. Addadi, Mollusk shell formation: a source of new concepts for understanding biomineralization processes, 2006.

. Belcher, Control of crystal phase switching and orientation by soluble mollusc-shell proteins, Nature, vol.381, issue.6577, pp.56-58, 1996.
DOI : 10.1038/381056a0

. Beniash, Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth, Proc. R. Soc. Lond, 1997.
DOI : 10.1098/rspb.1997.0066

. Addadi, Biological control of crystal texture: a widespread strategy for adapting crystal properties to function, Science, vol.259, pp.776-779, 1993.

N. G. Bevelander, H. Bevelander, and . Nakahara, An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs, Calcified Tissue Research, vol.2, issue.1, pp.84-92, 1969.
DOI : 10.1007/BF02058648

C. Cohen and O. , The influence of a gel environment on calcium carbonate biomineralization, 2003.

M. A. Crenshaw and . Crenshaw, The soluble matrix of Mercenaria mercenaria shell, Biomineral. Res. Rep, vol.6, pp.6-11, 1972.

R. M. Crenshaw, H. Crenshaw, and . Ristedt, The histochemical localization of reactive groups in septal nacre from Nautilus pompilius The Mechanisms of Mineralization in the Invertebrates and Plants, pp.355-367, 1976.

. Falini, Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules, Science, vol.271, issue.5245, pp.67-69, 1996.
DOI : 10.1126/science.271.5245.67

C. Gregoire and . Gregoire, TOPOGRAPHY OF THE ORGANIC COMPONENTS IN MOTHER-OF-PEARL, The Journal of Cell Biology, vol.3, issue.5, pp.797-808, 1957.
DOI : 10.1083/jcb.3.5.797

. Levi-kalisman, Structure of the Nacreous Organic Matrix of a Bivalve Mollusk Shell Examined in the Hydrated State Using Cryo-TEM, Journal of Structural Biology, vol.135, issue.1, pp.8-17, 2001.
DOI : 10.1006/jsbi.2001.4372

L. F. Marin, G. Marin, and . Luquet, Molluscan shell proteins, Comptes Rendus Palevol, vol.3, issue.6-7, pp.469-492, 2004.
DOI : 10.1016/j.crpv.2004.07.009

URL : https://hal.archives-ouvertes.fr/hal-00197133

S. M. Marsh and R. L. Marsh, Calcium-binding phosphoprotein particles in the extrapallial fluid and innermost shell lamella of clams, Journal of Experimental Zoology, vol.56, issue.2, pp.193-203, 1983.
DOI : 10.1002/jez.1402260204

H. Nakahara and . Nakahara, An electron microscope study of the growing surface of nacre in two gastropod species Turbo cornutus and Tegula pfeferi, Jpn. J. Malacol, vol.38, pp.205-211, 1979.

. Nassif, Amorphous layer around aragonite platelets in nacre, Proc. Natl. Acad. Sci. USA, pp.12653-12655, 2005.
DOI : 10.1073/pnas.0502577102

J. M. Neff and . Neff, Ultrastructure of the outer epithelium of the mantle in the clam mercenaria mercenaria in relation to calcification of the shell, Tissue and Cell, vol.4, issue.4, pp.591-600, 1972.
DOI : 10.1016/S0040-8166(72)80032-6

. Nudelman, Spiers Memorial Lecture : Lessons from biomineralization: comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida, Faraday Discussions, vol.1, pp.9-25, 2007.
DOI : 10.1039/b704418f

. Nudelman, Mollusk shell formation: Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre, Journal of Structural Biology, vol.153, issue.2, pp.176-187, 2006.
DOI : 10.1016/j.jsb.2005.09.009

. Pereira-mouries, Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima, European Journal of Biochemistry, vol.132, issue.20, pp.269-4994, 2002.
DOI : 10.1046/j.1432-1033.2002.03203.x

URL : https://hal.archives-ouvertes.fr/hal-00013215

. Politi, Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase, Science, vol.306, issue.5699, pp.1161-1164, 2004.
DOI : 10.1126/science.1102289

. Rousseau, Sheet nacre growth mechanism: a Voronoi model, Journal of Structural Biology, vol.149, issue.2, pp.149-157, 2005.
DOI : 10.1016/j.jsb.2004.09.005

URL : https://hal.archives-ouvertes.fr/hal-00131385

R. Guette, X. Naslain, and . Bourrat, Multiscale structure of sheet nacre, Biomaterials, vol.26, pp.6254-6262, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00023492

. Sethmann, Nano-cluster composite structure of calcitic sponge spicules???A case study of basic characteristics of biominerals, Journal of Inorganic Biochemistry, vol.100, issue.1, pp.88-96, 2006.
DOI : 10.1016/j.jinorgbio.2005.10.005

K. Wada and . Wada, Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs, Biomineralization, vol.6, pp.141-159, 1972.

T. R. Waller and . Waller, Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia), Smithsonian Contributions to Zoology, issue.313, pp.313-314, 1980.
DOI : 10.5479/si.00810282.313

N. Watabe and . Watabe, Studies on shell formation, Journal of Ultrastructure Research, vol.12, issue.3, pp.351-370, 1965.
DOI : 10.1016/S0022-5320(65)80104-6

S. Weiner and . Weiner, Aspartic acid-rich proteins: Major components of the soluble organic matrix of mollusk shells, Calcified Tissue International, vol.253, issue.1, pp.163-167, 1979.
DOI : 10.1007/BF02408072

A. S. Weiner, L. Weiner, and . Addadi, Design strategies in mineralized biological materials, Journal of Materials Chemistry, vol.7, issue.5, pp.689-702, 1997.
DOI : 10.1039/a604512j

. Weiner, Electron diffraction of mollusc shell organic matrices and their relationship to the mineral phase, International Journal of Biological Macromolecules, vol.5, issue.6, pp.325-328, 1983.
DOI : 10.1016/0141-8130(83)90055-7

T. S. Weiner, W. Weiner, and . Traub, X-ray diffraction study of the insoluble organic matrix of mollusk shells, FEBS Letters, vol.26, issue.2, pp.311-316, 1980.
DOI : 10.1016/0014-5793(80)80817-9

T. S. Weiner, W. Weiner, and . Traub, Macromolecules in mollusk shells and their functions in biomineralization, Phil. Trans. R. Soc. Lond. Ser. B, vol.304, pp.421-438, 1984.

. Weiss, Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite, Journal of Experimental Zoology, vol.328, issue.5, pp.478-491, 2002.
DOI : 10.1002/jez.90004

S. W. Wise and . Wise, Microarchitecture and mode of formation of nacre (mother-of-pearl) in pelecypods, gastropods and cephalopods, Eclogae Geol. Helv, vol.63, pp.775-797, 1970.

E. Growth, showing the growing aragonite crystals covered by a sheet of organic matrix. (B and F) Growth front after treatment with sodium hypochlorite, exposing the nacre tablets. Arrows point to the direction of growth. (C and G) Growth front of the nacre after treatment with chitinase. (D and H) Growth front of the nacre after treatment with proteinase K. Sample shown in A was plunged in liquid ethane and freeze-dried

. Fig, Histogram of frequency distribution of the organic matrix (A) and tablet (B) thicknesses at the growth front and mature regions. (A) Growth front: N = 59, average ± SD = 68 ± 29 nm; Mature region: N = 32, average ± SD = 15 ± 4 nm. (B) Growth front