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and Jean-Marie Michel3
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S U M M A R Y
We have previously developed a method for characterizing and localizing ‘homogeneous’
buried sources, from the measure of potential anomalies at a fixed height above ground (mag-
netic, electric and gravity). This method is based on potential theory and uses the properties
of the Poisson kernel (real by definition) and the continuous wavelet theory. Here, we relax
the assumption on sources and introduce a method that we call the ‘multiscale tomography’.
Our approach is based on the harmonic extension of the observed magnetic field to produce
a complex source by use of a complex Poisson kernel solution of the Laplace equation for
complex potential field. A phase and modulus are defined. We show that the phase provides
additional information on the total magnetic inclination and the structure of sources, while
the modulus allows us to characterize its spatial location, depth and ‘effective degree’. This
method is compared to the ‘complex dipolar tomography’, extension of the Patella method
that we previously developed. We applied both methods and a classical electrical resistivity
tomography to detect and localize buried archaeological structures like antique ovens from
magnetic measurements on the Fox-Amphoux site (France). The estimates are then compared
with the results of excavations.

Key words: complex dipolar occurrence tomography, complex wavelet transform, electrical
resistivity, inverse problem in potential field, magnetic anomalies, multiscale tomography.

1 I N T RO D U C T I O N

Recent advances in geophysical instrumentations and new devel-

opments in numerical processing concerning inverse problems in

potential theory (Blakely 1995) have made possible a 2-D or 3-D

tomography of the earth subsurface. For example, hydric flow cir-

culation can be detected from electrical self-potential tomography

(Zhdanov & Keller 1994; Ishido & Pritchett 1999; Lapenna et al.
2000; Sailhac & Marquis 2001; Saracco et al. 2004), while buried

archeological structures, specific cavities or density of sources can

be localized from magnetic or gravity potential anomalies (Noel &

Xu 1991; Mauriello et al. 1998; Durrheim & Cooper 1998; Martelet

et al. 2001; Jeng et al. 2003). These developments based on poten-

tial theory are coupled to specific methods such as Euler method

(Thompson 1982; Reid et al. 1990; Ravat et al. 1996), generalized

Hilbert transform (Nabighian 1984), gradient method (Marson &

Klingele 1993), real (Moreau et al. 1997, 1999; Hornby et al. 1999)

or complex wavelet transform (Saracco et al. 2004). Another method

is to consider the detection of buried sources as the search of inverse

filters (Tsokas & Papazachos 1992), or as the result of correlations

between a supposed synthetic source (monopolar or dipolar) and the

measured potential anomalies (Mauriello & Patella 1999; Mauriello

et al. 1998; Patella 1997) .

This last method, called monopolar or dipolar charge occur-

rence probability, requires the specification of the multipolar order

of the source. In the wavelet analysis method of potential fields

(Moreau et al. 1997, 1999) no a priori information of the de-

gree of sources is required. The wavelet method allows the esti-

mation of the degree of sources, but in both cases, the potential

anomalies are assumed to be generated from isolated homogeneous

sources.

The fact that many magnetic sources can be considered in first

approximation, as magnetic dipoles, makes it interesting to define

an extension of the Patella method: the complex dipolar occurrence

tomography (CDOT) (Saracco et al. 2004). This method is based on

phase and modulus, as the complex continuous wavelet transform

(CCWT). The CDOT method allows us to obtain rapid information

about the position and inclination of buried dipolar archaeological

objects. Multiscale tomography allows us to estimate the inclina-

tion and depth of arbitrary geometrical structures, if there exists a
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88 G. Saracco et al.

Figure 1. 2-D map of magnetic anomalies data.

Figure 2. Real multiscale tomography (RMST). Bottom: Noisy synthetic

magnetic intensity generated by three magnetic dipoles of different inclina-

tion (30◦, 90◦ and 0◦) located in the subsurface earth at depth z = 50 m and

lateral distances 500, 1000 and 1250 m, respectively. Top: Amplitude of the

RMST. The intersection of the lines of extrema (extrema of energy of the

real wavelet transform) allows to localize each source depth (or dilation z).

The depths obtained are in good agreement to the true depths (56, 56 and

48 m).

convergence of the lines of maxima in the modulus of the complex

potential field.

The full recovery of magnetic structures from potential anoma-

lies measured at the surface is an ill-conditioned inverse problem

(Tarantola 1987; Sabatier 1987; Telford et al. 1990; Parker 1994).

Any practical method has to be limited to the estimation of a few

parameters.

The purpose of this paper is to introduce a new method of tomog-

raphy for potential field, that we call multiscale tomography, where

sources are not assumed to be homogeneous. The method is quite

general; here it is applied to magnetic fields. The method allows us

to obtain estimates of spatial location, depth, inclination and ‘effec-

tive’ degree (see Section 3) of buried structures from above-ground

measurements of the magnetic field at fixed height. Here, it is applied

to localize and characterize archaeological structures. The estimates

are then compared with the results of excavations and with estimates

given by other methods. The interest of this method for archaeol-

ogists is (i) to have a non-destructive test of an archaeological site

and (ii) to suggest a strategy of excavation.

