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Abstract A study of polydisperse suspensions of fluorohectorite clay in saline solutions is 

presented. The suspended clay colloids consist of stacks of several tenths of 1 nm-thick 

nanosilicate sheets. They are polydisperse both with respect to the number of stacked 

nanolayers and with respect to their extension along the sheets. Due to this polydispersity, a 

spontaneous gravity-induced vertical segregation occurs in the sample tubes, and results in the 

presence of up to four different phases on top of each other. Precise characterization of the 

phase diagram of the samples as a function of salt concentration and vertical position in the 

tubes, based on small-angle X-ray scattering data, is presented. The vertical positions of the 

phase boundaries were monitored by analyzing the eccentricity of elliptic fits to iso-intensity 

cuts of the scattering images. The intensity profiles along the two principal directions of 

scattering display two power law behaviors with a smooth transition between them, and show 

the absence of positional order in all phases. 

Synopsis Precise characterization of the phase diagram for suspensions of Na-

Fluorohectorite colloids in saline solutions is achieved from small-angle X-ray scattering 

measurements. Radial intensity profiles are also addressed. 
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1. Introduction 

Colloidal suspensions of 2:1 clay particles in aqueous salt solutions make ideal model 

systems for the study of interactions between platelet-shaped particles. Indeed, the particle-

particle interaction consists of (i) the van der Waals attraction and (ii) the electrostatic 

repulsion between the particles' electric double layer (McBride & Baveye, 2002). The 

extension of the latter repulsion can be easily tuned by changing the electrolyte concentration 

(Israelachvili, 1992). This complex particle-particle interaction combined with the strong 

particle anisotropy results in rich phase behaviors. The phase diagram of the monodisperse 

synthetic 2:1 clay Laponite dispersed in saline solution, in particular, has been the subject of 

much attention (Mourchid et al., 1998; Bonn et al., 1999; Lemaire et al., 2002). Such 

dispersions are now well-known for the existence of a spontaneous nematic arrangement of 

the platelets at given salt- and particle-concentrations (Mourchid et al., 1998; Lemaire et al., 

2002; van der Beek & Lekkerkerker, 2003). 

Another synthetic clay, Na-fluorohectorite (NaFHT), has been found to exhibit interesting 

phase behavior when suspended in saline solutions. NaFHT presents polydispersity in both 

particle size and aspect ratio (Kaviratna et al., 1996). In the presence of polydispersity a 

spontaneous phase segregation occurs in the suspensions (Fossum, 1999; Bates, 1999; van der 

Kooij, 2001), with several phases co-existing in strata. X-ray Diffraction studies of such 

systems (DiMasi et al., 2001) have investigated the clay particles' orientations in these 

NaFHT-NaCl-H2O systems, taking advantage of their nano-layered nature. Three distinct gel 

regions were identified and characterized by differences in orientational order and/or the size 

of ordered domains. One phase was presented as nematic. Those findings are consistent with 

visual observations (Fossum et al., 2005), including observations through crossed polarizers: 

a birefringent region, coinciding with the region exhibiting orientational order (as inferred 

from the wide-angle X-ray scattering study), was observed. More recently, the existence of an 

isotropic to nematic transition in these systems has been corroborated by MRI studies of 

anisotropic of water self-diffusion (de Azevedo et al., 2007). 

However, the corresponding phase diagram has not yet been determined with precision, 

nor has the orientationally-ordered gel phase been fully characterized as nematic. In the 

present work, synchrotron small-angle X-ray scattering (SAXS) is used to obtain a fine 

characterization of the phase diagram, over a large NaCl concentration range. The 

experimental method is presented in section 2 and the data analysis and results in section 3; 

section 4 is the conclusion. 
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2. Experimental method 

2.1. Samples 

The samples consist of Na-Fluorohectorite (NaFHT) crystallites suspended in a saline 

solution. They were prepared in the following way: Li-Fluorohectorite clay was purchased in 

powder form from Corning Inc. (New York). It was cation-exchanged using NaCl, and then 

the extra Cl- ions were removed through dialysis. After drying, the obtained clay crystallites 

have the nominal chemical formula Na0.6(Mg2.4Li0.6)Si4O10F2. 

