step. Many authors (Galperin et al., 2001; Danilov
& Gurarie, 2002) have already considered quasi-geostrophic turbulence without the
presence of a magnetic field. They have observed that because of the 5-term (second
term on the LHS of equation (17)), a zonation effect occurs whereby latitudinal flows
are penalized and large scale motions are predominantly in the ¢-direction. We mimic
this effect in our inversion by penalizing radial motions u, multiplied by the weight
(. We have not much information on magnetic forces acting on the fluid. Yet, we do
know that they are the counterpart of induction of magnetic field. We can thus assume
that magnetic forces tend to oppose motions able to produce magnetic fields. We ten-
tatively account for this effect by penalizing horizontal gradients in the QG velocity
field. Finally, we also minimize the kinetic energy integrated in the fluid outer core.
The following three regularization terms can be written as quadratic forms in the CMB
flow coefficients, as explained in Appendix B.

5.2.1 Minimization of the S-effect

The term [Sus enters the equation for axial vorticity defined in the equatorial plane. We
penalize the surface integral of |3us|? over the equatorial section. From equations (13),
(10) and (21) this amounts to penalize the following integral, on the CMB,

2

27 6o 9
R cosf|sinfdf d
[ Lo (amme).,,, eosmowd

27 2
— U cos 6| sin 0 db do , 31
/ /00 (H2 o¢ )CMB | |

where the factor cosf is for the projection of the surface element on the equatorial
section and no distinction is made between the core surface streamfunction inside and
outside the rim of the TC, as one same set of spherical harmonic coefficients is used
to characterize it. Using Appendix B, it can be readily noticed that penalizing Sus
inside the core amounts to penalize certain relations between the poloidal coefficients
that characterize the surface flow. We have computed the elements of the matrix Rg
that make possible to write (31) as a quadratic form on x, xT Rgx.
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5.2.2 Minimization of the rate of strain tensor elements

Magnetic field induction yields the time changes of magnetic energy, fv B;Bje;; dV,
where e;; = 1/2 (0u,/0x; + Ou;/0x;) is the rate of strain tensor in Cartesian coordi-
nates x;, (¢ = 1,2, 3) (see e.g. Fearn et al. (1988)). For QG flows, the flow deformation
is mainly two-dimensional, in the plane perpendicular to the rotation axis.

The plane symmetric tensor e has only two independent elements, since the non-
divergence of the equatorial leading order flow carries the further condition that its
trace must be zero. Then, in cylindrical coordinates,

1 < 10°0 10V 82\I!>

€5¢:€¢S:§

- + JR—
s2 002 s0s  0s?
1 0¥ n 1 020
e = —€ = ——— _
58 o¢ s2 00 s0s0¢
As none of the terms in (32) is z-dependent, each integration over the equatorial plane
section can transform into an integration over the core surface, as in the preceding sec-
tion, where the contribution of the two, North and South hemispheres, is contemplated.
Using the description of the core surface W in terms of poloidal and zonal toroidal
CMB flow coefficients, as given in eq. (44), we sum the two independent integrals to
derive a new quadratic form in x, xT Rglx.

(32)

5.2.3 Energy minimization

The penalization of the surface kinetic energy density, has been used as a weak reg-
ularization for CMB flow inversions (e.g. Pais et al. (2004)), as one possible way to
regularize the flows while avoiding to restrict too strongly medium to small flow scales.
Here, having a model for the whole core flow, we can derive expressions for the whole
flow kinetic energy density [;, u-udV = [ ( ug) +u® 4+ ul’)dV, where V denotes
the liquid core volume. These three contributions can be expressed in terms of the
streamfunction W at the core surface, according to the following three relations:

2w
/ WO dV =7, / / cosh 9 sinfddde | (33)
sin @ 8(;5 CMB
02 2w ™ b 2
ug dV =1, / / (—\Il> sin @ df d¢ , (34)
/V ¢ o Jo \9 Jeoup
2 2m 0 ~H} (9 \*

1 —_— - S ~3

/Vu dv = / / / [ H2H2 <8¢\I/) | cos 0| sin 6 df d¢
CMB
27 w—0p
—|— / ( ) sin 6 df d¢ . (35)
0o 99 ) cup

Notice that no distinction is made between the three streamfunction ¥, U+ and
WU~ at the core surface, because they are described there in terms of the same set of
spherical harmonic coefficients (see Appendix B). The sum of the previous three terms
is written as XTR;Jlx, and establishes the third quadratic form to be penalized.
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6 Results

The iterative procedure increases by 10 to 15 times (the number of steps needed for
convergence) the time allocated to each flow computation. In addition, the number of
regularizing norms used to tune the flow inversion sets up the dimension of the domain
of parameters (g, Ac, Ag). Because of the high number of computations required, we
did not explore the domain of parameters in a systematic way, as in Pais et al. (2004).
Instead, following a trial and error approach, we have set (\g = 1.0 x 105, A\p =
1.0 x 10°) and we determine two values of the parameter )\, so that the normalized
error y ~ 1.0 for the final converged flows X; and X.

Flows computed using either the ‘pessimistic’ or the ‘optimistic’ initial errors for
the SV model, are characterized in Tables 1 and 2 for epoch 2001.0. In addition to

standard quantities as the core surface RMS (root mean square) flow speed, vg%sl\)/[ g =

1/2 . .\
( /. oy U-udS/ 47rr2) / , we can also compute other physical quantities character-
izing the interior flow. It is the case of the RMS [u, term over the equatorial plane,

Beffect ~ /xTRgx, the RMS volume energy, U%&S ~ /xTRgx, and the RMS
strain tensor elements over the equatorial plane, €cf foct ~ v/xTR.x, which we show

in those tables. Besides, values of v/x7Rgx, v/xTRgx and \/xT Rrx can be used to
appraise how close the geometrical constraints are satisfied by the flow. We obtain, for
all computed flows, values of the order 10~ for the latter three quantities (see section
5.1), in units of km/yr. These values, which serve to quantify the velocity components
violating the geometrical constraints, are much smaller than UE%SA)/I g or v%& g

We note that the RMS velocity is higher at the surface than in the volume. Indeed,
the flow energy density, proportional to u?(s, ¢, z), always increases with 2 from the
equatorial plane to the CMB since u, and u are z-invariant while uﬁ increases, outside
TC, as 22.

To clarify the description and discussion of results, let us set the interval n < 6 as
defining large scales, 6 < n < 13 for intermediate scales and n 2 13 for small scales.

In Figures 6 and 7 we show results characterizing the iterative inversion for epoch
2001.0, using the regularization terms specific of this study. Neither the power spectra
of the SV misfit at the Earth’s surface (Fig. 6), nor charts of global distribution of SV
misfit (not shown) indicate any significant spatially localized features. We do not find
any particular region where equatorial symmetry or zero latitudinal flow on the rim of
the TC are harder to verify. Two cases, when using ‘pessimistic’ or ‘optimistic’ initial
errors, are analyzed. Comparison with Figure 3 shows a somewhat higher modelling
error, due to an overall weaker regularization. Figure 6 further confirms similar values
obtained for the difference between the SV produced by advection of BL by flows 1
and 2, on the one hand, and the SV due to advection of BS by flow 2, on the other hand.
We also show the estimate of diffusive effects based on | = n decay-modes (Holme
& Olsen, 2006). It clearly stands out that the modelling error associated to under-
parameterization of the MF is more important than the magnetic diffusion modelling
error computed in this way. This is globally true over all length scales, and particularly
for the largest ones. We should note, however, that if we treat the dipole separately, as
often done due to its relatively huge size, and consider a decay mode of order greater
than one, its contribution increases to levels of the same order of magnitude as the
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hidden MF error (see also Holme & Olsen (2006)).

