, Biogeosciences, vol.12, pp.2565-2584

S. Basu, J. B. Miller, and S. Lehman, Separation of biospheric and fossil fuel fluxes of CO 2 by atmospheric inversion of CO 2 and 14CO 2 measurements: observation system simulations, Atmos. Chem. Phys. Discuss, vol.2016, pp.1-34, 2016.

P. Berrisford, D. Dee, K. Fielding, M. Fuentes, and P. Kallberg, The ERA-Interim Archive, ERA Report Series, pp.1-16, 2009.

M. Bocquet, L. Wu, and F. Chevallier, Bayesian design of control space for optimal assimilation of observations. Part I: consistent multiscale formalism, Q. J. Roy. Meteor. Soc, vol.137, pp.1340-1356, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00632593

P. Bousquet, P. Peylin, P. Ciais, C. Le-quéré, and P. Friedlingstein, Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, vol.290, pp.1342-1346, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02888425

D. Bozhinova, M. K. Van-der-molen, M. C. Krol, S. Van-der-laan, and H. A. Meijer, Simulating the integrated ?14CO 2 signature from anthropogenic emissions over Western Europe, Atmos. Chem. Phys. Discuss, vol.13, pp.30611-30652, 2013.

F. M. Bréon, G. Broquet, V. Puygrenier, and F. Chevallier, An attempt at estimating Paris area CO 2 emissions from atmospheric concentration measurements, Atmos. Chem. Phys, vol.15, pp.1707-1724, 2015.

J. Brioude, G. Petron, G. J. Frost, R. Ahmadov, and W. M. Angevine, A new inversion method to calculate emission inventories without a prior at mesoscale: application to the anthropogenic CO 2 emission from, J. Geophys. Res, vol.117, p.5312, 2012.

G. Broquet, F. Chevallier, P. Rayner, and C. Aulagnier, A European summertime CO 2 biogenic flux inversion at mesoscale from continuous in situ mixing ratio measurements, J. Geophys. Res, vol.116, p.23303, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02928921

H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, and C. W. Rella, High-accuracy continuous airborne measurements of greenhouse gases (CO 2 and CH 4 ) using the cavity ring-down spectroscopy (CRDS) technique, Atmos. Meas. Tech, vol.3, pp.375-386, 2010.

F. Chevallier, M. Fisher, P. Peylin, S. Serrar, P. Bousquet et al., Inferring CO 2 sources and sinks from satellite observations: method and application to TOVS data, J. Geophys. Res, vol.110, p.24309, 2005.
URL : https://hal.archives-ouvertes.fr/bioemco-00175976

F. Chevallier, P. Ciais, T. J. Conway, T. Aalto, and B. E. Anderson, CO 2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements, J. Geophys. Res, vol.115, p.21307, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02927187

F. Chevallier and C. W. Dell, Error statistics of Bayesian CO 2 flux inversion schemes as seen from GOSAT, Geophys. Res. Lett, vol.40, pp.1252-1256, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02957329

P. Ciais, J. D. Paris, G. Marland, P. Peylin, and S. L. Piao, The European carbon balance. Part 1: fossil fuel emissions, Global Change Biol, vol.16, pp.1395-1408, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01788214

R. J. Engelen, On error estimation in atmospheric CO 2 inversions, J. Geophys. Res, vol.107, p.4635, 2002.
URL : https://hal.archives-ouvertes.fr/bioemco-00175974

I. G. Enting, C. M. Trudinger, R. J. Francey, and H. Granek, Synthesis inversion of atmospheric CO 2 using the GISS tracer transport model, CSIRO Aust. Div. Atmos. Res. Tech. Pap, vol.29, pp.1-44, 1993.

U. Gamnitzer, U. Karstens, B. Kromer, R. E. Neubert, and H. A. Meijer, Carbon monoxide: a quantitative tracer for fossil fuel CO 2 ?, J. Geophys. Res, vol.111, p.22302, 2006.

R. J. Andres, G. Marland, I. Fung, and E. Matthews, A 1°×1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, Global Biogeochem. Cycles, vol.10, pp.419-429, 1996.

R. J. Andres, T. A. Boden, F. M. Bréon, P. Ciais, and S. Davis, A synthesis of carbon dioxide emissions from fossil-fuel combustion, Biogeosciences, vol.9, pp.1845-1871, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02929158

R. J. Andres, T. A. Boden, and D. Higdon, A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission, Tellus B, vol.66, p.23616, 2014.

