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S U M M A R Y
Small-magnitude earthquakes have been shown to be negligible when estimating regional seis-
mic moment release or seismic slip along major faults. However, they have a strong control
on the redistribution of elastic stresses, and, according to statistical models of earthquake oc-
currences, on the triggering of subsequent earthquakes. This point is generally overlooked
in stress-triggering model that only consider a limited set of earthquakes as stress sources.
Elaborating on previous analyses, we here develop a probabilistic approach for estimating,
at the hypocentre of an earthquake, the total stress caused by a large set of previous earth-
quakes, as a function of the magnitude range covered by these stress-generating earthquakes.
A generic model that mimics the main features of earthquakes populations (most particularly:
the Gutenberg–Richter relation and a fractal distribution of hypocentres with fractal dimension
D) is constructed. The cumulative stresses generated in this model by sets of earthquakes are
shown to follow a Lévy-stable law with stability index D/3. Similar conclusions are obtained
when analysing the M3+ seismicity that occurred in southern California between 1981 and
2000. We show that the contribution to the cumulative static stress, caused by the occurrence of
small earthquakes, at the site of pending earthquakes is at least as important as the contribution
from the largest earthquakes. This is a direct consequence of the fractal clustering properties
of earthquake hypocentre distributions. Including the stress redistribution due to small-scale
seismicity should, therefore, significantly improve mechanical models of earthquake triggering.

Key words: aftershocks, earthquake triggering, Lévy laws, static stress.

1 I N T RO D U C T I O N

The role of small earthquakes in releasing the tectonic forces in the
crust, is alternatively viewed as being either negligible or important.

Small earthquakes are negligible for slip/moment release:
The small magnitudes are found to contribute little to the overall
seismic moment release and cumulative slip (Brune 1968; Scholz
1972, 1990; Scholz & Cowie 1990) and their contribution to the
post-seismic relaxation can even be several orders of magnitude
smaller than the one accommodated by afterslip (Shen et al. 1994).
To summarize a simple argument, given the M ∼ 101.5m scaling
of the seismic moment M with the magnitude m (Kanamori 1977;
Hanks & Kanamori 1979), and the typical N ∼ 10−m decay of
the number N of earthquakes with m, one obtains that the total
seismic moment released in the [m 0 − �m, m 0] magnitude band
(m 0 being the largest magnitude characteristic of the fault zone) is
M[m0−�m,m0] ∼ ∫ m0

m0−�m dm 100.5m ∼ 1 − 10−0.5�m . For �m = 2,
90 per cent of the total moment is already accommodated, while this
becomes 99 per cent for �m = 4. There is, therefore, little need to
consider earthquakes that are much smaller than the largest events
when estimating the rate of moment release or of slip.

Possibly as a consequence of this (e.g. Parsons et al. 2000), along
with the difficulty of incorporating more and more small earthquakes

in which source characteristics are not always well resolved, it has
become customary in stress-modelling studies of earthquake occur-
rence to only consider a very limited set of earthquakes as controlling
the stress redistribution responsible for the aftershocks (see Harris
1998; Stein 1999; King & Cocco 2001, for reviews). Such sets often
consist of only one event, the main shock. A few studies (e.g. Harris
et al. 1995; Jaumé & Sykes 1996; Deng & Sykes 1997; Nalbant
et al. 1998; Ziv & Rubin 2000; King et al. 2001; Aoyama et al.
2002) have examined the stress changes caused by extended sets of
earthquakes, but imposed generally high-magnitude cut-offs, some-
times for catalogue-completeness purposes. In most analyses, sig-
nificant agreement between the modelled stress field and the distri-
bution of subsequent earthquakes is observed. No analysis has been
conducted as to what minimum size the magnitude interval for the
sources should be, in order to make sure that most of the transferred
stress is correctly modelled. An equivalent and still unresolved is-
sue is whether one should consider earthquakes that occurred long
before the start of an aftershock sequence as stress sources (see e.g.
King et al. 2001, and how the aftershock sequence of the 1999 Izmit
earthquake may have been conditioned by the 1963, Ms 6.4 Yalova
earthquake).

Small earthquakes are important for stress release: It would,
however, be erroneous to assume that elastic stress transfer is only
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dominated by the largest events. Hanks (1992) showed that small
ruptures can be expected to accommodate as much stress release
over a fault as big ruptures, their number compensating for their
weakness. Coming back to the above argument, this is now equiv-
alent to summing N × M/L over the [m 0 − �m, m 0] interval
(L being the characteristic length of the rupturing patch), where
M/L ∼10m possess the same scaling with m as the stress τ ∼u/L re-
leased by a magnitude m earthquake. This yields that �σ [m0−�m,m0]

∼ �m, that is, one cannot correctly estimate the total stress release
by only considering the largest magnitudes. Felzer et al. (2002)
and Helmstetter (2003) also noted that the clustering of earthquake
hypocentres has to be accounted for when estimating the relative
contribution versus size relation of stress interactions. Indeed, such
a clustering implies that the stresses acting on a target, pending
earthquake (hence, located on the cluster) or on a random target site
(hence, not constrained to be on the cluster) should have very dif-
ferent distributions. A first proof of this result was given by Kagan
(1994) who showed that the distribution of invariants of the stress
increments caused by a fractal set of earthquakes with dimension
D on subsequent earthquakes can be modelled by a Lévy-stable
random variable (Feller 1971) with stability index D/3. For a site
(earthquake) on the cluster, D < 3, while D = 3 for a random site.
Such a change in the distribution is of crucial importance when
summing up the influences of many earthquakes, since the rule for
adding independent Lévy laws depends on the stability index.

The present paper aims at revising and interpreting the importance
of earthquake clustering for elastic stress redistribution. We extend
in Section 2 the analysis of Kagan (1994) to earthquake distributions
with Gutenberg–Richter frequency–magnitude laws. The results are
then compared in Section 3 to the distribution of stress changes for
an extended set of earthquakes in southern California. Finally, we
further discuss in Section 4 some of the assumptions made in this
study, and interpret its meaning in relation to stress modelling of
earthquake sequences.

2 T H E O RY

We estimate the probability distribution of σ , defined as the static
shear stress generated by any given earthquake at the hypocen-
tre or centroid of any future earthquake. The earthquakes are
treated as double-couple point sources. The shear component of
the stress along the rake direction of the future earthquake is anal-
ysed here, therefore, allowing to account for the geometries of both
the causative and the target faults while bypassing the ambiguity
on the nodal planes. Given the randomness in the relative geome-
tries of the causative and the target faults, similar results hold with
other scalar measures, as for example with stress invariants (see
Section 3.3).

Knowing the distance r between the two hypocentres, the magni-
tude m of the first earthquake, and ω a set of five angles specifying
the geometry and the direction of the fault plane of the second earth-
quake relative to the position and geometry of the fault plane of the
first earthquake (see Fig. 1), the far-field shear stress generated by
the first earthquake at the hypocentre of the second is of the form

σ = C Mr−3 �(ω), (1)

= C ′um L−1
m (r/Lm)−3 �(ω), (2)

where M is the seismic moment, um the mean displacement across
the fault and Lm the typical size of a magnitude m earthquake, � a
signed function −1 ≤ � ≤ 1 corresponding to the modulation due
to the radiation pattern and C and C ′ are two constants depending on

Figure 1. A set ω of five angles: (θ , φ), strike, dip and rake angles of the
target fault, are needed to describe the direction and orientation of the target
fault relative to the causative fault orientation (including direction of slip)
and position.

material properties. In this section we set C = C ′ = 1, for simplicity.
The moment scales as M ∼ 101.5m ∼ exp(χm) with χ = 1.5 × ln 10
(Kanamori 1977; Hanks & Kanamori 1979).

We assume that the three variables r, m and ω are random,
following distributions (fractal, e.g. Kagan & Knopoff 1980;
Robertson et al. 1995; exponential, i.e. Gutenberg–Richter, and uni-
form, respectively) that are typical of earthquake populations. While
the geometries of the faults are certainly not random, we here con-
sider that the orientation of the causative fault as seen from the
target fault is random, hence a uniformly random ω (cf. Fig. 1).
This randomization is due to the random character of the relative
position of the target fault versus the causative fault. Independence
of these three random variables is also assumed. Based on these
assumptions, we determine in Sections 2.1 and 2.2 the distributions
of both:

(1) σ (m), the shear stress when the magnitude of the first earth-
quake is conditioned to be equal to m, while the distance r and
the angles ω are random (fractal and uniform, respectively); see
Fig. 2(b);

(2) σ , for r, m and ω all random (fractal, exponential and uniform,
respectively); see Fig. 2(c).

The total static shear stress originating from a large set of earth-
quakes is then calculated in Section 2.3, by summing σ (m). Limits
(i.e. for very large samples of earthquake populations) of sums of
independent, identically distributed (iid) laws are more particularly
examined in this latter section; such limits are largely insensitive
to the details of the distributions given in Sections 2.1 and 2.2, and
mostly depend on a few key parameters that statistically characterize
the earthquake population (more particularly: fractal dimension and
b-value). The contribution of the near-field stresses will be further
discussed in Section 4.

2.1 Distribution of σ(m), stress knowing m

We denote by σ (m) the static shear stress individually caused by
magnitude m earthquakes (see Fig. 2). This σ (m) is random because
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Figure 2. Schematic illustration of the two stress distributions σ (m) and σ studied in Sections 2.1 and 2.2: (a) a realization of a model earthquake population,
with magnitude following a Gutenberg–Richter distribution and epicentres clustered on a fractal set (with fractal dimension D = 1). The circles have radii
exponentially increasing with the magnitude. (b) The stress σ (m) is the random variable representing the stress generated by an earthquake of magnitude m at
the site of a target earthquake. (c) The stress σ is the random variable representing the stress generated by an earthquake, with no constraint on its magnitude,
at the site of a target earthquake.

both the distance r and the angles ω are random. The distance r
follows a fractal distribution, while ω is uniformly distributed. The
random variable �(ω) can be shown to be well approximated by
a Gaussian, for a uniform ω random vector, in the point source
approximation. While the departure from a Gaussian is strong as
ones gets closer to the fault in the case of an extended source model,
we only need to assume for the purpose of the present analysis that
this distribution is symmetric; because it is defined over the interval
[−1, 1], it has a finite variance and zero mean, hence it is in the
domain of attraction (for addition) of centred Gaussian laws.

The stress σ (m, r ) = �(ω) 	 at fixed m and r is Gaussian, with
standard deviation

	 = um L−1
m (r/Lm)−3 = Mr−3, (3)

where M = umL2
m is the seismic moment. We now let r vary: the

stress σ (m) at a given (fixed) m is now a compound Gaussian ran-
dom variable with random standard deviation 	 = M s such that s
is distributed according to r−3, and M is a constant: σ (m) = M s �.
As stated earlier, we assume that the earthquake hypocentres are
fractally distributed, with a fractal (correlation) dimension D. The
probability density function (pdf) of the random variable r is, there-
fore, of the form fr(r ) ∼ r D−1, for r greater than a cut-off length.
Given that s ∼ r−3, this yields that the pdf of s is fs (s) ds = fr(r ) dr
hence fs(s) ∼ s−1−D/3, that is, it follows a (skewed) Lévy-stable law
with stability index α1 = D/3. The composition of such a law for
the standard deviation 	 = M s of σ (m) and a zero-centred Gaus-
sian law � implies that σ (m) follows a symmetric Lévy-stable law

with α1 = D/3, at fixed m. We will denote this law as

σ (m) = exp(χm) Lα1 , (4)

with the seismic moment M ∼ exp(χm) giving the dependence of
σ (m) on the magnitude, andLα denoting a unitary symmetric Lévy-
stable law with stability index α (cf. Feller 1971). This result was
first obtained by Kagan (1994), who calculated the distribution of
the invariants of the stress tensor rather than the shear stress as is
done here. As a short reminder, Lévy-stable laws are stable laws
for the addition: the sum of independent Lévy-stable laws Lα is
itself a Lévy-stable law Lα (up to a normalizing constant and recen-
tring term). Given a1, a2, . . . , aN a set of N real numbers, and X 1,
X 2, . . . , XN a set of N iid Lévy-stable laws Lα , we have that:

a1 X1 + · · · + aN X N = (|a1|α + · · · + |aN |α)1/α Lα, (5)

where the equality is in the distribution sense. The stability index α

is such that 0 < α ≤ 2. Index α = 2 characterizing Gaussian laws,
while α < 2 corresponds to Lévy-stable laws with infinite variance.
The mean also becomes infinite if α ≤ 1. For α < 2, the stability
index characterizing the tail of the pdf: if X is distributed according
to Lα , then its pdf is fX (x) ∼ x−1−α at large x. The generalization
of the central limit theorem to Lévy-stable laws states that the sum
of N iid random variables X 1, . . . , XN such that fX (x) ∼ x−1−α at
large x tends, in the limit of N → ∞, to Lα (still up to a normalizing
constant). We refer the reader to Feller (1971) for a description of
Lévy laws, their definitions and main properties. We abbreviate from
now on ‘Lévy-stable’ to simply ‘Lévy’ laws.
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2.2 Distribution of σ, for varying m, r and ω

We now relax the magnitude m, which is no longer constant but is
now left to vary according to a Gutenberg–Richter law characterized
by the b-value parameter. This is equivalent to saying that m is ex-
ponentially distributed, with a characteristic parameter β = b/ln 10.
Given our assumption of the independence of m and r , σ is the
product of two independent random variables: the seismic moment
M ∼ exp(χm) and the Lévy law Lα1 ; see eq. (4). The magnitude
is distributed with a density fm(m) ∼ exp(−βm), yielding that the
pdf of M is fM (M) ∼ M−1−β/χ , that is, the moment M = Lα2 is a
(skewed, positive) Lévy law with stability index α2 = β/χ . While
the product σ = Lα1Lα2 of two Lévy laws is not itself a Lévy law, it
is however in the domain of attraction (for addition) of a Lévy law
with index α = min{α1, α2}.

As the hypocentre of a pending earthquake undergoes the stresses
generated by a great number of earlier earthquakes, and since each
of those (shear) iid stresses is in the domain of attraction of a Lévy
law with index α = min{α1, α2}, the cumulative stress at this site
can be considered as being distributed according to such a Lévy law.
Assuming a constant fractal dimension D, this stress will temporally
evolve as N 1/α , where N is the cumulative number of sources: the
pdf of σ scales with N as f σ (σ ) ∼ N 1/α L α , with L α the unitary,
symmetric Lévy law of index α.

The value of α depends on the fractal dimension of the hypocen-
tres D, the b value and the scaling law relating the seismic moment
M to the magnitude m. Typical values of D (e.g. Goltz 1998) and
b (e.g. Scholz 1990) are D = 2, b = 1, which, along with χ = 1.5
ln 10, yields α1 = D/3 = 2/3, α2 = β/χ = b/1.5 = 2/3, hence
α = min{α1, α2} = 2/3.

2.3 Summing the stress caused by a population
of earthquakes

We now determine how the sum of all the stresses at a given lo-
cation depends on the magnitude interval covered by the stress-
generating earthquakes. We assume that only earthquakes with mag-
nitude between magnitude m 0 − �m and a maximum magnitude
m 0 can contribute to the total stress, denoted σ [�m]. The goal is
here to investigate whether increasing the magnitude interval �m
(by decreasing the cut-off m 0 − �m) significantly change the total
stress.

We assume that the earthquake population follows the Gutenberg–
Richter relation, so that the earthquake density is n(m) = Nβ

exp(−βm) where β = b ln 10, N is the total number of earthquakes,
and m is the magnitude above the magnitude of completeness. We de-
note by m 0 the magnitude of the biggest event; m 0 is a random vari-
able, changing with every new earthquake population. It is known
that the pdf of m 0 is f m0 (m 0) = Nβ(1 − e−βm0 )N−1e−βm0 (e.g. Feller
1971). One can then show that the mean of m 0 is well approximated,
for sufficiently large N , by E{m0} = 1

β
(ln N +�), where � is Euler’s

constant.
We first start by defining the total cumulative stress σ [�m|m 0]

caused by all earthquakes with magnitude within �m of the max-
imum magnitude m 0, conditioned by the latter. This is equivalent
to summing the stresses generated by these earthquakes at the tar-
get site, but only after selecting those earthquake populations that
have the particular value m 0 as the magnitude of their biggest
event.

Given that, for any individual earthquake of magnitude m, the
generated stress is a Lévy random variable σ (m) = exp(χm) Lα1 ,
where α1 = D/3 (cf. eq. 4), it comes that the sum of these stresses

is a stable integral (Samorodnitsky & Taqqu 1994):

σ [�m|m0] =
(∫ m0

m0−�m
dm n(m|m0) eα1χm

)1/α1

Lα1 , (6)

where n(m|m0) = (N − 1)β e−βm

1−e−βm0
, for 0 ≤ m ≤ m 0 (otherwise

n(m|m 0)=0) is the earthquake density conditioned by the maximum
magnitude m 0. Since σ [�m|m 0] is itself a Lévy law Lα1 , it finally
comes that

σ [�m] =
(∫ ∞

0
dm0 fm0 (m0) σ [�m|m0]α1

)1/α1

Lα1 , (7)

where f m0 (m0) is the pdf of m 0 already introduced above.
An important aspect in this development is that σ [�m] is defined

as an ensemble average over an infinite number of earthquake pop-
ulations. However, the situation is quite different when comparing
these predictions to real data, as will be undertaken in Section 3:
for a given case study, m 0 is set to a given value (the magni-
tude of the largest earthquake present in the data sets), which is
generally higher than the unconditioned mean E{m 0} as the seis-
micity sequences that include large and damaging earthquakes are
more frequently studied than those with an average level of activ-
ity. This selection bias has for example been shown by Console
et al. (2003) to be responsible for the large magnitude difference
between the two largest earthquakes observed in typically selected
seismicity catalogues/sequences. We, therefore, need to consider
the conditioned σ [�m|m 0] of eq. (6) rather than σ [�m] of eq. (7).
In order to estimate σ [�m] out of real data sets, one would need to
consider seismicity distributions with no a priori selection bias.

We consider the stress σ [�m|m 0], for two cases of particular
importance.

Case 1: A first case is considered, for which D = 3 hence α1 = 1.
This corresponds to summing the stress at a uniformly random lo-
cation (i.e. not necessarily at the hypocentre of an earthquake), or
equivalently to summing the stress over a given crustal volume. Then
eq. (6) becomes

σ [�m|m0] =
(∫ m0

m0−�m
dm

(N − 1)βe−βm

1 − e−βm0
eχm

)
L1, (8)

for �m < m 0, and where L1 is the Cauchy law. This integral is
equivalent to the sum of the seismic moments of all the earthquakes
with magnitude in the interval [m 0 − �m, m 0], which is known to
be dominated by large earthquakes/large faults (Brune 1968; Scholz
& Cowie 1990). We get in this case that

σ [�m|m0] = (N − 1)
β

χ − β
× eχm0

eβm0 − 1

[
1 − e(β−χ )�m

]
L1.

(9)

Since the stress only due to the largest earthquake (of magnitude m 0)
is σ 
 = eχm0L1, we see that the relative contribution (in terms of the
scale factors multiplying the Cauchy law L1) of all the earthquakes
in the interval [m 0 − �m, m 0], compared to the contribution of the
largest earthquake with magnitude m 0, is given by

σ [�m|m0]

σ 

= β

χ − β
× N − 1

eβm0 − 1

[
1 − e(β−χ )�m

]
. (10)

For m 0 large enough compared to 1
χ−β

, this ratio asymptotically
increase from 0 to

σ∞
σ 


= β

χ − β
× N − 1

eβm0 − 1
� β

χ − β
× N e−βm0 , (11)

this asymptotic value being function of m 0. As an illustration, Fig. 3
shows the ratio σ∞

σ
 for southern California (1981–2000), as detailed
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Figure 3. Ratio σ [�m|m 0]/σ 
 function of �m for N = 4870, m 0 = 4.3
and b = 0.91 as characterizing the seismicity data sets analysed in Section 3
(M3+ southern California earthquakes between 1981 and 2000). The crosses
(+) show the mean of 1000 Monte Carlo simulations, and the continuous
line is given by eq. (10). The ratio increases asymptotically to 0.918. For �m
greater than 2, at least 95 per cent of the total stress σ [�m|m 0] is correctly
estimated.

in Section 3. Lowering the completeness magnitude by δm would
correspond to (1) increasing the mean number of earthquakes by a
factor exp(βδm), and (2) increasing m 0 to m 0 + δm (since m 0 is
defined as the maximum magnitude minus the completeness mag-
nitude). The asymptotic value σ∞

σ
 is therefore independent of the
completeness magnitude, as long as N is large enough (i.e. permit-
ting m 0 to be much larger than 1

χ−β
).