Comparing the left and right columns of Figure 6, it stands out that the improve-
ment brought to explanation of intermediate scales of SV by initial small errors, does
deteriorate the fit quality to SV large scales. This is due to smaller flow scales that are
required (see Figure 7), in the interval n ~ 15— 18, which also contribute to large scale
SV by advecting BS. We also show in Figure 7, the curve of mean energy per degree
corresponding to an energy spectrum depending on n 2. Only for degrees above ~ 15,
using ‘pessimistic’ initial errors, or above ~ 18, when using ‘optimistic’ initial er-
rors, do the computed values converge. For those smaller scales, where convergence is
steeper than for a n~2 spectrum, the statistical flow assumptions of Hulot et al. (1992)
leading to their estimate of the SV signal that results from the interaction between BS
and the flow (see section 3.1) apply, but not before.

Figures 8 and 9 show the maps of axial vorticity in an equatorial section for the
three epochs 2001.0, 2002.5, and 2004.0, when using ‘pessimistic’ and ‘optimistic’
initial errors, respectively. An orthographic projection is used, which has the particular
advantage that, if the central point is one of the poles, the corresponding hemisphere
is projected onto the equatorial plane. In case of z-invariance, this 2D representation
gives all the information on the flow. Common to the two sets of charts, is the clus-
tering of vortices around the rim of the TC, especially over the hemisphere west to the
Greenwhich meridian. The ¥ streamfunction maps shown in Figure 10 unambiguously
outline these vortices.

The ¥ maps are useful to describe the largest scales of the flow. The most no-
ticeable feature is a grand westward jet circling round the inner core. It touches the
inner core from around 135°W to 150°E, and moves to larger radii in the Atlantic
hemisphere, in a band 30° away from the equator, from around 90°E to 90°W. The
main lines of this feature have been noticed before, in flows inverted using the spec-
tral method with the toroidal, steady or tangentially geostrophic flow assumptions (see
e.g. Bloxham (1991)). Recently, it has been seen in the relatively fine-scale core sur-
face flows of Holme & Olsen (2006) and also in the time average flow for 1840-1990
obtained by Amit & Olson (2006) using a grid-based finite difference method. The
equatorial symmetry of this flow, imposed in the present work, is not always clear in
previous studies, where often the low latitude jet is more pronounced in the Southern
than in the Northern hemispheres. When an important equatorial symmetry was no-
ticed, this feature has been related to cylindrical rotation about an axis parallel to the
Earth’s rotation axis (e.g. Bloxham (1991)). Also, in some previous studies, the high
latitude jet crosses the rim of the TC and closes into a complete large vortex centered
beneath the Southern Atlantic Ocean (e.g. Amit & Olson (2006)). Here, where cross-
ing over high latitudes is impeded, the large jet closes by encircling the inner core.
Accordingly, the single large jet feature not only incorporates the well-known low lati-
tude westward drift, beneath the Indian and Atlantic oceans, but also a less frequently
reported high latitude westward drift beneath the Bering Sea. The often reported anti-
cyclonic vortex centered beneath North America (e.g. Amit & Olson (2006)) merges
with the also reported anti-cyclonic vortex beneath the Arabian Peninsula (e.g. Blox-
ham (1989)) to give the northern hemisphere counterpart of this large scale feature.
Equatorial symmetry inside the rim of the TC being not imposed, we also recover an-
other known result, namely a polar vortex more conspicuous in the Northern than in the
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Southern hemispheres (e.g. (Olson et al., 1999)), except for epoch 2004.0 (see Figure
(11)). Eventually, it is possible that inverting for separate streamfunctions inside and
outside the TC, will better resolve the asymmetry inside TC.

Smaller scale vortices, of diameter ~700km (m ~ 6), cluster around the rim of
TC. Particularly robust to the change in SV model error criteria (compare Figures 8
and 9), are the cyclonic features between 135 and 225°E, and the two anti-cyclonic
vortices centered at ~ 45°W and ~ 120°W. Between the two of them, a cyclonic vortex
centered at ~ 90°W seems also to be present. One other cyclonic/anti-cyclonic pair can
be identified between 90°E and 120°E, in all charts except for 2004.0. The localization
of these main features being very stable all over the 3-years time span considered,
the associated vorticity intensity does apparently change, though we can not say how
robust is this result.

