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Abstract 
 
Cyanobacteria are widespread photosynthetic microorganisms among which some are able to 
fix atmospheric nitrogen. We investigated the impact of indigenous cyanobacteria strains 
(Nostoc) inoculation on physical characteristics of poorly aggregated soils from Guquka 
(Eastern Cape, South Africa). The soil aggregates (3–5 mm) were arranged into a layer of 10–
20 mm thick, and sprayed with cyanobacteria solution. Subsequently the inoculated and un-
inoculated samples were incubated (30°C, 80% humidity, continuous illumination at 
100 μmol m−2 s−1). Their micromorphological characteristics and aggregate stability were 
investigated, after 1, 2, 3, 4 and 6 weeks of incubation, by using high resolution Cryo-SEM 
and aggregate breakdown tests.  
Micromorphological investigations revealed that the surface of un-inoculated samples 
remained uncovered, while the inoculated samples were partially covered by cyanobacteria 
material after one week of incubation. A dense superficial network of cyanobacterial 
filaments and extracellular polymer secretions (EPS) covered their surface after 4 and 6 weeks 
of incubation. Organo-mineral aggregates comprising cyanobacterial filaments and EPS were 
observed after 6 weeks of incubation. The results of aggregate breakdown tests showed no 
significant difference between un-inoculated samples after 1, 2, 3, 4 or 6 weeks, while they 
revealed improvement of aggregate stability for inoculated samples. The improvement of 
aggregate stability appeared in a short while following inoculation and increased gradually 
with time and cyanobacteria growth. The increase in aggregate stability is likely related to the 
changes induced in micromorphological characteristics by cyanobacterial filaments and EPS. 
It reflects the effect of coating, enmeshment, binding and gluing of aggregates and isolated 
mineral particles by cyanobacteria material.  



Our study presents new data demonstrating the improvement of soil physical quality in a few 
weeks after cyanobacteria inoculation. The interaction of the inocula and other biotic 
components is worthy of study before field application of cyanobacteria.  

Keywords : Cryo-SEM - Cyanobacteria - Inoculation -  Nostoc  - Organo-mineral 
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Introduction 
 
Cyanobacteria are colonising microorganisms that are found throughout the world, in marine, 
freshwater and terrestrial environments. These organisms are remarkably well adapted to a 
wide range of environmental conditions. They are photosynthesizers and some of them are 
able to fix atmospheric nitrogen. Their cells are generally surrounded by a polysaccharide 
sheath or capsule able to hold water and to confer to cyanobacteria a great tolerance to 
desiccation (Whitton 1987). Their pigment equipment allows them to withstand high levels of 
ultraviolet irradiation (Campbell 1979; Whitton 1992). In arid environments they form the 
major component of microbiotic soil crusts, i.e., microbial communities including algae, 
lichens and bacteria that form centimetre-thick crusts at the surface of soil (Malam Issa et al. 
1999).  

The beneficial effects of cyanobacteria on soil physical properties in arid environments have 
been demonstrated through the study of microbiotic crusts (Isichei 1990; Pérez 1997; 
Williams et al. 1999; Malam Issa et al. 1999 and 2001a). The most abundant microbial 
constituents of microbiotic crusts are filamentous cyanobacteria that exert a mechanical effect 
on soil particles as they form a gluing mesh and bind soil particles on the surface of their 
polysaccharidic sheath material (Belnap 1993; Malam Issa et al. 1999; 2001a). Cyanobacteria 
also excrete extracellular polymeric secretions (EPS) mainly composed of polysaccharides 
(Decho 1990; Hu et al. 2003). Extracellular polymeric secretions ensure the role of binding 
agent of soil particles (Lynch and Bragg 1985). Microbiotic crusts thus lead to the formation 
of tough and entangled superficial structures that improve the stability of soil surface and 
protect it from erosion (Malam Issa et al. 1999 and 2001a). Cyanobacterial sheaths and EPS 
also play a significant role in water storage due to the hygroscopic properties of 
polysaccharides (Decho 1990). They contribute to increased water retention capacity of soil 
(Verrecchia et al. 1995; Défarge et al. 1999). It has also been reported that cyanobacteria, as C 
and N fixers, can improve the nutrient content of soil in arid environments (Mayland and 
McIntosh 1966; Jeffries et al. 1992; Lange et al. 1994). As photosynthetic organisms they are 
the main primary producers, enriching the soil with organic matter and favouring biological 
activity (Lange et al. 1994). They also represent a potential source of nitrogen, which may be 
beneficial for forthcoming crop production (Rogers and Burns 1994; Zaady et al. 1998; 
Malam Issa et al. 2001b).  

Given their beneficial effects on soil, cyanobacteria have been used as inoculants in attempts 
to improve soil structure, increase soil fertility or recover damaged soil crusts (Rao and Burns 
1990a, b; Rogers and Burns 1994; Falchini et al. 1995; Zulpa de Caire et al. 1997; Ghosh and 
Saha 1997; Buttars et al. 1998; Fernandez Valiente et al. 2000; Acea et al. 2001; Hu et al. 
2002, 2003; Pandey et al. 2005). Applied in rice or oil-seed rape cultivation cyanobacteria 
supplied soil with nutrient and significantly increased productivity (Watanabe and Yamamoto 
1971; Stewart et al. 1979; Reynaud 1987; Rao and Burns 1990a, b; Ghosh and Saha 1997; 
Fernandez Valiente et al. 2000). The results obtained by Roger and Burns (1994) indicated 



significant increase of seedling emergence in soils inoculated with Nostoc muscorum 
compared to the un-inoculated soils. When used for recovering disturbance due to trampling, 
ploughing and wildfire, cyanobacteria promoted establishment of microbial population, 
increased organic matter and nutrient content and also soil stability (Ashley and Rushforth 
1984; St. Clair et al. 1986; Johansen et al. 1994; Buttars et al. 1994, 1998; Acea et al. 2001, 
2003).  

Although many works have dealt with the use of cyanobacteria inoculation as soil 
conditioners, work on the short- and long-term changes following inoculation is needed. The 
work presented here is the first step of an EU project (Cyanosoils) on the use of local strains 
of cyanobacteria to improve resilience and overall soil fertility in arid soils. The work is based 
on laboratory experiments and comparison between micromorphological characteristics and 
aggregate stability of inoculated and un-inoculated soil samples. It aims to improve our 
knowledge about the changes in soil microstructure and physical properties during the early 
stage following cyanobacteria inoculation into soil.  

Materials and methods 
 
The soil was collected from a site located in the Eastern Cape Province (South Africa) near 
the village of Guquka (32°39′ S, 26°57′ E), a rural settlement of about 130 households with 
arable and grazing lands.  
Major textural characteristics of the soil are shown in Table 1. It is a cultivated ferruginous 
tropical soil classified as a Typic Plinthustalf (Soil taxonomy) and as a Ferric Luvisol soil in 
the FAO system (FAO 1994). The soil was chosen because of its low physical and chemical 
fertility, resulting from its inherently low organic content and its particle size (Table 1). The 
soil samples have a sandy clay loam texture, an acidic pH value and low total organic carbon 
(TOC) and nitrogen contents (Table 1). Values of mean weight diameter (MWD) ranged from 
0.4 to 0.8 mm, which are characteristic of unstable soil sensitive to crust formation and 
sealing after rain (Bresson and Valentin 1994; Le Bissonnais 1996). After sampling, soil 
aggregates were air-dried and sieved between 3–5 mm, then stored in a cold room until they 
were inoculated with cyanobacteria.  
 

The experiments of inoculation were performed using a strain of cyanobacterium belonging to 
the genus Nostoc. This strain was isolated from a tropical soil from Tanzania, another site 
studied during the Cyanosoils project. It was selected because it showed a high growth rate 
both on culture medium and on soil, but also due to its ability to produce EPS and to fix 
nitrogen.  

Soils aggregates were arranged in a layer of 1 cm thick in a plastic ring of 14 cm in diameter 
and 4 cm in height. One set of samples was inoculated by spraying their surface with a 
cyanobacteria solution containing 3 g l−1 of inoculum. Duplicate inoculated and un-inoculated 
samples were placed in an incubator where the temperature was maintained at 30°C, the 
relative humidity at 80% and the illumination at 100 μmol m−2 s−1. The samples were 
maintained wet by regular spraying with deionised water and medium culture (BG 110). Both 
inoculated and un-inoculated samples were maintained in the incubator for 1, 3, 4, and 
6 weeks. When incubation was complete, samples were first air-dried, and thereafter material 
from the upper 5 mm collected. Microscopic investigations of soil structure and aggregate 
stability measurements were simultaneously run for inoculated and un-inoculated samples.  



The micromorphological characteristics of the selected samples were investigated with high 
resolution scanning electron microscope (Hitachi S-4200) equipped with a field emission gun 
and a dedicated cryopreparation system (Polaron LT 7400). The field emission gun allowed 
us to observe dry pieces of soil samples at low accelerating voltage (1 kV) without using any 
coating. The cryo-system was used to observe wet samples in a state close to field conditions. 
This technique offers the ability to visualise the natural surface of the living components of 
the inoculated samples (Défarge et al. 1999).  

Stability measurements were performed in triplicate according to the method of Le Bissonnais 
(1996) using aggregates of 3–5 mm in size, obtained by sieving inoculated and un-inoculated 
samples. The method determines stability of aggregates by using a combination of three 
treatments, each corresponding to different wetting conditions and energy inputs: (i) the fast 
wetting was used to test the behaviour of dry soil samples subjected to rapid wetting events 
during spring or summer heavy rain storms; (ii) the slow wetting treatment, to test the 
behaviour of samples that are dry or with a low water content submitted to moderate rains. 
This test is less destructive than the rapid wetting and allows discrimination of very unstable 
soils; (iii) the wet stirring treatment tests the cohesion of the moist material independently of 
slaking. It was performed using a non-polar liquid miscible with water (ethanol) to avoid 
aggregates breakdown by slaking. A detailed description of the method is given by Le 
Bissonnais (1996), Attou et al. (1998) and Malam Issa et al. (2001a). After each treatment the 
particle size distribution of the resulting material was determined by a combination of wet- 
and dry-sieving. Aggregate stability was expressed by the resulting fragment size distribution 
in seven granulometric classes and by the value of the MWD calculated by the following 
formula:  

 

with   χi being the mean intersieve size and w i the percentage of particles left on each sieve.  

Multiple comparison tests (Tuckey’s HSD) were used to test for significant differences in 
MWD values obtained for inoculated and un-inoculated samples after all treatments.  

Results 
 
Surface observations 
 
The surface of un-inoculated samples comprised only mineral soil particles (Fig. 1A), 
whereas the inoculated samples comprised also Nostoc filaments and EPS produced by these 
cyanobacteria (Figs. 1B, 2–4). Comparison between inoculated samples incubated for 1, 4 and 
6 weeks showed increase of the abundance of cyanobacteria material accompanied by gradual 
changes in micromorphological features. A partial cyanobacterial material cover or biofilm 
(composed of filaments and EPS) formed at the surface of samples inoculated for one week 
(Fig. 2A). The EPS material formed a discontinuous coating on the surface of isolated mineral 
particles (Fig. 2A). In some places EPS formed organic bridges linking together contiguous 
soil particles (Fig. 2). