Study of Venus’ cloud layers by polarimetry with SPICAV/VEx

Loïc Rossi 1, Emmanuel Marcq 1, Franck Montmessin 2, Jean-Loup Bertaux 2, Anna Fedorova 3 4, Oleg Korabel’v 3 4, Daphne Stam 5

1 LATMOS/UVSQ, Guyancourt, France
2 LATMOS/CNRS, Guyancourt, France
3 Space Research Institute/IKI, Russia
4 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
5 Technische Universiteit Delft, Delft, The Netherlands

EGU GA 2014-04-30
Polarization studies of Venus

Ground-based observations 1920s-1970s (Lyot, Coffeen, Dollfus…)

- Hansen and Hovenier (1974) used a polarized radiative transfer code to retrieve the parameters of the cloud layers
- Pioneer Venus OCPP: polarimetric measurements analyzed by Kawabata (1980), Sato (1996) to retrieve parameters of the haze layer

Main results

<table>
<thead>
<tr>
<th>Shape</th>
<th>spherical droplets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazes</td>
<td>$r_h \sim 0.25 , \mu m$ $\nu_h \sim 0.25$</td>
</tr>
<tr>
<td>Cloud</td>
<td>$r_c \sim 1 , \mu m$ $\nu_c \sim 0.07$</td>
</tr>
<tr>
<td>Composition</td>
<td>concentrated $\text{H}_2\text{SO}_4 - \text{H}_2\text{O}$ solution</td>
</tr>
</tbody>
</table>
SPICAV-IR observations

Principle of measurement

SPICAV-IR is an infrared spectrometer onboard ESA’s Venus Express spacecraft, working in the 0.65 – 1.7 µm range.

- spectral window and continuum measurement
- based on an acousto-optic tunable filter (AOTF)
- produces two beams polarized in perpendicular directions

Degree of linear polarization

\[P_\ell = \frac{P_\perp - P_\parallel}{P_\perp + P_\parallel} = \frac{d_1 - d_0}{d_1 + d_0} \]
Linear polarization degree map for $\lambda = 1.274\mu m$
Linear polarization degree map for $\lambda = 1.324 \mu m$
Figure: Linear polarization degree at $\lambda = 1.324\,\mu m$
Polarization patterns produced by Mie scattering on spherical particles depends on the size parameter $x = \frac{2\pi r}{\lambda}$.

- $x \ll 1$: Rayleigh-like scattering, positive polarization
- $x > 1$: Mie regime, complex features, in particular the polarimetric glory

Estimates for cloud particles
- spherical particles
- $r \sim 1 \, \mu m$
- $n_r \sim 1.42$ at $\lambda = 1 \, \mu m$
Polarization patterns produced by Mie scattering on spherical particles depends on the size parameter \(x = \frac{2\pi r}{\lambda} \).

- \(x \ll 1 \): Rayleigh-like scattering, positive polarization
- \(x > 1 \): Mie regime, complex features, in particular the polarimetric glory

Estimates for cloud particles
- spherical particles
- \(r \sim 1 \, \mu m \)
- \(n_r \sim 1.42 \) at \(\lambda = 1 \, \mu m \)
Mie scattering

Polarization patterns produced by Mie scattering on spherical particles depends on the size parameter
\[x = \frac{2\pi r}{\lambda}. \]

- \(x \ll 1 \): Rayleigh-like scattering, positive polarization
- \(x > 1 \): Mie regime, complex features, in particular the polarimetric glory

Estimates for cloud particles

- spherical particles
- \(r \sim 1 \, \mu m \)
- \(n_r \sim 1.42 \) at \(\lambda = 1 \, \mu m \)
Cloud modeling

Cloud layers

- Polarized, multiple scattering radiative transfer model based on the doubling-adding method, provided by D. Stam
- Clouds described by two layers, each homogeneously mixed

- Observations of glories will yield values for the cloud layer
- Observations at higher phase angles will provide information about hazes

<table>
<thead>
<tr>
<th>Clouds parameters</th>
<th>r_{eff}</th>
<th>ν_{eff}</th>
<th>n_r</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haze layer</td>
<td>0.25</td>
<td>0.25</td>
<td>n</td>
<td>τ_h</td>
</tr>
<tr>
<td>Cloud layer</td>
<td>r_c</td>
<td>0.07</td>
<td>n</td>
<td>30</td>
</tr>
</tbody>
</table>
Cloud modeling

Modeling at $\lambda = 1.1 \ \mu m$

Parameters retrieval

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Main effect on degree of polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_r</td>
<td></td>
</tr>
</tbody>
</table>