We have wondered how crucial is each constraint used as proxy of a dynamical
effect. We have thus calculated flows using only one constraint (A3 = A = 0 or
Ag = Ag = 0or A\c = Ag = 0) at a time. We have found that the large jet structure
is present in these three extreme cases. Well defined vortices clustered around the TC
appear, centered at similar positions, when minimizing either the Sus term - which
promotes vortices more elongated along parallels - or the strain tensor elements. From
a closer look at these results we can advance that the flows we present in this study are
dominantly constrained by the minimization of the rate of strain tensor elements. The
other two regularizations do, nonetheless, introduce additional physically motivated
constraints on the flow coefficients, which contribute to decrease the number of free
parameters in the inversion.

Of particular geophysical interest, is the time variation of the zonal component of
our computed flows, since it can be related to geodetic observations of the Earth’s rota-
tion. The zonal component of the QG flow consists in the cylindrical annuli responsible
for changes in the axial angular momentum of the liquid core. We can then compute

L.=p / sug(0) dV (36)
14

(Jault et al, 1988; Jackson et al, 1993) and compare L. (t), from our computed flows,
with (I, + I,,) (27 /TZ)ALOD(t) from geodetic observations, where I.. and I, are
the moments of inertia of the core and mantle, respectively, and T} is the reference
value for the length-of-day (LOD). This is done in Figure 12, where, as observations,
we use annual means of LOD, computed from the IERS CO4 series of daily values. No
matter the initial SV error used, the change of tendency at the middle epoch is always
recovered.

It is customary to simplify the computation of (36) by neglecting the inner core
volume and approximating the fluid core to a spherical liquid-filled cavity. This is
of course supported, on the basis of the very small moment of inertia of the centered
liquid sphere having the inner core radius. Considering, separately, the fluid region
inside TC, Jackson (1997) further confirmed that its contribution to the total angular
momentum is much smaller than that of the region outside the TC. This result still
applies for our computed flows. However, we also find that, from one epoch to the
other, the amount of angular momentum variation of the inside region can be of the
same order of magnitude as that of the outside region. We also computed L, (s") =
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p fos , sug, dV , the axial angular momentum contribution of the liquid core with s < s’.
We then confirm the minor contribution of the region inside the TC (s < ;). However,
showing the curve T3 /(27 (1. + I,,,)] dL.(6)/d0 (i.e. the core contribution, per degree
of latitude, to LOD variation) in Figure 13, we make apparent that the core angular
momentum is concentrated in two latitudinal bands, the first one between 20° and 30°
colatitude, and the second one at almost 60° colatitude. Crossing this information with
the streamfunction charts, we realize that the axial angular momentum of the core is
mainly carried by the large jet feature identified above.

7 Discussion and Conclusions

Several interesting conclusions can be drawn from the flow inversions described above.
First, we find that intermediate scales (n ~ 6 — 13) of the SV, made known by recent
magnetic satellite missions, have a significant contribution from advection of the mag-
netic field by intermediate to small scale flows. These results show that the limitation
brought by using truncated series at a relatively low degree, say 13, of the flow scalar
potentials, which would not be a critical issue if the flow was large-scale, with an en-
ergy spectrum converging below the truncation spherical harmonic degree, is presently
hampering the identification of flows responsible for the finest SV structures recently
resolved. In fact, no strong physical argument exists to support a large scale assumption
on the decade timescale, much on the contrary.

Second, we are able to estimate part of the modelling error that results from the
ignorance of the core magnetic field with harmonic degree n > 14. We concur with
Eymin & Hulot (2005) in noting that, as it happens, this modelling error is much more
important than the observational errors, for SV low harmonic degrees. As a result, it is
much more critical to have an accurate knowledge of the observational errors for scales
of the SV corresponding to n 2> 8 - as exemplified by a comparison between calcula-
tions (Figures 8 and 9) made with respectively ‘pessimistic’ and ‘optimistic’ estimates
for the errors - than for the large scales. We use our estimate of the modelling error
to correct iteratively for the covariance matrix Cy , and to invert for more consistent
flows. Of course, we can anticipate that further increasing the space resolution of SV,
will worsen even more the fit to large scale SV. Eventually, the paradigm of a large
scale SV due to advection of the field by a large scale flow may have to be revised.