A. P. Ballantyne, R. Andres, R. Houghton, B. D. Stocker, and R. Wanninkhof, Audit of the global carbon budget: estimate Europe, pp.53-72, 2015.

I. Levin, B. Kromer, M. Schmidt, and H. Sartorius, A novel approach for independent budgeting of fossil fuel CO 2 over Europe by 14 CO 2 observations, Geophys. Res. Lett, vol.30, p.2194, 2003.

I. Levin, S. Hammer, B. Kromer, and F. Meinhardt, Radiocarbon observations in atmospheric CO 2 : determining fossil fuel CO 2 over Europe using Jungfraujoch observations as background, Sci. Total Environ, vol.391, pp.211-216, 2008.

I. Levin, S. Hammer, E. Eichelmann, and F. R. Vogel, Verification of greenhouse gas emission reductions: the prospect of atmospheric monitoring in polluted areas, Philos. Trans. Series A, Math. Phys. Eng. Sci, vol.369, pp.1906-1924, 2011.

I. M. Levin, The effect of anthropogenic CO 2 and 14C sources on the distribution of 14C in the atmosphere, Radiocarbon, vol.22, pp.379-391, 1980.

J. C. Lin and C. Gerbig, Accounting for the effect of transport errors on tracer inversions, Geophys. Res. Lett, vol.32, p.1802, 2005.

J. C. Lin, C. Gerbig, S. C. Wofsy, B. C. Daube, and D. M. Matross, What have we learned from intensive atmospheric sampling field programmes of CO 2 ?, Tellus B, vol.58, pp.331-343, 2006.

Z. Liu, D. Guan, W. Wei, S. J. Davis, and P. Ciais, Reduced carbon emission estimates from fossil fuel combustion and cement production in China, Nature, vol.524, pp.335-338, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02892347

A. C. Lorenc, Analysis methods for numerical weather prediction, Q. J. Roy. Meteor. Soc, vol.112, pp.1177-1194, 1986.

J. Macknick, Energy and Carbon Dioxide Emission Data Uncertainties, 2009.

G. Marland, Uncertainties in accounting for CO 2 from fossil fuels, J. Ind. Ecol, vol.12, pp.136-139, 2008.

K. Mckain, S. C. Wofsy, T. Nehrkorn, J. Eluszkiewicz, and J. R. Ehleringer, Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region, Proc. Nat. Acad. Sci. USA, vol.109, pp.8423-8428, 2012.

S. M. Miller, M. N. Hayek, A. E. Andrews, I. Fung, and J. Liu, Biases in atmospheric CO 2 estimates from correlated meteorology modeling errors, Atmos. Chem. Phys, vol.15, pp.2903-2914, 2015.

T. Naegler and I. Levin, Closing the global radiocarbon budget 1945-2005, J. Geophys. Res, vol.111, p.12311, 2006.

S. Newman, S. Jeong, M. L. Fischer, X. Xu, C. L. Haman et al., Diurnal tracking of anthropogenic CO 2 emissions in the Los Angeles basin megacity during spring, Atmos. Chem. Phys, vol.13, pp.4359-4372, 2010.

Y. Niwa, T. Machida, Y. Sawa, H. Matsueda, T. J. Schuck et al., Imposing strong constraints on tropical terrestrial CO 2 fluxes using passenger aircraft based measurements, J. Geophys. Res, vol.117, p.11303, 2012.

, LandScan Global Population, Database, 2007.

T. Oda and S. Maksyutov, A very high-resolution (1 km × 1 km) global fossil fuel CO 2 emission inventory derived using a point source database and satellite observations of nighttime lights, Atmos. Chem. Phys, vol.11, pp.543-556, 2011.

J. G. Olivier, J. A. Van-aardenne, F. J. Dentener, V. Pagliari, and L. N. Ganzeveld, , 2005.

M. Á. García, M. L. Sánchez, and I. A. Pérez, Synoptic weather patterns associated with carbon dioxide levels in Northern Spain, Sci. Total Environ, vol.408, pp.3411-3417, 2010.

C. Geels, M. Gloor, P. Ciais, P. Bousquet, and P. Peylin, Comparing atmospheric transport models for future regional inversions over Europe -Part 1: mapping the atmospheric CO 2 signals, Atmos. Chem. Phys, vol.7, pp.3461-3479, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00328509

C. Gerbig, J. C. Lin, S. C. Wofsy, B. C. Daube, and A. E. Andrews, Toward constraining regional-scale fluxes of CO 2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms, J. Geophys. Res.: Atmos, vol.108, 2003.

H. D. Graven and N. Gruber, Continental-scale enrichment of atmospheric 14 CO 2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO 2, Atmos. Chem. Phys, vol.11, pp.12339-12349, 2011.

J. S. Gregg, R. J. Andres, and G. Marland, China: emissions pattern of the world leader in CO 2 emissions from fossil fuel consumption and cement production, Geophys. Res. Lett, vol.35, p.8806, 2008.

K. R. Gurney, R. M. Law, A. S. Denning, P. J. Rayner, and D. Baker, Towards robust regional estimates of CO 2 sources and sinks using atmospheric transport models, Nature, vol.415, pp.626-630, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02888447

K. R. Gurney, D. L. Mendoza, Y. Zhou, M. L. Fischer, and C. C. Miller, High resolution fossil fuel combustion CO 2 emission fluxes for the United States, Environ. Sci. Technol, vol.43, pp.5535-5541, 2009.

F. Hourdin, I. Musat, S. Bony, P. Braconnot, F. Codron et al., The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dynam, vol.27, pp.787-813, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00113202

D. Y. Hsueh, N. Y. Krakauer, J. T. Randerson, X. Xu, and S. E. Trumbore, Regional patterns of radiocarbon and fossil fuel-derived CO 2 in surface air across North America, Geophys. Res. Lett, vol.34, p.2816, 2007.

. Ipcc, IPCC Guidelines for National Greenhouse Gas Inventories Institutefor Global Environmental Strategies, 2006.

N. Kadygrov, G. Broquet, F. Chevallier, L. Rivier, and C. Gerbig, On the potential of ICOS atmospheric CO 2 measurement network for the estimation of the biogenic CO 2 budget of Europe, Atmos. Chem. Phys. Discuss, vol.15, pp.14221-14273, 2015.

T. Kaminski, P. J. Rayner, M. Heimann, and I. G. Enting, On aggregation errors in atmospheric transport inversion, J. Geophys. Res, vol.106, pp.4703-4715, 2001.

T. Lauvaux, O. Pannekoucke, C. Sarrat, F. Chevallier, and P. Ciais, Structure of the transport uncertainty in mesoscale inversions of CO 2 sources and sinks using ensemble model simulations, Biogeosciences, vol.6, pp.1089-1102, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02926917

T. Lauvaux, M. Uliasz, C. Sarrat, F. Chevallier, P. Bousquet et al., Mesoscale inversion: first results from the CERES campaign with synthetic data, Atmos. Chem. Phys, vol.8, pp.3459-3471, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00328218

R. Law, W. Peters, C. Rödenbeck, and C. Aulagnier, TransCom model simulations of hourly atmospheric CO 2 : experimental overview and diurnal cycle results for, Global Biogeochem. Cycles, vol.22, 2002.

I. Levin, U. ;. Karstens, . Wang, and . Al, Quantifying Fossil Fuel CO 2 over Europe, The Continental-Scale Greenhouse Gas Balance of 24, 2008.

K. W. Thoning, P. P. Tans, and W. D. Komhyr, Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974-1985, J. Geophys. Res, vol.94, pp.8549-8565, 1989.

J. C. Turnbull, E. D. Keller, M. W. Norris, and R. M. Wiltshire, Independent evaluation of point source fossil fuel CO 2 emissions to better than 10%, Proc. Nat. Acad. Sci, vol.113, pp.10287-10291, 2016.

J. Turnbull, J. Miller, S. Lehman, D. Hurst, and W. Peters, Spatial distribution of ? 14 CO 2 across Eurasia: measurements from the TROICA-8 expedition, Atmos. Chem. Phys, vol.9, pp.175-187, 2009.

J. C. Turnbull, P. P. Tans, S. J. Lehman, D. Baker, and T. J. Conway, Atmospheric observations of carbon monoxide and fossil fuel CO 2 emissions from East Asia, J. Geophys. Res.: Atmos, vol.116, p.24306, 2011.

J. C. Turnbull, E. D. Keller, T. Baisden, G. Brailsford, and T. Bromley, Atmospheric measurement of point source fossil CO 2 emissions, Atmos. Chem. Phys, vol.14, pp.5001-5014, 2014.

K. Ummel, CARMA revisited: an updated database of carbon dioxide emissions from power plants worldwide, vol.304, 2012.

F. R. Vogel, S. Hammer, A. Steinhof, B. Kromer, and I. Levin, Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO 2 at a moderately polluted site in southwestern Germany, Tellus B, vol.62, pp.512-520, 2010.

F. R. Vogel, I. Levin, and D. Worthy, Implications for deriving regional fossil fuel CO 2 estimates from atmospheric observations in a hot spot of nuclear power plant 14CO 2 emissions, Radiocarbon, vol.55, pp.1556-1572, 2013.

R. Wang, S. Tao, P. Ciais, H. Z. Shen, and Y. Huang, High-resolution mapping of combustion processes and implications for CO 2 emissions, Atmos. Chem. Phys, vol.13, pp.5189-5203, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02930038

, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2013), WMO: Report of the 17th WMO/IAEA Meeting of Experts on Carbon Dioxide, pp.10-13, 2013.

L. Wu, M. Bocquet, T. Lauvaux, F. Chevallier, P. et al., 116, D21304. greenhouse gas emissions: regional trends 1970-2000 and spatial distributionof key sources in 2000, J. Geophys. Res, vol.2, pp.81-99, 2011.

S. W. Pacala, C. Breidenich, P. G. Brewer, I. Y. Fung, and M. R. Gunson, Verifying greenhouse gas emissions: methods to support international climate agreements, 2010.

N. C. Parazoo, A. S. Denning, S. R. Kawa, K. D. Corbin, and R. S. Lokupitiya, Mechanisms for synoptic variations of atmospheric CO 2 in North America, South America and Europe, Atmos. Chem. Phys, vol.8, pp.7239-7254, 2008.

W. Peters, A. R. Jacobson, C. Sweeney, A. E. Andrews, and T. J. Conway, An atmospheric perspective on North American carbon dioxide exchange: carbon tracker, Proc. Nat. Acad. Sci. USA, vol.104, pp.18925-18930, 2007.

P. Peylin, P. J. Rayner, P. Bousquet, C. Carouge, F. Hourdin et al., Daily CO 2 flux estimates over Europe from continuous atmospheric measurements: 1, inverse methodology, Atmos. Chem. Phys, vol.5, pp.3173-3186, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00328413

P. Peylin, S. Houweling, M. C. Krol, U. Karstens, and C. Rödenbeck, Importance of fossil fuel emission uncertainties over Europe for CO 2 modeling: model intercomparison, Atmos. Chem. Phys, vol.11, pp.6607-6622, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02652032

P. Peylin, R. M. Law, K. R. Gurney, F. Chevallier, and A. R. Jacobson, Global atmospheric carbon budget: results from an ensemble of atmospheric CO 2 inversions, Biogeosci. Discuss, vol.10, pp.5301-5360, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02946314

D. Pillai, C. Gerbig, R. Ahmadov, C. Rödenbeck, and R. Kretschmer, High-resolution simulations of atmospheric CO 2 over complex terrain -representing the Ochsenkopf mountain tall tower, Atmos. Chem. Phys, vol.11, pp.7445-7464, 2011.

C. Rödenbeck, S. Houweling, M. Gloor, and M. Heimann, CO 2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport, Atmos. Chem. Phys, vol.3, pp.1919-1964, 2003.

J. T. Randerson, I. G. Enting, E. A. Schuur, K. Caldeira, and I. Y. Fung, Seasonal and latitudinal variability of troposphere ?14CO 2 : Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere, Global Biogeochem. Cycles, vol.16, pp.59-51, 2002.

J. Ray, V. Yadav, A. M. Michalak, B. Van-bloemen-waanders, and S. A. Mckenna, A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions, Geosci. Model Dev, vol.7, pp.1901-1918, 2014.

L. Rivier, P. Ciais, D. A. Hauglustaine, P. Bakwin, and P. Bousquet, Evaluation of SF 6 , C 2 Cl 4 , and CO to approximate fossil fuel CO 2 in the Northern Hemisphere using a chemistry transport model, J. Geophys. Res, vol.111, p.16311, 2006.
URL : https://hal.archives-ouvertes.fr/bioemco-00175973

H. Schmidt, C. Derognat, R. Vautard, and M. Beekmann, A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe, Atmos. Environ, vol.35, pp.6277-6297, 2001.

Y. P. Shiga, A. M. Michalak, S. M. Gourdji, K. L. Mueller, and V. Yadav, Detecting fossil fuel emissions patterns from subcontinental regions using North American in situ CO 2 measurements, Geophys. Res. Lett, vol.41, pp.4381-4388, 2014.

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, 2005.