Before giving a rough description of the method, we recall a few

basic facts.

A stationary magnetic field is the gradient of a scalar magnetic

potential. This potential satisfies the Poisson equation, which be-

comes the Laplace equation in regions without sources (typically in

the half-space z > 0 in which we take measures).

If we know the potential in any horizontal plane with z = z0 and

z0 > 0, we can calculate the potential in the whole half-space z >

0, without making any assumption about the source. This is done

by taking the convolution product of the known potential measured

at a fixed height z0 by the dilated Poisson kernel, where the dilation

operator acts on the depth. The calculation of the potential field in

the whole half-space z > 0 is analogous to the continuous wavelet

transform of the potential measured at the fixed height z0, where

the translation operator acts on the horizontal space (x, y), while the

dilation parameter represents, here |z − z0|, the depth or height. The

continuous wavelet transform combined with potential theory can

be used.

The multiscale tomography method developed here, is based on

the dilation property of the derivatives of a complex Poisson ker-

nel (solution of the Laplace equation for complex potential fields)

(Saracco et al. 2004) and on properties of the wavelet theory which

analyses local singularities (Grossmann 1986; Grossmann et al.
1987; Mallat & Hwang 1992). We extract information on the phase

or ridge of the wavelet transform (Grossmann et al. 1987; Saracco

et al. 1990b, 1991; Delprat et al. 1991). The presence of a cone line

structure of the potential field anomalies is a necessary condition to

estimate the depth and other parameters of sources. If the sources

are homogeneous tempered distributions, the ‘effective degree ‘ is

then the homogeneous degree defined in Moreau et al. (1997).

After a brief recall of the geomagnetic field equations we present

(Section 2), the map of magnetic anomalies obtained from the mag-

netic survey at Fox-Amphoux site (Var, south of France) conducted

on cultivated fields. A classical and rough inversion method to local-

ize the depth of buried structures is given. We define, in Section 3,

the multiscale tomography. The complex dipolar occurrence

tomography (CDOT), an extension of the Patella method, in terms

of modulus and phase is defined in Section 4. In order to validate our

procedure, we have applied both methods to simulated noisy mag-

netic anomalies generated by the sum of buried dipolar sources of

different inclinations and depths, and by the sum of different buried

multipolar sources. The methods are applied to localize and charac-

terize archaeological structures like antique ovens. Section 5 shows
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Multiscale tomography of buried structures 89

Figure 3. Characterization of the magnetic sources with inclination 30◦ (=1), 90◦ (=2) and 00 (=3), from the phase and lines of extrema. Top: Slope β = −4

allowing to extract the degree α = β −1 of the source and depth (z). Middle: Inclination θ = −(900 + Phase). Bottom: Amplitude variation along the ridge

versus dilation.

Figure 4. Complex multiscale tomography. Bottom: Synthetic magnetic

intensity generated from a monopole, a dipole and a quadrupole source at

lateral distances 750, 1500 and 2250 m, respectively, and depth z = 50 m.

Middle: Modulus. Top: Phase. The vertical black lines indicate the value of

the inclination of each source. The localization and characterization of each

source is correctly obtained.

the results obtained by real and complex multiscale tomography and

by the complex dipolar tomography technique on magnetic profiles.

Conjointly, an electrical resistivity prospecting and a rock magnetic

study including measurements of susceptibility and magnetizations

(induced and remanent) were carried out. The results are discussed

in Section 6, and compared with the excavation results of Roman

ovens. Perspectives and conclusions are found in Section 7.

2 G E O M A G N E T I C P O T E N T I A L F I E L D :

F O R M U L AT I O N A N D

E X P E R I M E N TAT I O N

Let B be the magnetic induction of declination D (angle between

the magnetic and the geographic north), and inclination I [angle

between B and the horizontal plane (x, y)]. In absence of external

sources (external current density due to solar wind, solar cycles,

etc., is negligible) and in the quasi-static limit, the equation for

magnetic induction ∇ ∧ B = 0 holds. It follows that B = −∇φ

where φ is the scalar magnetic potential. For an arbitrary obser-

vation point, B is written as the sum of the ambient magnetic

field H modulated by diurnal variations and the total magnetization

M (M = Mi + Mr) modulated by ambient noise and topographic

effects. The induced magnetization Mi is parallel and proportional

to H while the remanent magnetization Mr depends on the ferro-

magnetic composition of the material and H at the original time. Let

ε be the set of fluctuations:

B = μH + ε = μ0(H + M) + ε = μ0(1 + K)H + ε,

μ and K represent the permeability and the magnetic susceptibility

of the ground. μ0 represents the vacuum permeability, so that

B0 in vacuum is equal to μ0H(nT). μ0 = 4π10−7�sm−1. Mr

is, here, principally due to the natural thermoremanent magne-

tization acquired during the cooling of archaeological structures to a

C© 2007 The Authors, GJI, 171, 87–103

Journal compilation C© 2007 RAS



90 G. Saracco et al.

Figure 5. From top to bottom for each type of magnetic source (monopole = 1, dipole = 2 and quadrupole = 3). Top: Inclination θ = − (900 + Phase. Middle:

Slope β allowing to extract the degree α = β − 1 of multipolar sources (β = −3, −4.02, and −4.85) with the depth (z = 50.2, 50.5 and 48.1 m). Bottom:

Amplitude variation along the ridge versus dilation.