The ratio σ∞
σ
 is 2.105 for b = 1 and in the limit N → ∞, when

there is no constraint on m 0, but can be much smaller if m 0 is con-
strained to large values. A strong correlation exists between m 0 and
the difference h of magnitude between the two biggest earthquakes
in the set. As shown by Console et al. (2003), if no constraint is put
on m 0, then h follows an exponential law with mean E{h} = 1/β

(Vere-Jones 1969), but this mean E{h} increases if m 0 is con-
strained to be larger than a given threshold m


0 > 0. The ratio
σ∞
σ
 can therefore be plotted versus E{h|m 0}; see Fig. 4 for an
example with N = 103 and b = 1. Scholz (1972) mentions that
5 per cent of the seismic moment is typically released by the af-
tershocks. This value is however biased by the fact that typical
case studies consider aftershock sequences following large main
shocks, hence with an a priori constraint on h which becomes
much larger than the unconstrained mean E{h} � 0.43 (for b =
1). A similar claim is made by Shcherbakov & Turcotte (2004)
for eight aftershock sequences in southern California, still with
the same selection bias leading to a mean h of about 1.2. Fig. 4
shows that, for b = 1 and sets of N = 103 earthquakes, a value of
h = 1.2 leads to σ∞

σ
 � 8.3 per cent. This corresponds to choosing
m 0 � 4.4 on average, while the unconstrained mean of m 0 is 3.25
(still for b = 1 and N = 103).

We now show that the situation is very different when looking
at the stress driving the seismicity, in particular the elastic stress
resulting from earthquake interactions, as already pointed out by
Hanks (1992).

Case 2: For a fractal dimension D = 2 and b = 1, we obtain
that α1χ − β = 0. These values for D and b are generally close
to the values typically characterizing aftershock sequences. This
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Figure 4. Ratio σ ∞/σ 
 for N = 103 earthquakes and b = 1, function of
the mean difference in magnitude E{h|m 0} between the two largest earth-
quakes in the population. For E{h|m 0}= 1.2, as typically obtained for large
historical sequences, the ratio is σ ∞/σ 
 � 0.083. The unconstrained ratio,
that is, for populations with no a priori on m 0, is 2.105, for b = 1.

case of α1χ − β close to 0 is, therefore, often encountered when
analysing earthquake populations. Unlike case 1, for which the stress
σ [�m|m 0] was computed for a uniformly random site, this present
case corresponds to examining the stress at the site of an impending
earthquake. The distribution of σ [�m|m 0], therefore, characterizes
the stress that drives the seismicity through elastic stress transfer
following the occurrence of earthquakes. Eq. (6) now gives that

σ [�m|m0] =
(∫ m0

m0−�m
dm

(N − 1)β

1 − e−βm0

)1/α1

Lα1 , (12)

⇒ σ [�m|m0] =
[

(N − 1)β�m

1 − e−βm0

]1/α1

Lα1 , (13)

Hence, the ratio σ [�m|m 0]/σ 
 is now

σ [�m|m0]

σ 

=

[
(N − 1)β�m

eα1χm0 − 1

]1/α1

. (14)

This ratio grows as ∼�m1/α1 and is thus not bounded, see Fig. 5
for an example. The sign of α1χ − β is an important parameter in
this analysis. This parameter gives the dependence of (number of
earthquakes within a magnitude band around m) × (the stress typ-
ically generated by an individual earthquake of magnitude m) with
magnitude m. In case 1, α1χ − β > 0 and the largest earthquakes
are dominant. The small earthquakes then contribute little to σ [�m]
and a cut-off magnitude can practically be defined to estimate this
stress. On the contrary, for α1χ − β ≤ 0 (hence, including case 2),
the small earthquakes contribute at least as much as the large ones, so
that estimates of σ [�m] based on earthquake catalogues, for which
there exists an observational magnitude cut-off, are not represen-
tative of the actual stress that drives the seismicity through stress
transfer between earthquakes.

Case 2 is similar to the case considered by Hanks (1992), with
D = 2 the (topological) dimension of a fault plane. Using D = 2,
χ = 1.5 × ln 10 and b = 1, he similarly obtained that all magnitude
bands contributed equally in redistributing the forces over the fault
surface. In the case of a rough fault surface D >2, the same argument
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Figure 5. Same as Fig. 3, in the case α1χ − β = 0 ⇒ α1 = 0.91/1.5 �
0.61. The continuous line is given by eq. (14).

as developed by Hanks (1992) leads to the prediction that the large
events control the stress distribution. The typical case D = 2.2 (e.g.
Schmittbuhl et al. 1995) gives that α1χ − β = 0.23.

The importance of the curvature of σ [�m] depends on the value
of α1χ − β compared to 1/�m. Dominance by the small or large
magnitudes is therefore effective when |α1χ −β| > 1

�m ⇒ |D/2−
b| > 1

�m ln 10 . Taking 1
�m ln 10 � 0.1 as a representative value of

typical seismicity catalogues, this yields that all the magnitudes can
be assumed to have an equal importance when D = 2b ± 0.2. Such a
condition is frequently verified, implying that seismicity catalogues
are typically close to this critical case.

To summarize this section, we have shown that the stress caused
by previous earthquakes is

(1) dominated by the largest earthquakes, if the target site is
located at random in the upper crust or if the stress is averaged over
a crustal volume. A good approximation of the total stress created
at such a site is obtained by considering the largest earthquakes in a
magnitude interval of about 2 (see Fig. 3) as sources. This total stress
can however be substantially larger than the stress only caused by
the largest earthquakes (see Fig. 4) so that a correct estimate of the
stress effectively requires a sum over this magnitude interval, rather
than only considering the largest earthquake as the only source that
matters.

(2) not dominated by the largest earthquakes, if the target is the
site of a future earthquake. This directly comes from the clustering
of the earthquake hypocentres. It is found that small earthquakes are
at least as important than large ones in creating stress on faults that
will eventually rupture.

3 A N A LY S E S

3.1 Data

In this section we estimate the distributions of the stresses defined
in Section 2, in the case of the seismicity that occurred in southern
California between 1981 January 1 and 2000 December 31. The
relocated data sets of Hauksson (2000) is analysed. The standard
deviation of the location error for controlled sources (shots) is of
the order of 0.4 km for horizontal coordinates and 1.4 km in depth
(estimated from Fig. 9 of Hauksson 2000), along with a system-
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Figure 6. Number of occurrences versus magnitude for the selected sub-
catalogue (20 yr of seismicity), along with the best Gutenberg–Richter law
characterized by a b-value equal to 0.91 (method of Utsu 1966).

atic bias of about 1.2 km towards greater depths. As commented in
Hauksson (2000), the typical mislocations for earthquakes are ex-
pected to be smaller than that for shots. However, the mean location
errors, as listed in the data sets, are �0.4 km and �4 km for the
horizontal and vertical coordinates, respectively. The mean depth is
�7.8 km, with a standard deviation of about 4.4 km. Some events
have badly constrained depths. A random depth following the depth
distribution of the other earthquakes in the subset was drawn for
those events. About 20 per cent of the earthquakes in the subset are
given with more than one focal mechanism. A random selection was
done to select only one solution for each of these events.

The magnitudes are mostly local or coda magnitudes except for
the largest events for which a moment magnitude is estimated. Only
earthquakes with magnitude greater or equal to 3 are analysed. Com-
pleteness of this subset is shown by the quality of the fit of the data
with the Gutenberg–Richter law, with a b-value estimated to 0.91
(see Fig. 6). Out of 52 798 earthquakes originally listed in the cata-
logue, 4870 M3+ earthquakes are selected according to the afore-
mentioned selection rules (i.e. magnitude above magnitude cut-off,
and random selection of one focal mechanism when more than one
is given).

The correlation integral (Grassberger & Procaccia 1983) is run
on this set of earthquakes, cf. Fig. 7, in order to estimate the fractal
dimension of the hypocentre set. It consists of counting the number
N(r) of pairs of earthquakes with hypocentral distance less than r.
For a fractal set characterized by dimension D, N (r ) grows as rD.
Several breaks in the scaling are seen, which can be attributed to
characteristic scales: at about 0.2 km (location error on latitude and
longitude), at about 2 km (location error on depth), at about 10 km
(thickness of the seismogenic zone) and at about 300 km (integral
scale of the sample). Several scaling regimes are observed, in the
scale intervals delimited by these characteristic scales: D � 2.2 for
0.2 km ≤ r ≤ 2 km, D � 1.7 for 2 km ≤ r ≤ 10 km, and D � 1.1
for 10 km ≤ r ≤ 300 km, where D is the fractal dimension. Those
fractal dimensions are coherent with a 3-D self-similar distribution
of hypocentres such that the probability distribution of X defined as
the distance between any given pair of earthquakes projected along
one coordinate axis scales as fX (x) ∼ x−0.43. Such a scaling would
yield N (r ) ∼ r 2.14, ∼r 1.7 and ∼r 1.14 in the 0.2–2 km, 2–10 km and
10–300 km intervals, respectively (see Appendix A). Among these
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Figure 7. Number of pairs N (r ) of earthquakes separated by a distance less
or equal to r. Four characteristic scales are observed, and the three scaling
regimes identified are indicated along with an estimate of the corresponding
fractal dimension.

four characteristic scales, only the 10 km scale related to the thick-
ness of the schizosphere has a physical origin, while the others are
artificial scales introduced by the location procedure and the size
of the region under study. It can, therefore, be expected that the
N (r ) ∼ r 1.7 regime actually extends to distances shorter than
0.2 km.

3.2 Distribution of σ(m)

The shear stress created by any earthquake i on any subsequent
earthquake j > i is computed, using the boundary element code
of Gomberg & Ellis (1994) that uses the dislocation solutions of
Okada (1992) for the displacement and deformation. The true focal
mechanisms as given in the data sets are used. The shear component
of the stress is the one acting across the fault plane, in the slip (rake)
direction of the target (subsequent) earthquake. The Poisson ratio is
ν = 0.25 and Young’s modulus is E = 70 GPa. A constant stress drop
is assumed for all the earthquakes. Denoting by u, L and W the mean
slip, length and downdip width of the rupturing faults, we have that
u ∼ L ∼ W ∼ 100.5m as long as W is less than 15 km. This transition
occurs at m � 6.2, after which u ∼ L ∼ 100.75m . The uniform slip
u and the lengths L and W are further constrained by the mean slip
u � 200 cm and length L � 93 km of the Landers earthquake. As an
illustration, this choice of a scaling gives the values listed in Table 1
for several magnitudes.

Since the shear stress at r = L is given by σ m(L) = C ′�u/L ,
cf. eq. (2), and given that u and L are proportional to each other,
this stress does not depend on m. The mean of |σ m(L)| over the
set ω of angles specifying the relative orientations of the two faults

Table 1. Average slip u, fault length L and width W
function of magnitude m.

m u (cm) L (km) W (km)

3 0.77 0.36 0.36
4 2.45 1.14 1.14
5 7.74 3.6 3.6
6 24.5 11.4 11.4
7 120 55.7 15
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Figure 8. Probability density function of |σ (m)|, for three magnitude bands.
The stress σ (m) is due to all previous earthquakes of magnitude m, at the site
of an earthquake. The pdf decays as σ−1−α1 with α1 estimated to 0.5–0.6 as
shown by the dashed lines. In this scaling regime, a multiplication by 101.8

is needed to obtain the pdf at m + 2 from the pdf at m (see text).

(cf. Fig. 1) is found to be �35 kPa for our choice of parameters.
This 35 kPa stress value acts as an upper bound for the scaling
regime characterizing the distributions of the stress. The exact value
depends on our choice of elastic and material parameters, and is
therefore only given here as a typical value rather than an absolute
exact one. It marks the limit of validity of our point source model.
We discuss in Section 4.2 the possibility that the σ−1−α1 scaling
regime of the stress pdfs actually extend to wider intervals, past the
35-kPa stress. Given the fact that the exact rupturing plane is not
known, the extended source model used here only gives the correct
order of magnitude of the imposed stress, as long as the hypocentral
distances are larger than the causative fault length.

The distribution of σ (m), the stress caused on an earthquake by
all previous earthquakes of magnitude m, is shown in Fig. 8, for
three magnitude bands [3.0, 3.1], [4.0, 4.1] and [5.0, 5.1]. The pdf
is seen to decay following a σ−1−α1 slope, with α1 � 0.5 − 0.6 for
all three magnitude bands. This value of α1 = D/3 is consistent
with a fractal dimension D = 1.7 observed for the 2–10 km scale
interval. This scaling regime of N(r) extends over one decade in r,
hence at least 3 decades in σ (m) are expected to be characterized
by this σ−1−α1 decay. The calculated stresses are small compared
to the ambient stress acting on tectonic faults, especially at depth
where most of the seismicity occurs or nucleates. These relatively
small fluctuations in stress caused by the occurrence of earthquakes
are however expected to be effective in controlling the seismicity
(e.g. King & Cocco 2001). An argument often proposed to explain
this is that the crustal rocks in shear zones are stressed close to their
critical state (Townend & Zoback 2000), so that small fluctuations
can cascade into large instabilities (Bak & Tang 1989; Sornette &
Sornette 1989; see also, among many others, Main 1996; Grasso &
Sornette 1998). Also, these stresses distributed according to Fig. 8
are for individual sources. Summing over a large number of sources
will strongly increase the stresses effectively caused by elastic stress
transfer, especially since the role of small-magnitude events is of
importance, as already discussed in Section 2.

The rupture length L plays here the role of yet another charac-
teristic scale. It introduces a characteristic stress of about 35 kPa
as mentioned above (for our choice of material and seismic source
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parameters). The pdf of |σ (m)| is clearly seen to experience a break
of scaling at about this value, for the three magnitude bands. This
break has a physical origin; for r < L , uniformity of the slip cannot
be approximated any longer, and use of a generic slip distribution
is needed; see Section 4.2 for further discussion on the near-field
stress. This value of 35 kPa is less than 10−6 of the Young’s mod-
ulus, and the plastic yield stress is, therefore, much larger than the
interval characterized by this scaling regime.

The greater frequency of large |σ (m)| at large m amounts to a
simple multiplication of the pdf. Given the pdf f 1 of |σ (m)| at m 1,
the pdf f 2 at m 2 = m 1 + δm is obtained by f 2(σ ) = λ−1 f 1(λ−1σ )
with λ = 101.5δm . Since f (σ ) ∼ σ−1−α1 ⇒ f 1(σ ) = λ1+α1 f 1(λ−1σ ),
we get that f 2(σ ) = 101.5α1δm f 1(σ ). For α1 = 0.6 and δm = 2 (m 1 =
3, m 2 = 5), this gives that f m=5 (σ ) = 101.8 f m=3 (σ ), in agreement
with the observations, as shown by the vertical segment in Fig. 8.

A better picture of the scaling parameters and intervals associ-
ated with σ (m) is given by Fig. 9, where the pdf are multiplied by
σ 1+α1 with α1 allowed to vary from one magnitude band to another.
These variations of α1 are significant, and can be attributed to the
dependence of D on m (see Appendix B) which goes beyond our
assumption that r and M are independent. The upper stress limit is
clearly associated with the characteristic 35 kPa stress. Note that
for 5 ≤ m ≤ 5.1, the small number of sources causes some noisy
fluctuations around the flat regime. For m = 3, the lower limit is
due to the transition to the third scaling regime of the correlation
integral (extending from the schizosphere thickness to the integral
scale). A σ−1.35 scaling regime for the pdf develops below this lower
stress limit.

3.3 Distribution of σ

The distribution of σ , the shear stress created by any individual
earthquake with no constraint on magnitude, at the site of subsequent
earthquakes, is shown in Fig. 10. It is seen to follow a σ−1.5 decay,
indicative of a Lévy law with stability index α = 0.5. This value
is consistent with the prediction α = min{α1, α2} of Section 2.2.
In Section 3.2, α1 was found to be in the range 0.5–0.6, and α2 =
β/χ � 0.61. The pdf of σ is also plotted for the first stress invariant
σ 1 + σ 2 + σ 3 rather than the shear stress, and for the shear stress
after randomly reshuffling all the magnitudes. Both of these pdfs also
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Figure 10. Probability density function of |σ |, the shear stress generated by
one earthquake at the site of a future earthquake. The dashed lines correspond
to σ−1.5 power laws.

follow the σ−1.5 scaling over the same stress interval, still bounded at
about 35 kPa. By randomly reshuffling the magnitudes, we test how
the hypothesis that r and M are independent affect the distribution
of σ . In this test, the correlation integral N(r) is by construction
independent of m (apart from a multiplying factor), so that the power-
law decay of the pdf of |σ (m)| is the same at all m. The fact that the
two pdfs (real data and reshuffled magnitudes) are nearly identical
shows that the variations of α1 with m have little influence on the
scaling regime of σ . This comes from the greater number of small-
magnitude events, the distribution of σ being strongly constrained
by that of σ (m) at low m.

3.4 Distribution of σ [m1,m2]

In order to estimate the total stress exerted by all previous earth-
quakes with magnitudes m 1 ≤ m ≤ m 2 on subsequent earthquakes,
denoted as σ [m1,m2], we divide the data sets in two parts. We keep
the first 4670 earthquakes (out of a total of 4870, see Section 3.1)
as stress sources, and use the last 200 earthquakes (nearly covering
the whole of year 2000) as target sites. The latter are not considered
as stress sources, so that all the target earthquakes receive stresses
from the same set of earthquakes. We then compute, for each of
those 200 faults, the total stress σ [m1,m2] by summing the stresses
generated by all the stress sources with magnitude in four [m 1, m 2]
bands: [3.0, 4.0], [4.0, 5.0], [5.0, 6.0] and [6.0, 7.0].

Fig. 11 shows the four pdf. As described in Section 2.3, all mag-
nitude bands have similar distributions, with the exception of 6 ≤
m < 7. We have |D/2 − b| � 0.06 which is effectively smaller than
0.1 (cf. case 2 of Section 2.3). This result amounts to saying that the
total contribution of all the earthquakes in a given magnitude band
does not depend on the magnitude, but only on the size of the band.
This situation was documented in case 2 of Section 2.3 and is ex-
pected to be commonly relevant to earthquake populations. This is
a strong result, as it shows that one cannot a priori model the occur-
rence of earthquakes by only calculating the stress created by a few
large earthquakes: the small-magnitude events are not negligible,
their contribution in the total driving stress being comparable with
the one of their largest counterparts. The consequences on stress
interaction modelling are further discussed in Section 4.

A very different result is obtained when computing the total stress
at random sites (latitude, longitude and depth were randomly drawn
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Figure 12. Probability density function of |σ [m1,m2]|, the stress at random
sites due to previous earthquakes with magnitude m in [m 1, m 2], for four
magnitude bands. The pdfs decay as σ−2, hence α1 = 1, for large stress val-
ues (corresponding to an homogeneous 3-D distribution of nearby sources),
while α1 = 2/3 for small stress (2-D distribution of remote, i.e. distances
greater than the 15 km thickness of the schizosphere, sources). In theory one
can go from the pdf at an interval [m1, m2] to the pdf at another interval
[m1 + 1, m2 + 1] by multiplying it by 101.5−b , as indicated by the thick bar.

as uniform laws, the first two in the [31◦, 38◦ ], [−121◦, −115◦]
interval, depth in the 0–15 km interval), rather than at the site of
future earthquakes. The same set of stress sources as above is kept.
The corresponding pdfs of σ [m1,m2] are plotted in Fig. 12. As de-
scribed in Section 2.3, case 1, the large magnitudes dominate this
stress distribution. Eq. (8) gives that, for a constant magnitude bin
width �m, σ [m,m+�m] should grow as exp[(χ − β)m]. This, along
with a f (|σ [m1,m2]|) ∼ σ−2 decay (as expected for α1 = 1) gives that
this pdf at m + 1 can be deduced from the pdf at m by multiplying
it by exp[(χ − β)m] = 101.5−b. This is in agreement with the pdfs
shown in Fig. 12, with again the exception of the 6 ≤ m < 7 interval,
in which only six events are counted.

4 D I S C U S S I O N

4.1 Alteration of the stress field generated by a main
shock and the modelling of aftershock triggering

As shown in Sections 2 and 3, the static stress caused by the main
shock at sites of pending aftershocks undergoes significant alteration
as the aftershock sequence develops. Most of the elastic stress trans-
ferred to faults that will eventually fail is due to small earthquakes,
and is therefore difficult to model. To account for this transfer would
imply the unrealistic task of modelling the stress redistribution fol-
lowing the occurrence of all the earthquakes in the sequence, down
to very small magnitudes that are rarely or never detected by seismic
networks (a cut-off magnitude lower than m = −1 being a possibil-
ity, see Abercrombie 1995). The relatively good agreement between
stress maps calculated with just the main shock (or with a few large
events) and off-fault seismicity distribution goes against this predic-
tion. This agreement is often visual: mapping of the stress changes
along with the seismicity typically shows a clear correlation between
the two. The inclusion of smaller sources would not strongly alter
the stress change map, as demonstrated by case 1 of Section 2.3 as
it would correspond to volume averages of the stress. However, as
is shown in Sections 2 and 3, earthquakes are observed to occur in
clusters, so that, when estimating the elastic stress transferred from
previous earthquakes to future earthquakes, the area of interest be-
comes much smaller than the total region shown on the map. The
stresses caused by small shocks that look tiny and insignificant on
the map, are of primary importance when studying elastic stress
interactions.

A possible scenario that reconciliates both views can however
be sketched. Early aftershock locations are constrained by the main
shock stress redistribution. As more and more aftershocks occur in
these early regions of stress increase, the stress in those regions
undergo a strong alteration, while this alteration is weak in re-
gions of early stress decrease. Aftershocks thus remain absent in
regions where the main shock decreased the stress, while their repar-
tition in regions where the main shock increased the stress is fur-
ther conditioned by the aftershocks themselves. This can explain
why large volumes of stress increase (caused by the main shock)
are commonly observed to be devoid of seismicity. This type of
fragmentation process is somewhat reminiscent of classical scale-
invariant models (e.g. beta-model of Frisch et al. 1978) that lead to
fractal clustering. Such a scenario implies that, since the distribu-
tion of aftershocks is constrained by the early stress decrease regions
(caused by the main shock) and by the clustering of hypocentres in
the regions of stress increase, the large-scale features of this distri-
bution do not evolve much.