Third, we suggest new geometrical constraints on the flow. We find that it is possi-
ble to account for the secular variation models derived from satellites data with motions
symmetrical with respect to the equator outside the tangent cylinder that can be con-
tinued inside the core as quasi-geostrophic motions. We are thus able to present maps
of axial vorticity in the equatorial plane. We resolve vortices of azimuthal harmonic
degree m ~ 6 and diameter ~ 700 km just outside TC.

Finally, we recover the often commented asymmetry between the Atlantic and Pa-
cific Hemispheres that is characteristic of secular variation models for recent epochs.
Strong anticyclones in the Atlantic hemisphere contrast with weak cyclones in the Pa-
cific hemisphere. We notice a westward jet, also asymmetric, circling around the inner
core, that moves closer to TC in the Pacific hemisphere. Its geometry results from the
constraint that flows cannot cross TC. It carries most of the core angular momentum.
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We find a satisfactory agreement between our estimates for core angular momentum
changes and estimates derived from LOD observations using conservation of the total
Earth angular momentum.

We note that the contribution of the fluid region inside the tangent cylinder to the
total angular momentum is very small, between 4 and 9 percent and 6 and 8 percent
with ‘optimistic’ and ‘pessimistic’ estimates for the SV error, respectively. However,
its contribution to the time changes of core angular momentum is important enough.
Indeed, the related estimate of excess length-of-day due to this fraction alone of the
core is of the order of 10~ s. This observation may point to a role of the solid inner
core in the mechanism responsible for interannual changes in core angular momentum
(see e.g. Mound & Buffett (2003)).

What confidence can we have in these velocity maps? Quasi-geostrophy requires
that the height H.(s) do not vary too rapidly with the distance s to the rotation axis.
Thus, this approximation may not work well near the outer rim of the equatorial section,
which corresponds to the low latitudes at the core surface. This is the very region where
the tests of core flow imaging methods with numerical dynamos conducted by Rau et
al. (2000) and Amit et al. (2007) fail. These authors have attributed the poor recovery
of surface flows there to radial magnetic diffusion. By penalizing Sus, we ensure that
our axial vorticity maps are, at least, consistent with the QG hypothesis on which we
rely. Hopefully, some spurious flows in the equatorial region are also avoided.

The present study can be viewed either as an alternative or as a complement to
recent investigations of core surface flows controlled by lateral variations in the heat
flux at the CMB (Lister, 2004; Amit & Olson, 2006; Aubert et al., 2007). We have
noticed that several small-scale vortices of fluctuating intensity are required to account
for the satellite data. These can hardly be controlled by thermal features standing in
the lower mantle for millions of years. On the other hand, the QG approach is the least
grounded for the largest scales of the flow that cannot be inferred from the z-averaged
axial vorticity alone. Aubert (2005) and Aubert et al. (2007) have recently argued, on
the basis of numerical simulations of dynamos driven either by homogeneous or by
heterogeneous boundary heat flux, that a thermal wind balance holds for steady flows.
At the core surface, thermal winds are tangentially geostrophic. Thus, an interesting
development of the present study is to try to account for the secular variation with core
flows of which the rapidly varying small scale components are QG and the large scale
components are either unconstrained or tangentially geostrophic.

We consider the present work as a step towards a fully dynamical study of core
flows. We have shown that QG flows may account for geomagnetic SV. We can now
contemplate adding to the information provided by SV models the equation (17) that
governs the evolution of QG core flows, applying the geomagnetic data assimilation
method outlined by Fournier et al. (2007) with a more realistic physical model.