Figure 6. Complex dipolar occurrence tomography. Bottom: Same synthetic magnetic intensity as Fig. 2. Middle: Modulus (Dipolar occurrence tomography).

Top: Phase. The vertical lines of phase located at lateral distances 500, 1000 and 1250 m, respectively, indicate the value of the inclination θ of each dipole (θ =
−Phase, π/6, π , 0). The depth of sources obtained in presence of noise are, respectively, around 45, 38 and 40 m instead of 50 m but with a dipolar occurrence

probability in the modulus of the CDOT, p = 0.25.
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Multiscale tomography of buried structures 91

Figure 7. Complex dipolar occurrence tomography. Bottom: Same synthetic magnetic intensity as Fig. 4. The CDO tomography does not allow us to obtain

a good depth estimate of multipolar sources. Middle: Modulus of the CDOT. It is impossible to localize and characterize the monopole source, its dipolar

occurrence probability is around p = 0.2, and to obtain correct results for the others. Their depths are around 42 m (dipole) and between 25 m and 38 (quadrupole)

with a CDOT value p of 0.6 and 0.8, respectively. Top: Phase of the CDOT. The vertical lines of phase located at lateral distances 750, 1500 and 2250 m,

respectively, indicate the inclination value of each multipole. (θ = −Phase = π , 0 and 0).

temperature below the Curie temperature. The present magnetic field

given by the IGRF at site coordinates is 45 983 nT with a declination

D � 0.14◦ and an inclination I � 59◦.

The magnetic data were obtained using a caesium vapor probe

(G858 magnetometer from Geometrics) with a sensitivity of 0.01 nT.

This kind of magnetometer allows a local measurement of the total

magnetic field (induced and remanent). Mr is 20–50 times higher

than Mi, as indicated by Koenigsberger ratio Q = M r/M i , de-

termined on a set of 10 discrete samples collected around T1, T2

and T3 (see Fig. 1). The temporal drift of the magnetic intensity

during an experiment is recorded in order to take into account

the diurnal variations of the magnetic field, and the local variation

due to the magnetization of the lithospheric crust. At the scale of

the site, the last fluctuations are negligible. We got an average vari-

ation of 4 nT hr−1. The set of magnetic prospection covers an area

of 70 × 110 m and was recorded in two parts (see map Fig. 1). Data

acquisition was performed every 1 m along profiles oriented North

145◦ at a distance of 2.5 m from each other. The magnetic receiver

was located at 0.8 m above the ground surface and the error due to

moving position during data acquisition was less than 5 nT. Mag-

netic anomalies are mapped (Fig. 1) using a kriging extrapolation

method and a linear correction for diurnal variations. Our analysis

was performed on data without extrapolation.

Assuming that the volume of an oven is a cube of edge r′, and

the magnetization is induced in the present-day field, the magnetic

anomaly A due to a dipolar source of susceptibility k, located in an

homogeneous medium of susceptibility k0, is: A = (k − k0)F r ′3
r3 ,

where F is the intensity of the total magnetic field, r the distance

between the magnetometer probe and the centre of the dipole.

Considering that K = (k − k0) = 10−2 SI , F � 45 983 nT, and a

fixed distance r ′ (1 < r ′ < 1.5 m), we can obtain a rough estimation

of depths between the probe and the centre of the magnetic object

for the three main anomalies T 1, T 2 and T 3 observed in Fig. 1. The

mean depths corrected for the height of the probe are, respectively,

0.54, 0.82 and 1 m for the three anomalies.

This empirical method can be easily used to estimate in first ap-

proximation the depth of simple structures, but suffers from the

fact that the non-uniqueness of the solution requires some ‘a pri-
ori’ information on the size of the object. In order to reduce these

limitations, it is necessary to formulate this problem in terms of a

problem of potential theory with more general sources.

3 M U LT I S C A L E T O M O G R A P H Y O F

M A G N E T I C P O T E N T I A L S O U RC E S

3.1 Recall of real and complex continuous wavelet

transform

First developed by A. Grossmann and J. Morlet in 1983, the

continuous wavelet transform (CWT) is a well-known method

which allows to decompose an arbitrary signal s in elementary

C© 2007 The Authors, GJI, 171, 87–103
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92 G. Saracco et al.