Several suspensions of such crystallites were subsequently prepared, with a 3% 

concentration of clay (w/w), and NaCl concentrations ranging from 0.1 to 25 mM (Table 1). 

After addition of the clay powder to the saline solution, the suspensions were left shaking 

overnight; after twelve hours, they were poured into 2 mm diameter capillaries made of quartz 

glass (Hilgenberg Mark tubes with 0.01 mm wall thickness). They were then allowed to settle 

for thirty days. After this time, one could observe up to four superimposed phases, as shown 

in Fig. 1: the phase at the very bottom is opaque; that on top of it is a translucent gel; the third 

phase observed from the bottom up is a transparent gel; the top phase is a transparent sol. 

2.2. Scattering setup 

SAXS experiments were performed on the Dutch-Belgian Beamline (DUBBLE) at the 

European Synchrotron Radiation Facility (ESRF), in Grenoble (France). This beamline 

provides a focused, monochromatic radiation with an energy tunable in the range 5-30 keV, 

corresponding to wavelengths between 0.41 and 2.48 Å. A wavelength of 1.55 Å was chosen 

for this experiment. 

The experimental hutch contains the SAXS camera with a maximal and minimal sample-

to-detector distance of 8 and 1.4 m, respectively. The maximum camera length D = 8 m was 

chosen for the whole length of the measurements, so as to investigate length scales as large as 

possible. Two-dimensional SAXS images were recorded using a two-dimensional multiwire 

gas-filled detector (Gabriel & Dauvergne, 1982). This detector has an image size of 133x133 

mm2 with a spatial resolution of 250±5 µm. The beam size that we used had a diameter of c. 

0.2-0.3 mm and the beam stop was approximately a 5x5 mm2 square. Consequently, for the 

chosen wavelength of 1.55 Å, the q-range accessible in the experiment was 0.013-0.33 nm-1, 

corresponding to probed length scales between 20 and 480 nm. The measurement setup also 

contains a linear wide-angle X-ray scattering (WAXS) detector based on a curved microstrip 

glass strip counter. This allowed to simultaneously record SAXS and WAXS data with a time 

resolution down to 1 ms/timeframe. The WAXS data will not be discussed in this paper. 
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In order to avoid repeatedly entering the experimental hutch to change samples, a sample 

holder containing ten capillaries placed side by side and regularly spaced was employed. The 

samples were placed in the beam in turn by translating the holder using a remotely-controlled 

horizontal translation stage. Another translation stage allowed controlling the vertical position 

of the sample with respect to the beam. 

2.3. Experimental protocol 

For each sample: (i) a vertical transmission scan was carried out and (ii) SAXS patterns at 

different heights were collected. Table 1 lists the details of vertical positions at which SAXS 

data was recorded for each sample. The liquid phase at the top of the sample tube was not 

investigated. All SAXS images were recorded with an exposure time of 60 s. They were 

subsequently corrected for the detector’s transfer function, and normalized with respect to the 

sample transmission. Scattering from the empty tubes proved to be negligible compared to the 

data, and therefore no subtraction of the empty tube data was necessary. 

3. Data analysis 

3.1. Method 

Fig. 2 displays examples of SAXS images recorded from the lower and upper gel phases, 

for a salt concentration of 1 mM. The data in Fig. 2(a) is isotropic, while the one displayed in 

Fig. 2(b) is clearly anisotropic, indicating a preferential orientation of the clay crystallites.  

Iso-intensity lines of the SAXS images are well described by ellipses. Hence, a custom-

made MATLAB program was used to fit ellipses to such iso-intensity lines. Practically, the 

fitting procedure is accomplished in the following way. First, a narrow intensity range is 

selected (Fig. 3a), and then the pixels with an intensity that falls in that range are extracted 

from the two-dimensional SAXS image. Subsequently an ellipse is fitted to the cloud of 

points defined by the horizontal and vertical coordinates of the selected pixels (Fig. 3b). This 

procedure provides the center of the ellipse, the length of its major axis, a, that of its semi-

minor axis, b, and its angle of tilt with respect to the horizontal. From a and b one can 

calculate the eccentricity, e 

 
2

2
1

b
e

a
= − . 