Dependence of model to n_r

$r_{eff} = 1.05$, $\nu_{eff} = 0.07$, $\tau_h = 0.$

$n_r = 1.41$

$n_r = 1.42$

$n_r = 1.43$
Cloud modeling

Modeling at $\lambda = 1.1 \mu m$

Parameters retrieval

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Main effect on</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_r</td>
<td>degree of polarization</td>
</tr>
<tr>
<td>r_{eff}</td>
<td>position of glory minimum</td>
</tr>
</tbody>
</table>

Dependence of model to r_{eff}

$n_r = 1.42$, $\nu_{\text{eff}} = 0.07$, $\tau_h = 0$. $r_{\text{eff}} = 1.0 \mu m$, $r_{\text{eff}} = 1.1 \mu m$, $r_{\text{eff}} = 1.2 \mu m$
Cloud modeling

Modeling at $\lambda = 1.1 \, \mu m$

Parameters retrieval

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Main effect on</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_r</td>
<td>degree of polarization</td>
</tr>
<tr>
<td>r_{eff}</td>
<td>position of glory</td>
</tr>
<tr>
<td>ν_{eff}</td>
<td>minimum shape of glory</td>
</tr>
</tbody>
</table>

Dependence of model to ν_{eff}

$n_r = 1.42$, $r_{\text{eff}} = 1.05$, $\tau_h = 0.$

- $\nu_{\text{eff}} = 0.05$
- $\nu_{\text{eff}} = 0.07$
- $\nu_{\text{eff}} = 0.09$
Cloud modeling

Modeling at $\lambda = 1.1 \ \mu m$

Parameters retrieval

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Main effect on</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_r</td>
<td>degree of polarization</td>
</tr>
<tr>
<td>r_{eff}</td>
<td>position of glory minimum</td>
</tr>
<tr>
<td>ν_{eff}</td>
<td>shape of glory</td>
</tr>
<tr>
<td>τ_h</td>
<td>positive polarization</td>
</tr>
</tbody>
</table>

Dependence of model to τ_h

$n_r = 1.42$, $r_{\text{eff}} = 1.05$, $\nu_{\text{eff}} = 0.07$

L. Rossi Polariometric study of Venus’ clouds
Low latitudes

Orbit 1463-7 @ 1.101\,\mu m, r_{eff}=1.05, \nu_{eff}=0.12, \tau_h = 0.03

Linear polarization degree (%) vs. Phase angle (°)

- $n_r = 1.424$
- $n_r = 1.422$
- $n_r = 1.420$
- orbit 1463-7
Low latitudes

Orbit 1463-7 @ 1.274\,\mu m, r_{eff}=1.05, \nu_{eff}=0.12, \tau_{h}=0.03

$L.\,Rossi$ \hspace{1cm} Polarimetric study of Venus' clouds
Low latitudes

Orbit 1478-8 @ 1.101µm, $r_{\text{eff}} = 1.2$, $\nu_{\text{eff}} = 0.07$, $\tau_h = 0.05$

- $n_r = 1.42$
- $n_r = 1.418$
- $n_r = 1.415$

Linear polarization degree (%) vs. Phase angle (°) for orbit 1478-8.
Low latitudes

Orbit 1478-8 @ 1.274µm, $r_{\text{eff}} = 1.2$, $\nu_{\text{eff}} = 0.07$, $\tau_h = 0.05$

- $n_r = 1.418$
- $n_r = 1.415$
- $n_r = 1.412$

orbit 1478-8
At high latitudes, a strong positive polarization is observed. Stronger influence of hazes required to match observations. Optical depth vary from ~ 0.3 to ~ 0.7. Upper limit for τ_h can reach 0.17 at very high latitudes.
At high latitudes, a strong positive polarization is observed. Stronger influence of hazes required to match observations. Optical depth vary from ~0.3 to ~0.7. Upper limit for τ_h can reach 0.17 at very high latitudes.
Conclusions

SPICAV-IR polarization data is in good agreement with previous observations, in particular with OCPP.

Polarization maps confirm values of $r_{\text{eff}} \sim 1$ µm, with narrow size distribution for cloud particles at a planetary scale.

We always observe the glory at low phase angles, as VMC in photometry: particles are spherical.

Retrieved refractive indices are compatible with sulfuric acid solution.

The haze optical thickness increases towards the poles.

Perspectives

- Parameters retrieval for each orbit.
- Investigate latitudinal, temporal variability (local time and long term).
Acknowledgments

This PhD thesis is funded by the LabEx “Exploration Spatiale des Environnements Planétaires” (ESEP) N° 2011 LABX-030. We want to thank the State and the ANR for their support within the programme “Investissements d’Avenir” through the excellence initiative PSL*(ANR-10-IDEX-0001-02).

Contact and presentation download

loic.rossi@latmos.ipsl.fr