Figure 8. Electrical resistivity section. Profiles 13, 14 and 15 (see Fig. 1).

contributions called wavelets. These wavelets are obtained by di-

lation Da and translation Tb of a ‘mother or analysing wavelet’ g,

which is real or complex, and required to satisfy ĝ(0) = 0 (admis-

sibility condition), where ĝ is the Fourier transform of g.

The dilation and translation operators acting on a function f in

Rn is defined as:

Da f = a−n f (r/a) and T b f = f (r − b).

The wavelet transform of an arbitrary signal s, in Rn , is:

L (b,a)s = 〈T b Da g, s〉 = 〈g(b, a)|s〉
= (Da g ∗ s)(b)

= a−n

∫
g

(
r − b

a

)
s(r)drn, (1)

where ∗ represents the convolution product of the signal by the

dilated family of wavelets g.

A characterization of the local regularity of the signal, or extrac-

tion of the degree of homogeneity of isolated singularities, can be

obtained from the modulus of the CCWT along the lines of constant

phase (Grossmann 1986; Grossmann et al. 1987), the restriction of

the wavelet modulus along the phase ridge of the CCWT (Saracco

1989; Saracco et al. 1990a, 1991; Delprat et al. 1991; Guillemain

1994), or from the lines of extrema extracted from the RCWT when

the analysing wavelet is real (Mallat & Hwang 1992; Moreau 1995;

Alexandrescu et al. 1995; Moreau et al. 1997). Singularities are gen-

erally characterized by the local Lipschitz exponents. In the class

of singularies, there is a homogeneous tempered distribution s in

Rn , of order α, satisfying for all test function φ, the homogeneous

property:

s(φλ) = s[λnφ(λ.)] = λαns(φ), λ > 0 ⇒ L (b,a)s = λαn L (b/a,1)s

(2)

C© 2007 The Authors, GJI, 171, 87–103
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Figure 9. Magnetic complex dipolar occurrence tomography of anomaly T1 (profile x = 0 m, see Fig. 1). Top: Phase. Middle: Modulus. Bottom: Magnetic

intensity.

In both cases the exponent, here the homogeneity degree, is es-

timated from the evolution across scales of the wavelet trans-

form, in log–log representation and characterizes the local structure

of s.

3.2 Potential theory and wavelet transform

The magnetic field measured at the altitude z > 0 (see Section 2),

and generated by a buried source σ(x, z), (x = (x, y)), located in

z < 0, satisfies:

B(x, z) = −∇A(x, z), (3)

with A denoting the scalar potential.

We have the system of equations:

z > 0, 
A(x, z) = 0; x = (x, y);

z = 0, A(x, 0) = A0(x);

z < 0, 
A(x, z) = −σ(x, z). (4)

It follows:

A(x, z) = (Dz P ∗ A0)(x) =< T x Dz g, A0 >= L (x,z) A0 (5)

P is defined in R2, P(x) = C3(1 + |x|2)−5/2 (Courant & Hilbert

1990). The Fourier transform of P is P̂(u) = exp−2π |u| where u is

the dual variable of x. A is called the harmonic extension of A0 in

the half-space z > 0.

The function P satisfies the crucial equation:

Dz P ∗ Dz′
P = Dz+z′

P, (6)

which can be easily verified in Fourier space. This property of the

Poisson kernel is the starting point in this paper and in Moreau et al.
(1997) on the use of wavelet theory in the study of potential fields.

Note that we work with measured values of the total magnetic

field B, on profiles along the variable y, to obtain information in the

plane (y, z) (see Fig. 1), that is, we work with the derivative of the

magnetic scalar potential (∇A), and we assume n = 1, from now on.

If A(y, z) is the solution of the Laplace equation in the half-plane

(y, z > 0), it is obtained from the convolution product of the dilated

Poisson kernel and the known potential field at a fixed depth z0.

Let A(y, z) be the solution of the Poisson equation in the half-plane

(y, z > 0). We can then write, using the dilation and translation

operators, A(y, z) = (D zg ∗ A0)(y), that defines the real continuous

wavelet transform (RCWT) of the measured magnetic field A0 along

the profile y. The depth z represents the dilation or scale parameter

along the vertical axis, and y represents the translation parameter

along the horizontal axis. P or the partial derivatives of P (∂γ
y ∂

δ
z P),

play the role of the analysing wavelet g which is real by definition.

The half-plane (y, z > 0) is the position-scale half-plane of the

RCWT.

In order to localize and characterize buried sources σ in the

half-plane (z < 0), we use the property of harmonic extension

of the solution A(y, z) with the property of the Possion kernel

defined in (6). It is not necessary to use all the information of the

half-plane z > 0, that is, all wavelet coefficients L(y,z). Only the

restriction of the wavelet coefficients along the lines of extrema of

the modulus presenting a cone line structure is necessary. If the

lines of extrema do not present a cone-line structure, no solution

exists for the localization. The convergence of the lines of extrema

C© 2007 The Authors, GJI, 171, 87–103
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94 G. Saracco et al.

