A. Al-kattan, A. Wichser, R. Vonbank, S. Brunner, A. Ulrich et al., , p.554

B. Nowack, Characterization of materials released into water from paint containing nano-SiO2, 2015.

, Chemosphere, vol.119, pp.1314-1321

A. Al-kattan, A. Wichser, R. Vonbank, S. Brunner, A. Ulrich et al., Release 557 of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering, Env. Sci Process Impacts, vol.558, p.15, 2013.

A. Al-kattan, A. Wichser, S. Zuin, Y. Arroyo, L. Golanski et al., Behavior 560 of TiO2 Released from Nano-TiO2-Containing Paint and Comparison to Pristine Nano-TiO2, 2014.

, Sci. Technol, vol.48, pp.6710-6718

F. Aloui, Rôle des absorbeurs UV inorganiques sur la photstabilisation des systèmes bois-finition 563 transparente (Doctorat), 2006.

M. Auffan, A. Masion, J. Labille, M. Diot, W. Liu et al., , p.565

C. Geantet, J. Bottero, and J. Rose, Long-term aging of a CeO2 based nanocomposite used for 566 wood protection, Environ. Pollut, vol.188, pp.1-7, 2014.

C. Bernard, T. Nguyen, B. Pellegrin, R. Holbrook, M. Zhao et al., Fate of grapheme in 568 polymer nanocomposite exposed to UV radiation, J Phys Conf Ser, vol.304, 2011.

N. Bossa, P. Chaurand, C. Levard, D. Borschneck, H. Miche et al., , p.570

O. Chariol, F. M. Michel, and J. Rose, Environmental exposure to TiO2 nanomaterials incorporated 571 in building material, Environ. Pollut, vol.220, pp.1160-1170, 2017.

C. Bressot, N. Manier, C. Pagnoux, O. Aguerre-chariol, and M. Morgeneyer, Environmental 573 release of engineered nanomaterials from commercial tiles under standardized abrasion conditions, Journal of Hazardous Materials, vol.574, pp.276-283, 2017.

M. Busquets-fité, E. Fernandez, G. Janer, G. Vilar, S. Vázquez-campos et al., , p.576

L. Mercante and V. Puntes, Exploring release and recovery of nanomaterials from commercial 577 polymeric nanocomposites, J Phys Conf Ser, vol.429, 2013.

A. Caballero-guzman and B. Nowack, A critical review of engineered nanomaterial release data: 579 Are current data useful for material flow modeling?, Environ. Pollut, vol.213, pp.502-517, 2016.

O. Chiantore, L. Trossarelli, and M. Lazzari, Photooxidative degradation of acrylic and methacrylic 582 polymers, Polymer, vol.41, pp.349-352, 2000.

J. Chin, E. Byrd, N. Embree, J. Garver, and B. Dickens, Accelerated UV weathering device based 584 on integrating sphere technology, Rev. Sci. Instrum, vol.75, 2004.

I. De-windt, J. Van-den-bulcke, I. Wuijtens, H. Coppens, and J. Van-acker, Outdoor weathering 586 performance parameters of exterior wood coating systems on tropical hardwood substrates, Eur. J, 2014.

W. Wood-prod, , vol.72, pp.261-272

H. Dexpert, R. C. Karnatak, J. Esteva, J. P. Connerade, M. Gasgnier et al., , 1987.

, X-ray absorption studies of CeO 2 , PrO 2 , and TbO 2 . II. Rare-earth valence state by L III absorption 590 edges, Phys. Rev. B, vol.36, pp.1750-1753

T. V. Duncan, Release of Engineered Nanomaterials from Polymer Nanocomposites: the Effect of 592 Matrix Degradation, ACS Appl. Mater. Interfaces, vol.7, pp.20-39, 2015.

T. V. Duncan and K. Pillai, Release of Engineered Nanomaterials from Polymer Nanocomposites: 594 Diffusion, Dissolution, and Desorption, ACS Appl. Mater. Interfaces, vol.7, pp.2-19, 2015.

E. Fernández-rosas, G. Vilar, G. Janer, D. González-gálvez, V. Puntes et al., , p.597

S. Vázquez-campos, Influence of Nanomaterial Compatibilization Strategies on Polyamide 598 Nanocomposites Properties and Nanomaterial Release during the Use Phase, Environ. Sci. Technol, vol.50, pp.2584-2594, 2016.

L. D. Finkelstein, A. V. Postnikov, N. N. Efremova, and E. Z. Kurmaev, X-ray Ce LIII absorption in 601 CeO2 and BaCeO3: experiment and interpretation on the basis of LMTO band structure calculations, 1992.