4.2 Near-field stress distribution

It was assumed in Sections 2 and 3 that the sources have uniform
slip over the rupturing fault plane. This strongly limits the validity
of the present analysis: along with the ambiguity on which of the
two nodal planes is the causative one, it implies that the analysis is
approximate and only gives the correct order of magnitude of the
generated stresses. As a consequence, the distributions estimated
in Section 3 possess a characteristic stress value of 35 kPa. More
importantly, the predicted distributions are only valid in the far field,
while numerous pairs of earthquakes have hypocentral distances
shorter than the fault length of the first earthquake that occurred
in the pair. It could, therefore, be a possibility that accounting for
the near-field stress could severely modify the conclusions reached
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here on the importance of small-size earthquakes in elastic stress
interactions. We here give a tentative analysis of the near-field part
of the stress distribution studied in this paper.

The N (r ) ∼ rD, with D = 1.7, scaling of the correlation integral
(Fig. 7) along with L ∼ eχm/3, gives that the number of earthquakes
in the near field of an earthquake of magnitude m scales as eDχm/3,
and the total number of such near-field earthquakes for all earth-
quakes of magnitude m scales as e(Dχ/3−β)m . This number increases
with m if Dχ/3 > β ⇒D/2 > b, which is not verified by the case
study of Section 3. Again (as in Section 2.3, case 2), the parame-
ter |D/2 − b| is of particular importance here. As already argued,
D/2 − b is commonly close to 0 for many seismicity catalogues.
This suggests that the number of target earthquakes located in the
near field of earthquakes of magnitude m does not significantly vary
with m.

The stress distribution close to the fault depends on the slip dis-
tribution; classical models of the latter (Aki & Richards 1980) have
Gaussian statistics, though this assumption has yet to be thoroughly
checked. Indeed, Lavallée & Archuleta (2003) have argued for a
Lévy-stable slip distribution to characterize the 1979 Imperial Val-
ley, California earthquake, with a stability index close to 1. It is
difficult to reliably estimate such an index, given the sparsity of
samples used to constrain this distribution. It has however to be
noted that, for a Cauchy distribution (index equal to 1, see Feller
1971) of the slip and stress drop, the various contributions to the
total static stress at the site of a pending earthquake in the near field
simply sum up, and an argument equivalent to the one developed in
Section 2 would here give that σ nearfield

[m1,m2] = ∫ m2

m1
dx p(x) with the

probability density p(m) ∼ e−(Dχ/3−β)m . It is, therefore, a possibil-
ity that the same conclusions reached for the far-field (i.e. that the
small-magnitude earthquakes play at least as important a role in cre-
ating stress at the sites of subsequent events as the large magnitude
earthquakes do) also apply to the case of the near-field component.
The stress distributions are then expected to exhibit a σ−1−α1 decay
over a wide stress interval, in particular extending past the 35 kPa
value.

5 C O N C L U S I O N S

We have shown in this paper that small earthquakes are at least
as important as large ones for creating static stress at the sites of
pending earthquakes, although they can be neglected when con-
sidering volume averages (e.g. total seismic moment release) of
the elastic stress changes. This, along with the previous observa-
tions (Felzer et al. 2002; see also Helmstetter 2003 who uses a
declustering method to estimate the relation between the number
of triggered earthquakes versus the magnitude of the trigger) in-
dicates that small-scale seismicity plays an important part in the
dynamics of earthquake populations, mostly because of the cluster-
ing properties of earthquake foci. During aftershock sequences, the
stress field undergoes a significant alteration with the occurrence
of many small events. However, this process may keep memory of
the initial conditioning of the aftershock distribution by the main
shock.

A C K N O W L E D G M E N T S

I would like to thank Daniel Lavallée, three anonymous referees and
the editor for their constructive reviews that helped improving and
clarifying this contribution. This work was supported by a grant from
the European Comission (PRESAP) under Framework Program 5.

R E F E R E N C E S

Abercrombie, R.E., 1995. Earthquake source scaling relationships from −1
to 5 ML using seismograms recorded at 2.5-km depth, J. geophys. Res.,
100, 24 015–24 036.

Aki, K. & Richards, P., 1980. Quantitative Seismology, W. H. Freeman, San
Francisco.

Aoyama, H., Takeo, M. & Ide, S., 2002. Evolution mechanisms of an earth-
quake swarm under the Hida Mountains, central Japan in 1998, J. geophys.
Res., 107, 2174, doi:10.1029/2001JB000540.

Bak, P. & Tang, C., 1989. Earthquakes as a self-organized critical phe-
nomenon, J. geophys. Res., 94, 15 635–15 637.

Brune, J.N., 1968. Seismic moment, seismicity, and rate of slip along major
fault zones, J. geophys. Res., 73, 777–784.

Console, R., Lombardi, A.M., Murru, M. & Rhoades, D., 2003. Båth law
and the self-similarity of earthquakes, J. geophys. Res., 108, 2128.

Deng, J. & Sykes, L.R., 1997. Evolution of the stress field in southern Cali-
fornia and triggering of moderate-size earthquakes: A 200-yr perspective,
J. geophys. Res., 102, 9859–9886.

Feller, W., 1971. An Introduction to Probability Theory and Its Applications,
John Wiley and Sons, New York.

Felzer, K.R., Becker, T.W., Abercrombie, R.E., Ekström, G. & Rice, J.R.,
2002. Triggering of the 1999 Mw 7.1 Hector Mine earthquake by after-
shocks of the 1992 Mw 7.3 Landers earthquake, J. geophys. Res., 107,
2190, doi:10.1029/2001JB000911.

Frisch, U., Sulem, P.L. & Nelkin, M., 1978. A simple dynamical model of
intermittent fully developped turbulence, J. Fluid Mech., 87, 719–736.

Goltz, C., 1998. Fractal and Chaotic Properties of Earthquakes, Lecture
notes in earth sciences, Springer, New York.

Gomberg, J. & Ellis, M., 1994. Topography and tectonics of the central New
Madrid seismic zone: results of numerical experiments using a three-
dimensional boundary element program, J. geophys. Res., 99, 20 299–
20 310.

Grassberger, P. & Procaccia, I., 1983. Characterization of strange attractors,
Phys. Rev. Lett., 50, 346–349.

Grasso, J.R. & Sornette, D., 1998. Testing self-organized criticality by in-
duced seismicity, J. geophys. Res., 103, 29 965–29 987.

Hanks, T.C., 1992. Small earthquakes, tectonic forces, Science, 256, 1430–
1432.

Hanks, T.C. & Kanamori, H., 1979. A moment-magnitude scale, J. geophys.
Res., 84, 2348–2352.

Harris, R.A., 1998. Stress triggers, stress shadows, and implications for
seismic hazard, J. geophys. Res., 103, 24 347–24 358.