Figure 10. Real multiscale tomography of anomaly T1, (profile x = 0 m). Dashed lines represent the lines of extrema. The dilation −10 represents, here, a

depth of 2 m with a sample rate of 0.2.

Figure 11. Complex multiscale tomography of anomaly T1, (profile x = 0 m). From top to bottom. Left: Phase; Modulus; Magnetic intensity. Right: Phase;

Order α of the singularity (α � −3.2) and depth z (centre of the structure); Variation of the wavelet coefficient with respect to the dilation a (i.e. the depth z).
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Multiscale tomography of buried structures 95

Figure 12. Complex dipolar occurrence tomography of anomaly T2, (profile x = 2.5 m, see Fig. 1). Top: Phase. Middle: Modulus. Bottom: Magnetic intensity.

Figure 13. Real multiscale tomography of anomaly T2, (profile x = 2.5 m). The lines of extrema are presented by dashed lines. the dilation −10 represents a

depth of 2 m, with a sample rate of 0.2.
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96 G. Saracco et al.

Figure 14. Complex multiscale tomography of anomaly T2, (profile x = 2.5 m). From top to bottom. Left: Phase; Modulus; Signal. Right: Phase; Order α of

the singularity (α � −3.7) and depth z; Variation of the wavelet coefficient with respect to the dilation a (i.e. the depth z).

through the intersection point zs < 0 gives the depth of magnetic

buried sources (Fig. 2). This extension or extrapolation is similar

to a contraction of the operator D in the half-plane z < 0. The de-

gree α of buried sources or structures can be extracted from the

slope β of extrema lines in log–log representation (Fig. 3) with re-

spect to covariance and homogeneity properties of the CWT and

the Poisson equation linking the source σ of dimension n and the

potential anomaly A (Mallat & Hwang 1992; Moreau et al. 1997,

1999; Saracco et al. 2004). The detected effective source character-

ized by the local behaviour of the exponent α, we call this exponent

the ‘effective degree’. This ‘effective degree’ represents the homo-

geneous degree if the source is a homogeneous distribution. Let β

be the degree of the magnetic field B which differs by one degree

from the potential field, we have:

B = −∇A, 
A(y, z) = −σ(y, z) ⇒ β = α + 1. (7)

If we take an analysing wavelet not equal to the Poisson kernel

P but to a partial derivative of P of order γ , using (1) and (6) the

potential fulfils:

L (y,z) A =
(

a

a + z

)γ−2−α

L [y(a+z)/a,1] A (8)

Accordingly,

β = 1 − γ + α. (9)

In one dimension a dipole (potential source) is a homogeneous

function of degree α � −2, we consider here, sources of dimension

2 (α � −3) and we do not measure the potential but the field deriving

from the magnetic potential.

3.3 Complex Poisson kernel

Introducing the Hilbert transform of the Poisson kernel P, we can

define a complex Poisson kernel (Saracco et al. 2004). The complex

Poisson kernel satisfies eq. (5), for complex potential fields. The

complex analysing wavelet associated to the complex Poisson ker-

nel, represents the analytic wavelet (in the sense of an ‘analytic sig-

nal’ (see Papoulis 1984) of the real wavelet g such that ga = ∂γ
y ∂ z P +

iHT[∂γ
y ∂ z P] = uγ−1 exp−2π |u| (i2π )γ (u + i |u|). The choice of or-

der γ of the partial derivative can be conditioned to increase energy

through scales of the wavelet transform. We have chosen γ = 2; this

implies an analysing wavelet with four vanishing moments. A phase

and a modulus of the multiscale tomography of magnetic field can

be defined (Fig. 4). If singularities are correctly extracted from the

modulus, a good estimation of the depth of the object is obtained,

while the phase allows us to define a new parameter: the inclination

θ of structures for multipolar sources (Fig. 3, middle and Fig. 5, top)

such that θ = −(90◦ + Phase). For extended sources, we do not ob-

tain a singular value θ , but a set of values where the modulus takes

a maximal value. This set of values has a physical sense linked to

the structure of the source along the analysed profile.

As a Roman oven is represented as a dipole magnetic source

by palaeomagnetists, we have calculated the potential field

generated by different dipole sources with different inclinations

in presence of white Gaussian noise, then by multipole sources

with the same inclination θ . The extrapolation of extrema lines

out of the half-plane z > 0 is obtained from the calculus of

straight lines from expression (9) using a least squares method.

Fig. 2 presents the results of the real multiscale tomography of

C© 2007 The Authors, GJI, 171, 87–103
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Multiscale tomography of buried structures 97

Figure 15. Complex dipolar occurrence tomography of anomaly T3, (profile x = 27.5 m, see Fig. 1). Top: Phase. Middle: Modulus. Bottom: Magnetic intensity.