, Mater. Lett, vol.14, pp.115-118

B. Fiorentino, L. Golanski, A. Guiot, J. Damlencourt, and D. Boutry, Influence of paints 604 formulations on nanoparticles release during their life cycle, J. Nanoparticle Res, vol.17, pp.1-13, 2015.

B. Forsthuber, U. Müller, A. Teischinger, and G. Grüll, Chemical and mechanical changes during 607 photooxidation of an acrylic clear wood coat and its prevention using UV absorber and micronized 608, 2013.

. Tio2, Polym. Degrad. Stab, vol.98, pp.1329-1338

S. J. Froggett, S. F. Clancy, D. R. Boverhof, and R. A. Canady, A review and perspective of existing 610 research on the release of nanomaterials from solid nanocomposites, Part. Fibre Toxicol, vol.11, 2014.

S. Hirth, L. Cena, G. Cox, Z. Tomovic, T. Peters et al., Scenarios and methods that 613 induce protruding or released CNTs after degradation of nanocomposite materials, J Nanopart Res, vol.15, 2013.

L. Hsu and H. Chein, Evaluation of nanoparticle emission for TiO2 nanopowder coating 616 materials, J. Nanoparticle Res, vol.9, pp.157-163, 2007.

, INES Education, n.d. CalSol

Y. Irmouli, B. George, and A. Merlin, Paints and varnishes --Evaluation of degradation of coatings --Designation of 621 quantity and size of defects, and of intensity of uniform changes in appearance --Part 1: General 622 introduction and designation system, J. Appl. Polym. Sci, vol.124, pp.1938-1946, 2003.

, Paints and varnishes --Evaluation of degradation of coatings --Designation of 624 quantity and size of defects, and of intensity of uniform changes in appearance --Part 2: Assessment of 625 degree of blistering, 2003.

, Paints and varnishes --Evaluation of degradation of coatings --Designation of 627 quantity and size of defects, and of intensity of uniform changes in appearance --Part 4: Assessment of 628 degree of cracking, 2003.

, Paints and varnishes --Evaluation of degradation of coatings --Designation of 630 quantity and size of defects, and of intensity of uniform changes in appearance --Part 5: Assessment of 631 degree of flaking, 2003.

D. S. Jacobs, S. Huang, Y. Cheng, S. A. Rabb, J. M. Gorham et al., , p.633

T. Nguyen and L. Sung, Surface degradation and nanoparticle release of a commercial 634 nanosilica/polyurethane coating under UV exposure, Journal of Coatings Technology and Research, vol.13, issue.635, pp.735-751, 2016.

R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller et al., Release of silver nanoparticles from outdoor facades, Environ. Pollut, vol.158, pp.2900-2905, 2010.

R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser et al., , p.641

H. Vonmont, M. Burkhardt, and M. Boller, Synthetic TiO2 nanoparticle emission from exterior 642 facades into the aquatic environment, Environ. Pollut, vol.156, pp.233-239, 2008.

B. C. Kielmann and C. Mai, Application and artificial weathering performance of translucent 645 coatings on resin-treated and dye-stained beech-wood, Prog. Org. Coat, vol.95, pp.54-63, 2016.

A. J. Koivisto, A. C. Jensen, K. I. Kling, A. Nørgaard, A. Brinch et al., Quantitative material releases from products and articles containing manufactured nanomaterials: 649 Towards a release library, NanoImpact, vol.5, pp.119-132, 2017.

T. Künniger, A. C. Gerecke, A. Ulrich, A. Huch, R. Vonbank et al., , p.651

P. Kunz and M. Faller, Release and environmental impact of silver nanoparticles and conventional 652 organic biocides from coated wooden façades, Environ. Pollut, vol.184, pp.464-471, 2014.

A. Mackevica and S. Foss-hansen, Release of nanomaterials from solid nanocomposites and 655 consumer exposure assessment -a forward-looking review, Nanotoxicology, vol.10, pp.641-653, 2016.

J. W. Martin, J. W. Chin, and T. Nguyen, Reciprocity law experiments in polymeric photo-658 degradation: a critical review, vol.47, pp.292-311, 2002.

M. France--météo and . Climat, , vol.660

N. Neubauer, L. Scifo, J. Navratilova, A. Gondikas, A. Mackevica et al., , p.662

V. Vidal, J. Rose, F. Von-der-kammer, and W. Wohlleben, Nanoscale Coloristic Pigments: Upper 663 Limits on Releases from Pigmented Plastic during Environmental Aging, p.664, 2017.