This procedure was tested at different intensity levels, and the fit results were shown to 

depend only weakly on the intensity range used to obtain them. 

The obtained fit parameters can be related to the scattering process as follows: (i) the 

center of the ellipse is a fine estimate for the position of the direct beam; (ii) the principal axes 
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of the ellipse are related to the orientational ordering of the scattering clay particles; (iii) the 

eccentricity of the ellipse is a measure of the image's anisotropy: an image with a perfect axial 

symmetry would yield a value e = 0, while a value closer to 1 denotes a very anisotropic 

image; and (iv) the angle of tilt of the ellipse is related to the preferential orientation of the 

scatterers with respect to the laboratory frame. 

Finally, one-dimensional intensity profiles of scattering intensity versus q along the 

principal axes of the ellipses were computed. Those profiles were generated by integrating the  

images over azimuthal angles in 5o wide sectors around each of the principal directions. The 

resolution of those profiles along the radial direction was set to 250 radial bins. 

3.2. Results 

3.2.1. Phase diagram 

The computed eccentricities were plotted as a function of the vertical position for each 

sample. From these plots (not shown here) it is readily noticeable that: (i) a region at the 

bottom part of the sample corresponds to eccentricities spread over a wide range of values, (ii) 

a region which only contains high eccentricities values is found on top of the latter one, and 

(iii) the third region from the bottom up contains only low eccentricities values. Note that the 

fourth (and top) phase observed visually in the highest part of the sample tube was not studied 

by SAXS, and will not be discussed in what follows. The three regions found from the SAXS 

data correspond to the three bottom phases observed visually. Since the anisotropy of the  

scattering images is characteristic of particle orientational ordering, the phases were identified 

as the sediment, a gel phase with preferential particle ordering, and an isotropic gel, 

respectively.  

From these plots for individual samples, a surface plot taking all samples into account was 

constructed. Since the concentrations used here form a non-regular and non-monotonic grid, 

MATLAB was used to interpolate the data on a regular grid. Fig. 4(a) shows a grayscale view 

of that surface plot, with salt concentration along the horizontal axis and vertical position 

along the vertical axis; grayscale intensities denote the eccentricity value at a given point of 

the parameter space. In this representation, sudden changes in the gray level denote possible 

phase boundaries. A dark gray zone at the top of the image obviously denotes the isotropic gel 

phase, since the scattering from that phase is isotropic. On the other hand, the images 

collected in the gel phase with a preferential orientation of the particles must correspond to 

high eccentricities, since the characteristic orientational ordering causes a very anisotropic 

scattering. Therefore, the white zone on the left part of the image, under the region 

corresponding to the isotropic gel, corresponds to that anisotropic gel. 
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In order to complete our understanding of the phase boundaries as inferred from the SAXS 

data, a grayscale image of the transmission data was also made (Fig. 4b). Owing to the 

relatively sharp change in transmission from the sediment to the gel phases, it is easy to 

identify the sediment. Note that the images of Figs. 4(a) and 4(b) complement each other; 

their joint interpretation allows clear definition of the phase boundaries for the sediment, 

anisotropic gel and isotropic gel. We are left with an unidentified region in the right part of 

the image, between the regions corresponding to the sediment and to the isotropic gel. That 

region exhibits moderate attenuation, and moderate eccentricity values that vary on a small 

scale in the parameter space. It also exhibits all possible angles of tilt for the fitted ellipses 

(tilt angle data are not shown here). 