Figure 16. Real multiscale tomography of anomaly T3, profile x = 27.5 m. The lines of extrema are presented by dashed lines. The dilation −15 represents a

depth of 3 m, with a sample rate of 0.2.
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98 G. Saracco et al.

Figure 17. Complex multiscale tomography of anomaly T3, profile x = 27.5 m. Right: From top to bottom, phase, order α of the singularity (α � −3.94) and

depth z, variation of the wavelet coefficient with respect to the dilation a (i.e. the depth z).

magnetic intensity in presence of noise generated by three dipole

structures of different inclinations at lateral distances 500, 1000 and

1250 m and depth 50 m, while Fig. 3 presents results from complex

wavelet tomography. The localization (Fig. 2) and the characteriza-

tion of structures (Fig. 3) are, in spite of noise, in good accordance

with the real values of depth, inclinations (30◦, 90◦ and 0◦) and ho-

mogeneity degree (β = −4). We note, from dilation 65, on the phase

extracted from the CCWT (Fig. 3, middle), the influence of the third

structure on the second one due to its closeness or coalescence. The

amplitude variation along dilations (Fig. 3, bottom) is characteristic

of a dipolar structure (see Fig. 5, bottom, for the dipole).

Figs 4 and 5 present the results of the complex wavelet tomogra-

phy (or complex multiscale tomography) of the magnetic intensity in

absence of noise generated by three multipolar structures (monopole

of inclination 90◦, dipole and quadrupole of inclination 0◦) at lat-

eral distances 750, 1500 and 2250 m, respectively, and depth 50 m.

Results of inclinations and homogeneity degrees (Fig. 5, top and

middle) are in good accordance with real values of θ and α (−2,

−3.02 and −3.85). The depths of the structures obtained from real

wavelet tomography are, respectively, 50.2, 50.5 and 48.1 m. Fig. 5,

bottom, indicates the characteristic amplitude variations along dila-

tions for multipoles.

4 C O M P L E X D I P O L A R O C C U R R E N C E

T O M O G R A P H Y

This method, based on a normalized correlation between the mea-

sured potential anomalies A(y, z > 0) and a supposed buried source,

was introduced first by Patella in electrical tomography consider-

ing buried monopolar sources (Patella 1997). The localization of

sources is obtained from the charge occurrence probability (COP).

As dipolar sources are more appropriate for the search of magnetic

archeological objects, one can define a dipolar charge occurrence

probability (DOP) noted p, where 0 < p < 1. The DOP represents

vertical and horizontal components of the magnetic potential called

the vertical and horizontal dipolar occurrence probability (Mauriello

& Patella 1999). These two components can be interpreted as the

real and imaginary parts of an analytic potential (Saracco et al.
2004). A modulus and a phase can be defined as the complex

multiscale tomography. To avoid confusion between the dipolar

occurrence probability tomography defined by Patella and this

method defined in terms of modulus and phase, we call this one

the complex dipolar occurrence tomography (CDOT). The modulus

represents the dipolar charge occurrence and allows us to define the

depth of buried sources supposed to be homogeneous of degree α �
−3 in 2-D (dipolar potential sources). Inclinations of sources θ can

be estimated from the phase of the complex dipolar tomography,

as we have defined the inclination from the phase of the complex

continuous wavelet transform. This means that the vertical lines of

phase converging towards the detected sources, where the modu-

lus is maximum, indicate the inclination θ of each source such that

θ = −Phase. The source signal Fig. 6 represents the 2-D magnetic

intensity generated by a dipolar source in presence of noise at lat-

eral distances 500, 1000 and 1250 m, respectively, (β = −4). The

analysed signal is the same as Fig. 2. The inclination θ obtained for

each source is, respectively, π /6, π and 0 (see Fig. 6, top) in perfect
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Figure 18. Archaeological structures corresponding to anomalies T1 and T2 discovered after excavation.

Figure 19. Archaeological structures corresponding to the anomalie T3 discovered after excavation. We can observe archs corresponding to the top of the

Roman oven.
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Figure 20. Anomaly T3: Multi-scale tomography for x = 30 m. Right: From top to bottom: Phase; Modulus; Measured magnetic intensity. Left: Phase;

“effective degree” α with estimated depth z; and variation of the maxima of the modulus with respect to the dilation in the half-space z > 0.

accordance with true values, while their depths are obtained from

the modulus of the CDOT with a dipolar occurrence probability

value p of 0.25 (see Fig. 6, middle).

The use of dipolar tomography on magnetic intensity (Fig. 7)

generated by a monopole, dipole and quadrupole structure without

noise (same signal as Fig. 4) does not allow a correct localization

and characterization of a multipole except when the source is dipolar

(Fig. 7, middle). The modulus of the complex dipolar tomography

cannot be equal to one even if the source is an isolated dipolar

source in absence of noise (see Figs 6 and 7). This implies a rough

estimation of the depth (see the impossibility to estimate the depth

of sources). The advantage of using this method is to obtain a rapid

estimation of possible buried isolated homogeneous structures and

a good estimation of their inclinations. The values θ extracted from

the phase of dipolar tomography are, respectively, π , 0 and 0 (Fig. 7,

top).

