S. Ide, G. C. Beroza, D. R. Shelly, and T. Uchide, A scaling law for slow earthquakes, Nature, vol.447, pp.76-79, 2007.

M. Bouchon and M. Vallée, Observation of long supershear rupture during the magnitude 8.1 kunlunshan earthquake, Science, vol.301, pp.824-826, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00408560

H. Kanamori and E. E. Brodsky, The physics of earthquakes, Rep. Prog. Phys, vol.67, p.1429, 2004.

K. M. Johnson, J. Fukuda, and P. Segall, Challenging the rate-state asperity model: afterslip following the 2011 m9 tohoku-oki, japan, earthquake, Geophys. Res. Lett, vol.39, p.20302, 2012.

R. Madariaga, High frequency radiation from dynamic earthquake fault models, Ann. Geophys, vol.1, p.17, 1983.

S. Das, The need to study speed, Science, vol.317, pp.905-906, 2007.

H. Gao, D. A. Schmidt, and R. J. Weldon, Scaling relationships of source parameters for slow slip events, Bull. Seismol. Soc. Am, vol.102, pp.352-360, 2012.

T. Nishimura, Short-term slow slip events along the ryukyu trench, southwestern japan, observed by continuous gnss, Prog. Earth Planet. Sci, vol.1, p.22, 2014.

Q. Bletery, Characteristics of secondary slip fronts associated with slow earthquakes in cascadia, Earth Planet. Sci. Lett, vol.463, pp.212-220, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02389208

S. Michel, A. Gualandi, and J. Avouac, Similar scaling laws for earthquakes and cascadia slow-slip events, Nature, vol.574, pp.522-526, 2019.

S. Takemura, T. Matsuzawa, T. Kimura, T. Tonegawa, and K. Shiomi, Centroid moment tensor inversion of shallow very low frequency earthquakes off the kii peninsula, japan, using a three-dimensional velocity structure model, Geophys. Res. Lett, vol.45, pp.6450-6458, 2018.

L. D. Zilio, N. Lapusta, and J. Avouac, Unraveling Scaling Properties of Slow-Slip Events, Geophysical Research Letters, vol.47, 2020.

S. Ide and H. Aochi, Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy, J. Geophys. Res. Solid Earth, vol.110, 1978.

S. Sekine, H. Hirose, and K. Obara, Along-strike variations in short-term slow slip events in the southwest japan subduction zone, J. Geophys. Res. Solid Earth, vol.115, pp.0-27, 2010.

S. Annoura, K. Obara, and T. Maeda, Total energy of deep low-frequency tremor in the nankai subduction zone, southwest japan, Geophys. Res. Lett, vol.43, pp.2562-2567, 2016.

M. Vallée and V. Douet, A new database of source time functions (stfs) extracted from the scardec method, Phys. Earth Planet. Inter, vol.257, pp.149-157, 2016.

K. Ohta and S. Ide, Resolving the detailed spatiotemporal slip evolution of deep tremor in western japan, J. Geophys. Res. Solid Earth, vol.122, pp.10-19, 2017.

N. Poiata, J. Vilotte, P. Bernard, C. Satriano, and K. Obara, Imaging different components of a tectonic tremor sequence in southwestern japan using an automatic statistical detection and location method, Geophys. J. Int, vol.213, pp.2193-2213, 2018.

Y. Yokota and T. Ishikawa, Shallow slow slip events along the Nankai Trough detected by GNSS-A, Science Advances, vol.6, 2020.

S. Kodaira, High pore fluid pressure may cause silent slip in the nankai trough, Science, vol.304, pp.1295-1298, 2004.

P. Audet, M. G. Bostock, N. I. Christensen, and S. M. Peacock, Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing, Nature, vol.457, p.76, 2009.

T. A. Song, Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern mexico, Science, vol.324, pp.502-506, 2009.

A. Kato, Variations of fluid pressure within the subducting oceanic crust and slow earthquakes, Geophys. Res. Lett, vol.37, p.14310, 2010.

M. K. Hubbert and W. W. Rubey, Role of fluid pressure in mechanics of overthrust faulting i. mechanics of fluid-filled porous solids and its application to overthrust faulting, Geol. Soc. Am. Bull, vol.70, pp.115-166, 1959.

R. C. Viesca and J. R. Rice, Nucleation of slip-weakening rupture instability in landslides by localized increase of pore pressure, J. Geophys. Res. Solid Earth, vol.117, p.3104, 2012.

D. I. Garagash and L. N. Germanovich, Nucleation and arrest of dynamic slip on a pressurized fault, J. Geophys. Res. Solid Earth, vol.117, p.10310, 2012.

M. Galis, J. P. Ampuero, P. M. Mai, and F. Cappa, Induced seismicity provides insight into why earthquake ruptures stop, Sci. Adv, vol.3, p.7528, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01737083

F. Ciardo and B. Lecampion, Effect of dilatancy on the transition from aseismic to seismic slip due to fluid injection in a fault, J. Geophys. Res. Solid Earth, vol.124, pp.3724-3743, 2019.

Y. Ida, Cohesive force across the tip of a longitudinal-shear crack and griffith's specific surface energy, J. Geophys. Res, vol.77, pp.3796-3805, 1972.

J. H. Dieterich, Modeling of rock friction: 1. experimental results and constitutive equations, J. Geophys. Res. Solid Earth, vol.84, pp.2161-2168, 1979.