Harris, R.A., Simpson, R.W. & Reasenberg, P.A., 1995. Influence of static
stress changes on earthquake locations in southern California, Nature,
375, 221–224.

Hauksson, E., 2000. Crustal structure and seismicity distribution adjacent
to the Pacific and North America plate boundary in southern California,
J. geophys. Res., 105, 13 875–13 903.

Helmstetter, A., 2003. Is earthquake triggering driven by small earthquakes?,
Phys. Rev. Lett., 91, 058501.

Jaumé S.C. & Sykes, L.R., 1996. Evolution of moderate seismicity in the
San Francisco Bay region, 1850 to 1993: seismicity changes related to the
occurrence of large and great earthquakes, J. geophys. Res., 101, 765–789.

Kagan, Y.Y., 1991. Fractal dimension of brittle fracture, J. Nonl. Sci., 1,
1–16.

Kagan, Y.Y., 1994. Distribution of incremental static stress caused by earth-
quakes, Nonl. Pr. Geophys., 1, 172–181.

Kagan, Y.Y. & Knopoff, L., 1980. Spatial distribution of earthquakes: the
two-point correlation function, Geophys. J. R. astr. Soc., 62, 303–320.

Kanamori, H., 1977. The energy release in great earthquakes, J. geophys.
Res., 82, 2981–2987.

King, G.C.P. & Cocco, M., 2001. Fault interaction by elastic stress changes:
new clues from earthquake sequences, Adv. Geophys., 44, 1–38.

King, G.C.P., Hubert-Ferrari, A., Nalbant, S.S., Meyer, B., Armijo, R.
& Bowman, D., 2001. Coulomb interactions and the 17 August 1999
Izmit, Turkey earthquake, C. R. Acad. Sci. Paris, Sér. 2, 333, 557–
569.

C© 2005 RAS, GJI, 163, 141–151

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/163/1/141/735417 by guest on 19 February 2021



The role of small earthquakes in redistributing crustal elastic stress 151

Lavallée, D. & Archuleta, R.J., 2003. Stochastic modeling of slip spatial com-
plexities for the 1979 Imperial Valley, California, earthquake, Geophys.
Res. Lett., 30, 1245, doi:10.1029/2002GL015839.

Main, I., 1996. Statistical physics, seismogenesis, and seismic hazard, Rev.
of Geophys., 34, 433–462.

Marsan, D., Bean, C.J., Steacy, S. & McCloskey, J., 2000. Observation of
diffusion processes in earthquake populations and implications for the
predictability of seismicity systems, J. geophys. Res., 105, 28 081–28 094.

Marsan, D. & Bean, C.J., 2003. Seismicity response to stress perturbations,
analysed for a world-wide catalogue, Geophys. J. Int., 154, 179–195.

Nalbant, S.S., Hubert, A. & King, G.C.P., 1998. Stress coupling between
earthquakes in northwest Turkey and the north Aegean Sea, J. geophys.
Res., 103, 24 469–24 486.

Okada, Y., 1992. Internal deformation due to shear and tensile faults in a
half-space, Bull. seism. Soc. Am., 82 1018–1040.

Parsons, T., Toda, S., Stein, R.S., Barka, A. & Dieterich, J.H., 2000. Height-
ened odds of large earthquakes near Istanbul: an interaction-based prob-
ability calculation, Science, 288, 661–665.

Robertson, M.C., Sammis, C.G., Sahimi, M. & Martin, A.J., 1995. Fractal
analysis of three-dimensional spatial distributions of earthquakes with a
percolation interpretation, J. geophys. Res., 100, 609–620.

Samorodnitsky, G. & Taqqu, M.S., 1994. Stable non-Gaussian random pro-
cesses, Chapman & Hall, New York.

Schmittbuhl, J., Schmitt, F. & Scholz, C., 1995. Scaling invariance of crack
surfaces, J. geophys. Res., 100, 5953–5973.

Scholz, C.H., 1972. Crustal movements in tectonic areas, Tectonophys., 14,
201–217.

Scholz, C.H., 1990. The mechanics of earthquakes and faulting, Cambridge
Univ. Press, Cambridge.

Scholz, C.H. & Cowie, P.A., 1990. Determination of total strain from faulting
using slip measurements, Nature, 346, 837–839.

Shcherbakov, R. & Turcotte, D.L., 2004. A modified form of Båth’s law,
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A P P E N D I X A : S C A L I N G R E G I M E S
A S S O C I AT E D W I T H A S E L F - S I M I L A R
S E T O F H Y P O C E N T R E S

We consider a 3-D self-similar distribution of hypocentres, such
that the probability density function (pdf) of the separation length

X between two hypocentres projected along any coordinate axis is
fX (x) ∼ x−a . Self-similarity implies scaling isotropy. The pdf fR(r )
of the distance r is then scaling according to

fR(r ) =
∫

dx fX (x)
∫

dy fY (y)
∫

dz fZ (
√

r 2 − x2 − y2) (A1)

hence fR(r ) ∼ r 2−3a as obtained following the change of coordinates
u = x/r , v = y/r . This yields that the number of pairs N (r ) separated
by a distance between 0 and r scales as

N (r ) ∼
∫ r

0
ds fR(s) ∼ r 3−3a . (A2)

This self-similarity is only valid in the 2–10 km interval, that is,
above the error scale on depth and below the characteristic thickness
of the schizosphere (cf. Fig. 7). We thus have 3 − 3a � 1.7 ⇒ a �
0.43. For 0.2 km ≤ r ≤ 2 km, the separation z in depth follows a
uniform distribution, hence fZ(z) ∼ z0 which leads to N (r ) ∼ r 3−2a ,
hence, a fractal dimension predicted to be equal to 2.14. Finally, the
scaling in the 20–300 km interval is obtained by projecting the 3-D
hypocentre set on the (x , y) plane, giving the epicentre distribution,
hence

fR(r ) =
∫

dx fX (x)
∫

dy fY (
√

r 2 − x2) ∼ r 1−2a . (A3)

This gives that N (r ) ∼ r 2−2a , yielding D = 1.14 for a = 0.43.

A P P E N D I X B : D E P E N D E N C E O F T H E
F R A C TA L D I M E N S I O N D O N T H E
M A G N I T U D E M A N D T H E T I M E
I N T E RVA L T

A constant fractal dimension D for the hypocentre distribution is
assumed in Section 2. The analyses of Section 3 however show that
D depends on the conditional magnitude of the first earthquake of
the pair. Also, dependence of D on the duration T of the catalogue
(Kagan & Knopoff 1980; Kagan 1991) or on the number of samples
(see Robertson et al. 1995, for the capacity dimension) has been
documented. Systematic changes of the spatial structure of tem-
porally correlated earthquake distribution with timescale (Marsan
et al. 2000; Marsan & Bean 2003) can explain these observations.
As a consequence, the stability indices α1 and α characteristic of
the distributions of σ (m) and σ should depend on both m and T .
Since the summation of eq. (6) assumes a constant D with m, it
can only serve as a first order approximation of the real distribu-
tion of the total stress σ [m1,m2]. As the timescale T increases to very
long (geological) scales, D hence also α1 increase. However, the
index α of σ , defined as α = min{α1, α2} with α2 = β/χ = b/1.5
(see Section 2.2) stays constant if one assumes a relatively constant
b-value.
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