5 E L E C T R I C A L R E S I S I T I V I T Y

A N D E X P E R I M E N T S

To complete and compare our magnetic prospection of archeologi-

cal structures, we made an electrical resistivity tomography of the

site (Fig. 8). Three profiles of electrical resistivity were recorded at

x = 5, 10 and 20 m with a LUND SAS-4000 acquisition system (see

Fig. 1). We choose a Wenner protocole for a good signal-to-noise

ratio, including 64 electrodes of 1 m spacing. Tomographic sections

were obtained with the academic RES2DINV software of LUND.

Potential archeological structures appear along profiles 13, 14, 15 in

agreement with some magnetic anomalies (Fig. 8). High values of

resistivity appear also for a strong compaction of the ground. In this

case, it is difficult to distinguish the contribution due to the litholog-

ical structure of the ground from the contribution of archeological

structures, without palaeomagnetic information.

Potential archeological structures (Fig. 8) (antique ovens) appear

as local resistive objects of (40–120 � m) range, at the depth of

1–2 m, buried in sediments (10–30 � m). The limestone substrate

appears at large depth with a resistivity of (60–230 � m). The prob-

lem of this method is to differentiate, sometimes, an archeological

object from natural subsurface heterogeneities such as local com-

paction of the ground, change of soil mineralogy, or from the lime-

stone substrate. They could give the same electrical resistivity or

conductivity behaviour. Only the information carried by the rema-

nent magnetic field allows us to separate an archeological structure

from the surrounding rock. Conjoint electrical and magnetic surveys

are necessary.

6 M U LT I S C A L E A N D C O M P L E X

D I P O L A R O C C U R R E N C E

T O M O G R A P H Y: R E S U LT S O N F I E L D

DATA

We found different depths and inclinations of structures correspond-

ing to archeological objects (fragment of tiles, broken potteries, etc.),

and lithological objects (clays, limestone substrate) (see Figs 1 and

8). Each structure is spatially localized and characterized by its am-

plitude, degree and phase. We present results both in real (Figs 10,

13 and 16) and complex multiscale tomography (Figs 11, 14, 17, 20

and 21), and in complex dipolar occurrence tomography (Figs 9, 12

and 15). Inclinations versus dilation are obtained from the phase ϕ
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Figure 21. Anomaly T3: Multi-scale tomography for x = 32 m. Right: From top to bottom: Phase; Modulus; Measured magnetic intensity. Left: Phase;

“effective degree” α with estimated depth z; and variation of the maxima of the modulus with respect to the dilation in the half-space z > 0.

of the CMST, such that θ = −(90o + ϕ). The degree of elementary

structures is obtained from the slope of extrapolated lines of extrema

in the half-plane z < 0 versus log |L (y,z)/aγ )|, |Log(a + z0)|.
We notice three main anomalies denoted T1, T2, T3, of which the

last, T3, is very extented. To obtain a better estimation of depths,

magnetic data were interpolated with a sample rate of 0.2 m. The

ordinates of the real multiscale tomography are displayed until the

dilation value −10 (Figs 10 and 13) and −15 (Fig. 16). The depths

associated to these scale values are, respectively, −2 and −3 m. Real

and complex multiscale tomography are displayed on 6 octaves of

50 voices each, from the first dilation a = 0.5.

The lines of extrema and ridges of the multiscale tomography are

numbered (Figs 11, 14 and 17). Only ridges corresponding to main

anomalies are presented, that is, ridges 5, 6 and 2 for anomalies T1,

T2 and T3, respectively. From the phase of the CMST, we deter-

mine a set of inclinations θ linked to the structure of buried sources

while the intersection of the lines of extrema of the RMST, gives an

estimate of the depth z and the ‘effective degree’ α of source.

From the phase of the complex dipolar occurrence tomography we

extract, when the modulus is maximum, the inclination of structures

(Top of Figs 9, 12 and 15). The estimated depth corresponds to the

high magnetization part of ovens. To characterize the depth and the

‘effective degree’ from wavelet tomography, we have the choice to

analyse the structure in its globality, and to extract a mean depth of

the structure from the complex wavelet tomography, or to consider a

local analysis and extract from the real wavelet tomography a local

variation of the remanent magnetization of the structure.

The results for the multiscale tomography (real and complex) and

complex dipolar occurrence tomography (CDOT) are summarized

in Tables 1 and 2. A 0.8 m correction for the probe height was

made. The depths deduced from multiscale tomography (MST) are,

respectively (0.49 and 0.69 m) for T1 anomaly and (0.9 and 1.2 m)

for T2 anomaly.