Our study relies on a SV model derived from satellite data that resolves much
smaller length scales than the historical models of the magnetic field that were used
in core flow modelling until a few years ago. We are well aware, however, that such
a model remains preliminary and that further improvements can be expected in the
years to come. Models incorporating dynamical constraints like the model presented
here will be required to fully benefit from these efforts in recording and modelling the
Earth’s magnetic field.
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A Divergence-free quasi-geostrophic flows

We search for a velocity field u(s, ¢, z) defined in the fluid volume (spherical shell of
radius r.), obeying the no-penetration boundary coundition and obtained by adding a
small perturbation to a solution of equation (11). The vorticity equation obtained from
the equation (14) with the magnetic term omitted yields:

a 1 _

&’us = O

0

au; =0 (37)
ui = A(s,¢,t)z+ B(s, ¢,t) ,

where A and B are z-independent. We assume that the velocity field is of the form
(37). Then, the impenetrability condition through the boundary r = r. gives

sz
T (38)
r2—s
and, as a result,
/a2 2
s“ 4+ z
U = Ug—————— . (39)
z
After elementary transformations, we can write
s
Vi -u=Vg-u+ —us (40)
z

where V- is the equatorial divergence operator Vg = V — z9/0z. If we further
impose that the flow is incompressible, then

0
VE-u——&uz . (41)
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This gives, on the core surface,

tan @

Te

vH'u(gv(b):Q

us(0,¢) . (42)

The factor 2 in the right-hand side of the above equation results from imposing
the flow to be incompressible, in addition to the initial conditions %us %u(i, = (0 and
%uz uniform in z.

Our approach has been to consider the simplest QG flow that still verifies the non-
penetration condition (see section 4):

u=-zAVUY(s,p) +ul(s,é, 2)z ) (43)

Equation (40) can then be transformed, at the core surface, into the equation (26)
(the tangential geostrophic condition) of section 4. This flow is, nonetheless, not
divergence-free. An alternative to this choice is to further include a component u’ that
garantees that the total flow is incompressible. The tangential geostrophic condition
should then be replaced by the condition

Vi - (ucos?) =0 ,

equivalent to (42). The computation of a surface flow compatible with this condition
on the core surface can be made following a RLS criterion as we do in our study for
tangential geostrophy, but using a different regularization norm. Other constraints used
as proxies of a comprehensive dynamical model - minimization of the 3-effect, of the
rate of strain and of the total energy - have to be modified also. But we don’t expect
significant differences for small scales. As is well known ((Gire & Le Mouél, 1990)),
the toroidal kinetic energy density dominates the poloidal energy density for large n,
with s™ ~ n~=2t™ and the divergence-free flow condition changes this relation only
but by a factor 2 in the right hand side. We can then envisage that, for flows with
length scale [ in directions perpendicular to the rotation axis small enough to satisfy
the condition of validity of quasi-geostrophy 7. !/H. < 1, the distinction between
divergence-free and non divergence-free quasi-geostrophic flows vanishes.

B The expression of U at the core surface
As noticed in section 4, the whole QG columnar flow can be derived from the scalar

streamfunction ¥(s, ¢). This is clearly seen in eq. (13), and can be made explicit in
egs. (16) and (20) by writing

ia

u.lz (S,¢,Z) = HCQ 8—¢\IJ(S,¢)
H;,+H.,) 0
uii (S,¢,Z) = %%\I’i(&qs)

Being z-independent, ¥ can be expressed in terms of the core surface flow coefficients.
What is more, using the tangential geostrophic condition makes it possible to relate ¥
to only the poloidal and zonal toroidal CMB flow coefficients. From (23) and (24)
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making possible to determine the non-zonal coefficients of the streamfunction ¥ in
terms of the poloidal coefficients of the CMB flow. The zonal coefficients can be
deduced from

1 d
zon _ __ —_pzon(g
Yo 7. cos 6 db ()
1 d
+ zon + zon
= — — v
Yo 7. cos 8 db ©)

As we compute one single set of coefficients for the flow solution, that are expected
to describe the flow everywhere on the CMB (whether inside or outside the rim of the
TC), the same set of spherical harmonic coefficients is used to describe ¥ and U+ at
the core surface. We denote them by {¢"¢ ™}, As expected from expressions
(23) and (24), we obtain for these coefficients, expressions similar to those relating the
geostrophic pressure spherical harmonic coefficients to the poloidal and zonal toroidal
surface flow coefficients (e.g., Gire & Le Mouél (1990)):