Fig. 5 summarizes this phase diagram for the suspensions. Note that the use of the relative 

vertical position as a vertical axis in Figure 5 is somewhat un-physical. It can however be 

related to a more physical parameter such as the particle volume fraction. Indeed, the vertical 

phase segregation is thought to be related to a vertical gradient in volume fraction, as a 

consequence of polydispersity. In this sense, the phase diagram in Fig. 5 can be related to 

better known phase diagrams of clay colloids in saline solution (that of laponite, for example), 

as a function of particle volume fraction and ionic strength of the solution. We do not know 

yet how the relative vertical position in the tube translates into local volume fraction, hence 

we cannot convert the vertical axis into a volume fraction axis. When Fig. 5 is compared to 

the two previous estimates of the diagrams, one from visual observation, the other one from 

WAXS data (see DiMasi et al. (2001) and Fossum et al. (2005)), it is evident that the main 

features are consistent. The anisotropic gel found here is the nematic gel phase as identified 

from WAXS data. Fig. 2(b) is a typical SAXS image recorded from this phase; the orientation 

of the elliptic iso-intensity lines is consistent with the previous WAXS analyses, according to 

which the platelet-shaped clay particles are standing on average with their short dimension 

along the horizontal  (DiMasi et. al., 2001). The rightmost region in the diagram (Fig. 4a) 

corresponds to what DiMasi et al. (2001) denote as a small nematic domain phase (SD). We 

believe that this region contains in fact many small nematic regions. At the scale of the 

scattering volume, this results in SAXS data with a moderate anisotropy, the magnitude and 

preferential orientation of which are not fixed for the whole region. 

 Two discrepancies between the current phase diagram and the previous estimates can be 

spotted. One of them is that the phase boundaries are not exactly at the same vertical position. 

This is expected since the samples in the different experiments were allowed to settle for 

unequal times, and the phase boundaries are known to change position for several months 

before they stabilize. The other evident new observation compared to our previous studies 

concerns the boundary of the two gel phases at low salt concentrations. Its first two points in 

the previous estimates are much higher than what is observed here (around two times higher), 
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with respect to the rest of that boundary. The behavior observed in the present experiment is 

systematic and is observed for five different concentrations here, whereas it was observed for 

only two concentrations in the other works. Currently, one may suggest several alternative 

explanations for this difference, and this will be subject for future work. 

 

3.2.2. Spectra along the principal axes 

For a given SAXS image, the scattering intensity as a function of the modulus q of the 

scattering vector was also plotted along the two principal directions of the image, as 

determined by the fitting of ellipses to iso-intensity lines. Fig. 6 presents such q-plots for a 

SAXS image in the isotropic phase and another one in the nematic phase of the sample with 

saline concentration of 1 mM.  

The q-plots in Fig. 6 appear as consisting of several power law regimes. This is expected 

in SAXS data from systems of aggregated particles (Schmidt, 1991). On all plots, a smooth 

crossover is noticed. It corresponds to a characteristic length scale of approx. 20 nm. This 

could be related to the average thickness of the stacks of clay platelets, which is the only 

characteristic length of the particles that can be probed in the q-range investigated with 

SAXS. Another interpretation for this crossover scale would be that small nematic domains 

exist locally in the two gel phases, with a typical particle-to-particle distance of around 20 

nm. The crossover is smooth due to polydispersity in the particle thicknesses. Note that the 

characteristic length scale does not correspond to a regular periodicity in the meso-structure, 

since no peak is visible in the data at the corresponding q-value. Hence, none of the phases 

exhibits positional order at the length scales probed by the SAXS experiment. In particular, 

the lower gel phase is ordered with respect to particle orientations but not to positions. 

The values for the exponents of the power laws, as estimated from slopes in the log-log 

plots in Fig. 6 are presented in Table 2. We notice that at higher q-values, the slopes seem to 

approach -4, possibly indicating crossover into the Porod regime as the probed length scales 

become smaller than the crossover length scale. We also notice that at lower q-values, the 

slopes approach -2. This is expected for mono-disperse platelets with no correlations between 

particle- positions and orientations, either (i) nematically-oriented, provided that q is pointing 

along the normal to the platelets, or (ii) randomly-oriented (Ramsay, 1990). For nematically-

oriented mono-disperse platelets with no correlations between positions and orientations, a 

slope of -3 is expected when q points perpendicular to the short plate direction (Ramsay, 

1990). Note that our observations in terms of power-law exponents may be influenced by the 

fact that our platelets are not mono-disperse, and that positions and orientations of particles 

may be correlated. 
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4. Conclusion 

SAXS experiments have allowed a precise characterization of the phase diagram of 

suspensions of Na-fluorohectorite platelet-shaped particles in saline solutions. The 

characterization was done based on transmission data, and on two-dimensional SAXS images.  