Results of the larger and deeper T3 anomaly are summarized in

Table 2. Figs 20 and 21 complete the results for profiles x = 30 and

32 m.

7 R E S U LT S O F A RC H A E O L O G I C A L

E X C AVAT I O N

Excavations were made on the Fox-Amphoux site by archeologists.

They found Roman ovens on magnetic anomalies locations. The

dimensions of kilns were: 2 m wide by 2–3 m high. The depths

found were in agreement with results obtained from wavelet tomog-

raphy (Figs 18 and 19). Only the top of anomaly T3 was excavated

(Fig. 19). The strong and wide anomaly observed in this place using

both electrical and magnetic surveys is due to the presence of a de-

pot of blows. The Roman oven (anomaly T1) was partially broken

down (Fig. 17), and was discovered after the first 0.7 m of clear-

ing, corresponding to the estimated depth values. Each structure

possesses its own magnetic field, because the overheated earth has

a different magnetization from the natural magnetic environment

rock. Potteries (overheated earth) contain magnetic minerals, prin-

cipally iron oxides, responsible for remanent magnetization. When

the temperature reaches the Curie or Neel temperature, during the

firing, this remanent magnetization disappears. During the cooling

below this critical temperature, a new remanent magnetization is ac-

quired, guided by the surrounding magnetic field. This new remanent
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Table 1. Results for T1 and T2 magnetic anomalies.

Lateral position MST CDOT

x (m) y (m) depth z (m) Probability p for z (m)

0 31.53 0.49 p = 1 for 0.5 < z < 1.5

0 35.24 0.69 p = 0.7 for 1.2 < z < 2

2.5 45.9 0.90 p = 1 for 0.4 < z < 1.3

2.5 46.8 1.2 p = 1 for 0.4 < z < 1.3

Table 2. Results for T3 manetic anomaly.

Lateral position MST CDOT

x (m) y (m) depth z (m) Probability p for z (m)

22.5 12.51 0.86 p = 0.4 for 1.8 < z < 3.8

22.5 53 1.63 p = 0.15 for 0.3 < z < 1.7

25 11.65 0.66 p = 0.2

25 18.18 1.49 p = 0.7 for 0.3 < z < 1.7

27.5 13 0.86 p = 0.3

27.5 19.28 1.82 p = 0.9 for 1.1 < z < 2.1

27.5 35.2 2.32 p = 0

27.5 57 2 p = 0

30 17 1.4 p = 0.6 for 2 < z < 3

30 21.29 1.25 p = 0.8

30 22.82 0.84 p = 0.4

30 57 3.81 p = 0

32 19.57 0.53 p = 0.4

32 26.3 6.3 p = 0

32 41.57 0.94 p = 0

magnetization is then a record of the field during the cooling. Com-

plementary analysis of rock magnetic and on archaeological frag-

ments sampled during our experiments have shown a dominant

natural remanent magnetization (NRM). We have studied only re-

sults corresponding to potential ovens and archaeological fragments

with strong magnetizations. To complete T3 anomaly analysis, we

present complex wavelet tomography for x = 30 and 32 m (Figs 20

and 21) showing estimated depth structures around 1.3–1.5 m. This

is in agreement with the depth obtained by archeologists after

excavation.

8 C O N C L U S I O N A N D P E R S P E C T I V E S

The total magnetic field anomalies found by caesium magnetometer

surveys may arise from the superimposition of induced and NRM of

archeological structures. Classical magnetic instruments sometimes

restrict the search of burial objects from potential anomalies due to

induced magnetizations only. It appears from the rock magnetic

study of Fox-Amphoux site, that NRM dominates, if it is not weak-

ened by induced chainage anisotropy. In this case classical methods

are not well adapted. The multiscale tomography applied to the total

magnetic field makes it possible to estimate the depth of potential

sources in terms of modulus and phase, whatever their origin, ei-

ther induced or remanent. A complex structure is decomposed into

‘effective’ sources, or isolated singularities for which estimates are

obtained for inclinations, depth and ‘effective’ degree. The depths

estimated by our methods are in good agreement with the size and

the structure of archaeological objects excavated by archeologists on

cultivated field at Fox-Amphoux site (Var). Moreover we obtained

information on the localization of lithological structure (limestone

substratum), and on archeological fragment objects of the same cen-

tury (fragments of kiln, tiles, potteries, etc.).

The estimates of inclinations of structures from the phase of com-

plex dipolar tomography or multiscale tomography for synthetic

noisy isolated homogeneous sources, are satisfactory. For extended

sources like Roman ovens, it seems that the phase taken along the

maxima of the modulus makes a physical sense. The results obtained

for the anomalies T2 and T3 are in good agreement with structures

excavated. The results for the anomaly T1 are not clear because of

the small depth of the excavated oven, destroyed in major part by

agricultural activity over time.

This study demonstrates the efficiency of multiscale tomography

methods in archaeological prospecting and we want to develop this

processing to deeper complex archaeological structures.
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