70672 wZL,C(S) = +a7 S::L:;(C) + o™ sg,s(c) + S::LJ;Z(C)
(=) - (=)

_ n—1 n+2
rfUn =gyt t g gt (44)
where
o (n—2)(n—1) /(n—m—1)(n—-m)(n+m—1)(n+m)
" (2n-3)(2n-1) m
o nn+1) [m—m+1)(n+m+1) (n+m)(n—m)
" m2n+1) 2n+3 2n—1
m_ (n+2)(n+3) /(n—m+1)n—-—m+2)(n+m+1)(n+m+2)
“ T 2nt5)2n13) m

The relations above can be used to write any condition on ¥ or on its latitudinal or
meridional derivatives at the CMB, in the form of corresponding conditions on the
CMB flow poloidal and zonal toroidal coefficients.
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Table 1: Characterization of QG flow X; using ‘pessimistic’ errors

Attenuation parameters Misfit Error K o™ Physical quantities
S \%
EPOCh )\e 1 )\62 X1 X2 K o 'Uggj\)/js UEY%A?[S 5effect Eef fect
(km/yr) | (km/yr) (yr?) yrH
20010 | 2.7x10* | 1.4x10° | 0.98 | 1.01 | 46 | 0.6 16.6 9.7 8.8x 10710 | 5.8 x 1072
2002.5 | 2.0 x 10* | 6.0 x 10* | 0.98 | 1.00 | 5.9 | 0.6 17.3 9.6 1.1x 1079 | 6.5 x 1072
20040 | 2.3 x10* | 9.0x 10* | 1.00 | 0.98 | 6.2 | 0.6 16.8 9.2 9.7x 10719 | 5.8 x 102
Table 2: Characterization of QG flow X; using ‘optimistic’ errors
Attenuation parameters Misfit Error K o™ Physical quantities
Epoch Ae1 Ae2 X1 X2 K « Uggsﬂ)/js U%\)JS 5effect Eeffect
(km/yr) | (kmiyr) | (yr?) (yr Y
20010 [ 1.2x10* | 5.3 x10* [ 1.01 [ 099 | 5.8 0.6 19.3 11.5 1.2x107% [ 8.3 x 1072
20025 | 1.5 x10* | 49 x10* | 0.99 | 0.98 | 6.5 | 0.6 18.2 10.1 1.2x1072 | 7.2 x 1072
20040 | 1.3 x10* | 6.5 x10* | 1.00 | 0.98 | 6.9 | 0.6 18.6 104 | 1.1x107° | 7.3 x 1072
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Figure 1: Results from a single inversion of the first 8 degrees (a) and b)) and the first 13
degrees (c) and d)) of CHAOS model at epoch 2001.0, for a tangentially geostrophic
CMB flow, using a strong surface regularization. a) and c): Power spectra, at the
Earth’s surface, of the observed (solid) and the estimated (dashed) SV field, the SV
uncertainties used in C,, (dash-circle), the final differences from the input model (dash-
star) and the signal due to advection of BS by the estimated flow x; (dotted-dashed).
b) and d): Mean energy per degree, f0r3t§)r0idal (black circles) and poloidal (grey
diamonds) SH components of the CMB flow.
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Figure 2: Flowchart to illustrate the iterative method whereby the modelling error due
to the interaction between velocity models and the small scale magnetic field is esti-
mated. Here, [X, B] denotes advection of the main field B by the flow %.
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Figure 3: Iterative inversion of the first 13 degrees of CHAOS model at epoch 2001 .0,
for a tangentially geostrophic flow using strong surface regularization. SV power spec-
tra at the core surface of starting model (solid line), prediction from inverted flow
X1 (dashed line) and prediction from inverted flow x5 (dotted-dotted-dashed line).
Also represented, the SV uncertainties (black circles), the modelling error estimated at
the first iteration (triangles and diamonds) and the converged modelling error (dotted-
dashed line).
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Figure 4: Results from the iterative inversion of the first 8 degrees (a) and b)) and
the first 13 degrees (c) and d)) of CHAOS model at epoch 2001.0, for a tangentially
geostrophic CMB flow, using a strong surface regularization. a) and c): Power spectra,
at the Earth’s surface, of the observed (solid) and the estimated (dashed) SV field, the
SV uncertainties used in Cy (dash-circle), the final differences from the input model
(dash-star) and the converged modelling error (dotted-dashed). b) and d): Mean energy
per degree, for toroidal (black circles) and ‘ﬁpoloidal (grey diamonds) SH components
of the CMB flow, and the corresponding values shown in Figures 1 b) and d) (solid
curves), obtained without taking into account modelling errors.
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Figure 5: Mean SV errors per degree, at the Earth’s surface, in an iterative inversion
for tangentially geostrophic flows, using a ‘strong-norm’ regularization (figures a) and
¢)) or the minimization of the kinetic energy of the surface flow (figures b) and d)).
Shown, are the truncation modelling errors in the first (dashed) and last (solid) itera-
tions, the initially specified SV errors (black circles), ‘pessimistic’ in figures a) and b)
and ‘optimistic’ in figures ¢) and d) and the [ = n diffusion modelling errors (white