. Leaching, Environ. Sci. Technol, vol.51, pp.11669-11680

N. F. En, Paints and varnishes. Coating materials and coating systems for exterior wood. 666 Exposure of wood coatings to artificial weathering using fluorescent UV lamps and water. Association 667 Française de Normalisation, 2006.

T. Nguyen, B. Pellegrin, C. Bernard, X. Gu, J. M. Gorham et al., , p.669

E. Byrd, R. Hettenhouser, and J. Chin, Fate of nanoparticles during life cycle of polymer 670 nanocomposites, J Phys Conf Ser, vol.304, 2011.

T. Nguyen, B. Pellegrin, C. Bernard, X. Gu, J. M. Gorham et al., , p.672

J. W. Chin, Direct Evidence of Nanoparticle Release from Epoxy Nanocomposites Exposed to 673 UV Radiation, Nanotech 2010: Technical Proceedings of the 2010 NSTI Nanotechnology 674 Conference and Expo. Presented at the NSTI-Nanotech, pp.724-727, 2010.

J. Olabarrieta, S. Zorita, I. Peña, N. Rioja, O. Monzón et al., Aging of 676 photocatalytic coatings under a water flow: Long run performance and TiO2 nanoparticle release, Appl, vol.677, 2012.

B. Catal and . Env, , p.182

S. K. Olsson, M. Johansson, M. Westin, and E. Östmark, Reactive UV-absorber and epoxy 679 functionalized soybean oil for enhanced UV-protection of clear coated wood, Polym. Degrad. Stab, vol.110, pp.405-414, 2014.

B. Pellegrin, T. Nguyen, L. Mermet, A. Shapiro, X. Gu et al., Degradation and nanoparticle 682 release of epoxy/nanosilica composites exposed to solar UV radiation, 2009.

L. Podgorski, M. Arnold, and G. Hora, A reliable artificial weathering test for Wood Coatings, 2003.

, Coating World, vol.2, pp.39-48

C. Popescu and B. C. Simionescu, Structural Study of Photodegraded Acrylic-Coated Lime 687 Wood Using Fourier Transform Infrared and Two-Dimensional Infrared Correlation Spectroscopy, 2013.

, Appl. Spectrosc, vol.67, pp.606-613

B. Ravel and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS : data analysis for X-ray 690 absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat, vol.12, pp.537-541, 2005.

L. Reijnders, The release of TiO2 and SiO2 nanoparticles from nanocomposites, 2009.

. Stab, , vol.94, pp.873-876

N. Shandilya, O. Le-bihan, C. Bressot, and M. Morgeneyer, Emission of Titanium Dioxide 695 Nanoparticles from Building Materials to the Environment by Wear and Weather, Environ. Sci, 2015.

. Technol, , vol.49, pp.2163-2170

S. Services,

O. Söhnel and J. Garside, Precipitation: basic principles and industrial applications, 1992.

. Heinemann,

. Boston,

C. Som, M. Berges, Q. Chaudhry, M. Dusinska, T. F. Fernandes et al., The 702 importance of life cycle concepts for the development of safe nanoproducts, Toxicology, vol.269, pp.160-169, 2010.

L. Sung, D. Stanley, J. M. Gorham, S. Rabb, X. Gu et al., A quantitative study 705 of nanoparticle release from nanocoatings exposed to UV radiation, J. Coat. Technol. Res, vol.12, pp.121-135, 2015.

C. Szakal, S. M. Roberts, P. Westerhoff, A. Bartholomaeus, N. Buck et al., , p.708

M. Rogers, Measurement of Nanomaterials in Foods: Integrative Consideration of Challenges 709 and Future Prospects, ACS Nano, vol.8, pp.3128-3135, 2014.

M. Tella, M. Auffan, L. Brousset, J. Issartel, I. Kieffer et al., , p.711

B. Angeletti, E. Artells, J. Rose, A. Thiéry, and J. Bottero, Transfer, Transformation, and 712 Impacts of Ceria Nanomaterials in Aquatic Mesocosms Simulating a Pond Ecosystem, Environ. Sci, 2014.

. Technol, , vol.48, pp.9004-9013

M. Tella, M. Auffan, L. Brousset, E. Morel, O. Proux et al., Chronic dosing of a simulated pond 716 ecosystem in indoor aquatic mesocosms: fate and transport of CeO 2 nanoparticles, Environ. Sci. Nano, vol.717, issue.2, pp.653-663, 2015.

G. Vilar, E. Fernández-rosas, V. Puntes, V. Jamier, L. Aubouy et al., 719 Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated 720 aging, J Phys Conf Ser, vol.429, 2013.