C. Marone, Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci, vol.26, pp.643-696, 1998.

P. Dublanchet, Fluid driven shear cracks on a strengthening rate-and-state frictional fault, J. Mech. Phys. Solids, vol.132, p.103672, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02367634

A. Ougier-simonin and W. Zhu, Effects of pore fluid pressure on slip behaviors: an experimental study, Geophys. Res. Lett, vol.40, pp.2619-2624, 2013.

J. R. Leeman, D. M. Saffer, M. M. Scuderi, and C. Marone, Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes, Nature communications, vol.7, pp.1-6, 2016.

F. X. Passelègue, N. Brantut, and T. M. Mitchell, Fault reactivation by fluid injection: controls from stress state and injection rate, Geophys. Res. Lett, vol.45, pp.12-837, 2018.

M. Scuderi, C. Collettini, and C. Marone, Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault, Earth Planet. Sci. Lett, vol.477, pp.84-96, 2017.

P. Segall and S. Lu, Injection-induced seismicity: Poroelastic and earthquake nucleation effects, J. Geophys. Res. Solid Earth, vol.120, pp.5082-5103, 2015.

F. X. Passelègue, Dynamic rupture processes inferred from laboratory microearthquakes, J. Geophys. Res. Solid Earth, vol.121, pp.4343-4365, 2016.

F. X. Passelègue, A. Schubnel, S. Nielsen, H. S. Bhat, and R. Madariaga, From sub-rayleigh to supershear ruptures during stick-slip experiments on crustal rocks, Science, vol.340, pp.1208-1211, 2013.

N. Brantut, F. X. Passelègue, D. Deldicque, J. Rouzaud, and A. Schubnel, Dynamic weakening and amorphization in serpentinite during laboratory earthquakes, Geology, vol.44, pp.607-610, 2016.

F. X. Passelègue, From fault creep to slow and fast earthquakes in carbonates, Geology, vol.47, pp.744-748, 2019.

E. H. Rutter and J. Mecklenburgh, Influence of normal and shear stress on the hydraulic transmissivity of thin cracks in a tight quartz sandstone, a granite, and a shale, J. Geophys. Res. Solid Earth, vol.123, pp.1262-1285, 2018.

J. Byerlee, Friction of rocks, Pure Appl. Geophys, vol.116, pp.615-626, 1978.

O. Ben-david, G. Cohen, and J. Fineberg, The dynamics of the onset of frictional slip, Science, vol.330, pp.211-214, 2010.

L. B. Freund, Dynamic Fracture Mechanics, 1998.

I. Svetlizky and J. Fineberg, Classical shear cracks drive the onset of dry frictional motion Nature, 2014.

M. Kano, A. Kato, R. Ando, and K. Obara, Strength of tremor patches along deep transition zone of a megathrust, Sci. Rep, vol.8, pp.1-8, 2018.

M. Acosta, F. Passelègue, A. Schubnel, and M. Violay, Dynamic weakening during earthquakes controlled by fluid thermodynamics, Nat. Commun, vol.9, p.3074, 2018.

D. S. Kammer, I. Svetlizky, G. Cohen, and J. Fineberg, The equation of motion for supershear frictional rupture fronts, Sci. Adv, vol.4, p.5622, 2018.

R. Bürgmann, The geophysics, geology and mechanics of slow fault slip, Earth Planet. Sci. Lett, vol.495, pp.112-134, 2018.

N. Brantut, Dilatancy-induced fluid pressure drop during dynamic rupture: direct experimental evidence and consequences for earthquake dynamics, Earth Planet. Sci. Lett, vol.538, p.116179, 2020.

E. Bouchbinder, E. A. Brener, I. Barel, and M. Urbakh, Slow cracklike dynamics at the onset of frictional sliding, Phys. Rev. Lett, vol.107, p.235501, 2011.

Y. Bar-sinai, E. A. Brener, and E. Bouchbinder, Slow rupture of frictional interfaces, Geophys. Res. Lett, vol.39, p.3308, 2012.

F. Barras, Emergence of cracklike behavior of frictional rupture: the origin of stress drops, Phys. Rev. X, vol.9, p.41043, 2019.

J. N. Brune, T. L. Henyey, and R. F. Roy, Heat flow, stress, and rate of slip along the san andreas fault, california, J. Geophys. Res, vol.74, pp.3821-3827, 1969.

J. R. Rice, Fault stress states, pore pressure distributions, and the weakness of the san andreas fault, Int. Geophys, vol.51, pp.475-503, 1992.

K. H. Chen, R. Bürgmann, R. M. Nadeau, T. Chen, and N. Lapusta, Postseismic variations in seismic moment and recurrence interval of repeating earthquakes, Earth Planet. Sci. Lett, vol.299, pp.118-125, 2010.

N. Uchida and R. Bürgmann, Repeating earthquakes, Annu. Rev. Earth Planet. Sci, vol.47, pp.305-332, 2019.

Z. Li, J. Fortin, A. Nicolas, D. Deldicque, and Y. Guéguen, Physical and mechanical properties of thermally cracked andesite under pressure, 2019.

D. J. Andrews, Rupture velocity of plane strain shear cracks, J. Geophys. Res, vol.81, pp.5679-5687, 1976.

A. Rubin and J. Ampuero, Earthquake nucleation on (aging) rate and state faults, J. Geophys. Res. Solid Earth, vol.110, 1978.

M. A. Denolle and P. Shearer, New perspectives on self-similarity for shallow thrust earthquakes, J. Geophys. Res. Solid Earth, vol.121, pp.6533-6565, 2016.

A. Chounet, M. Vallée, M. Causse, and F. Courboulex, Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity, Tectonophysics, vol.733, pp.148-158, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01812470