squares).
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Figure 6: Results from iterative inversion of CHAOS model at epoch 2001 .0 for a QG
core flow, using new regularization norms specified in section 5. Power spectra at the
Earth’s surface of different signals specified in the figure legend-box, when starting
from ‘optimistic’ (right column) or ‘pessimistic’ (left column) SV uncertainties.
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Figure 7: Mean energy per degree for toroidal (black circles) and poloidal (grey dia-
monds) coefficients of the CMB surface expression of the inverted QG flow for epoch
2001.0. Also shown, the mean energy per degree for a n~2 flow spectrum (dotted-
dashed curve). Left: ‘pessimistic’ SV error model. Right: ‘optimistic’ SV error model.
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Figure 8: Axial vorticity in the equatorial plane for QG flows obtained from iterative
inversion of CHAOS model at epoch 20040 (top), 2002.5 (center), 2004.0 (bottom),
as viewed from the North (left) and the South (right) poles. Also shown, the projection
of the tangent cylinder. Values obtained with the ‘pessimistic’ initial SV uncertainties.
Color scale ranges between -0.25 and +0.25 rad/yr, blue for positive vorticity (cyclones)
and red for negative vorticity (anticyclones). Solid line contours only for vorticity
intensity between 0.075 and 1.0 rad/yr, every 0.025 rad/yr.



Figure 9: Same as Figure 8, starting from the ‘optimistic’ initial uncertainties. Color
scale ranges between -0.30 and +0.30 ragfyr. Solid line contours only for vorticity
intensity between 0.1 and 1.0 rad/yr, every 0.03 rad/yr.
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Figure 10: Streamfunction contours at thedéquatorial plane, for the QG flows obtained
from iterative inversion of the CHAOS model at epochs 2001.0 (top), 2002.5 (center),
2004.0 (bottom), as viewed from the North (left) and the South (right) poles. Also
shown, the solid core limits. Values, obtained with the ‘pessimistic’ initial SV uncer-
tainties, range between -6 and +6 km/yr. Flow circulation is westward along the large
jet feature and is cyclonic (+) or anticyclonic (-) in vortices.
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Figure 11: Zonal angular velocity as a function of normalized distance to rotation axis,
for QG flows inverted from CHAOS model at epochs 2001.0 (solid), 2002.5 (dashed)
and 2004.0 (dotted-dashed), using ‘pessimistic’ initial SV uncertainties. Also shown
the inner core radius, below which black and red curves refer to the Northern and to

the Southern hemispheres, respectively.
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Figure 12: Observed (solid and dotted-dashed lines) and predicted (squares) excess
length-of-day. Predictions are from QG flows inverted iteratively from CHAOS model,
for epochs 2001.0,2002.5 and 2004.0.
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Figure 13: Distribution of the contribution per degree of latitude, to excess length

of day of the liquid core divided into coaxial cylindrical annuli. Results using ‘pes-
simistic’ initial SV uncertainties.

45