Ellipses were fitted to iso-intensity lines of the SAXS images. The phase boundaries were 

obtained through joint analysis of the transmission data and of results for the eccentricities 

and tilt angles of the ellipses. Among the different phases observed, one is a gel phase 

exhibiting a high degree of orientational order, while the other one is an isotropic gel. This 

phase diagram is consistent with our previous estimates using other approaches. Moreover, 

plots of the integrated intensities versus the modulus of the scattering vector along the 

principal axes of the ellipses for both gel phases exhibit power law behaviors with a smooth 

crossover at a characteristic length scale that may correspond to the typical particle thickness, 

and exponents that approach those of well-known configurations at the lower and higher q-

values. These q-plots confirm that no positional order exists in any of the phases. 

X-ray Scattering techniques have proved to be a technique appropriate for discriminating 

between different phases in these samples. A prospect of the study concerns further 

understanding of the differences between the different phases, in terms of the geometry of the 

porous space between the particles (Knudsen et al., 2004), focusing on the power law 

behavior of q-plots. The ultimate goal is to understand the underlying mechanisms 

responsible for the formation of the different phases. 

 

 

Figure 1 Na-Fluorohectorite sample with a particle concentration of 3 % (w/w) and a salt (NaCl) 

concentration of 4.5 mM. The 4 four phases are easily identifiable. 

Figure 2 SAXS images recorded in the upper (a) and lower (b) gel phases. The anisotropic image in 

(b) indicates a preferential orientation of the clay crystallites in the lower phase. 

Figure 3 (a) A three-dimensional view of a scattering image. The arrow indicates a range that could 

be used to generate the cloud of points. (b) The blue circles represent the cloud of points inside the 

range of the scattering profile. The green ellipse is the initial guess for the fitting procedure. The red 

ellipse is the evaluated best fit to the cloud of points. 

Figure 4 (a) Greyscale map for the eccentricity values computed from the SAXS data, as a function 

of the salt concentration and vertical position in the sample tubes. (b) Idem, but computed from the 

transmission data. 
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Figure 5 Phase diagram created from the greyscale maps for eccentricity and transmission. The 

displayed regions are sediment (S), nematic gel (NG), isotropic gel (IG), and region containing small 

domains (SD). The line thickness corresponds to the uncertainty on the boundary position. 

Figure 6 Integrated intensities plots as a function of the modulus of the scattering vector, q , along 

the principal axes of the ellipse, for both a point in the isotropic phase and also for a point in the 

nematic phase. The smooth crossover is positioned at a q value corresponding to a length scale of about 

20 nm. The solid lines denote reference slopes. 

Table 1 Vertical positions at which SAXS data was recorded, for each sample. 

Table 2 Power law exponents determined from Fig. 6. 
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Figure 2. 
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Figure 6. 
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Saline 

Concentration 

(mM) 

Starting 

positiona 

(mm) 

Step 

size 

(mm) 

Number 

of SAXS 

scans 

0.1 0 1 15 

0.25 0 1 23 

0.5 0 1 23 

0.75 0 0.5 45 

1.0 0 0.5 45 

2.5 1 0.5 45 

5.0 1 0.5 45 

7.5 1 0.5 45 

10 1 0.5 45 

25 1 0.5 55 
a – above the bottom of the sample 
Table 1. 
 
 

 

Slope 

left of 

crossover 

Slope 

right of 

crossover 

Nematic along semi-major axis –2.2 ± 0.2 –2.8 ± 0.1 

Nematic along semi-minor axis –2.3 ± 0.1 –2.9 ± 0.1 

Isotropic along semi-major axis –2.2 ± 0.1 –2.4 ± 0.1 

Isotropic along semi-major axis –2.5 ± 0.1 –2.4 ± 0.2 

Table 2. 
 