Y. Wang and B. Nowack, Dynamic probabilistic material flow analysis of nano-SiO2, nano iron 722 oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions, Environ. Pollut, vol.235, pp.589-601, 2018.

W. Wohlleben, S. Brill, M. W. Meier, M. Mertler, G. Cox et al., , p.725

S. Treumann, K. Wiench, L. Ma-hock, and R. Landsiedel, On the Lifecycle of Nanocomposites: 726 Comparing Released Fragments and their In-Vivo Hazards from Three Release Mechanisms and Four 727 Nanocomposites, Small, vol.7, pp.2384-2395, 2011.

W. Wohlleben, C. Kingston, J. Carter, E. Sahle-demessie, S. Vázquez-campos et al., NanoRelease: Pilot interlaboratory comparison 730 of a weathering protocol applied to resilient and labile polymers with and without embedded carbon 731 nanotubes, Carbon, vol.113, pp.346-360, 2017.

W. Wohlleben, M. W. Meier, S. Vogel, R. Landsiedel, G. Cox et al., Elastic 733 CNT-polyurethane nanocomposite: synthesis, performance and assessment of fragments released during 734 use, Nanoscale, vol.5, pp.369-380, 2013.

W. Wohlleben and N. Neubauer, Quantitative rates of release from weathered nanocomposites are 736 determined across 5 orders of magnitude by the matrix, 2016.

, NanoImpact, vol.1, pp.39-45

W. Wohlleben, G. Vilar, E. Fernández-rosas, D. González-gálvez, C. Gabriel et al., Vazquez-Campos, 740 S., 2014. A pilot interlaboratory comparison of protocols that simulate aging of nanocomposites and 741 detect released fragments, Environ. Chem, vol.11, pp.402-418

S. Zuin, M. Gaiani, A. Ferrari, and L. Golanski, Leaching of nanoparticles from experimental 743 water-borne paints under laboratory test conditions, J. Nanoparticle Res, vol.16, 2013.

, Negative releases were isolated from the series as they represent artifacts of measurement due to the sampling method. b Ce releases integrated over the weekly cycles of Suntest experiment. Dissolved Ce determined on samples filtrated at 10kDa is represented in light blue. The dotted line marks a change in release regime after 4 weeks weathering (155 MJ.m -2 UV dose). c Cumulative release of total and dissolved Ce calculated for Suntest experiment. Ce background measured on ACR samples was included in the error bars. Ce releases of phase II were fitted by a polynomial law of the second order, Ce releases taking place during water spraying of Suntest experiment. a Ce release measured between two sampling events

, Standard deviation is represented in error bars. a Ce release measured for n-CeO 2 samples maintained in the dark (grey) or exposed to light (blue), during each immersion. A mean Ce background of 0.04 mg.m -2 was estimated based on Ce level in the blank beaker (no sample) and is indicated by the red horizontal line on the graph. b Cumulative Ce releases calculated for batch experiment, for n-CeO 2 samples maintained in the dark (grey) and exposed to light (blue). Ce releases of phase II were fitted by a polynomial law of the second order

, Crack size ranked S1 (only visible with 766 magnification x10 -marked Cracks 2) for all non-zero values. For flaking most samples displayed an S1 except for the 4 767 points marked with a star where larger defects could be observed (marked Flakes 1) (S2, incipiently visible with normal and 768 corrected vision). b Defect density observed on n-CeO 2 samples of Suntest experiment as a function of the UV dose. For 769 blistering, most samples displayed an S3 ranking (clearly visible with normal corrected vision) (marked Blister 3), except for 770 points indicated by a star (S2). The crack size was S1 on all samples (marked Cracks 4). c, d Evolution of defect density and 771 size for c ACR, Assessment of stain degradation according to blistering, flaking and cracking criteria. a Defect density 765 observed on ACR samples of Suntest experiment as a function of the UV dose, vol.5, p.772

, No defects were observed on samples that were maintained in the dark. On b and d the dotted lines mark the onset 773 of phase II determined from release curves. Numbers (1-6) refer to defects (cracks, flake, and blister) observed by optical 774 microscopy (magnifications x5 and x10) and shown as example

, Sampling and physico-chemical characterization of "rain" waters in Suntest experiment

, The beakers were then re-introduced in Suntest XLS+ with the remaining water 19 volume. Whenever necessary, controlled amounts of Milli-Q water were added to the beakers to 20 compensate for evaporation and prevent drying out. After spraying event #3 the whole water volume, 40mL-aliquots of the water collected in beakers were taken after rain events #1 and #4 (Figure 1a) for 18 further analyses, vol.21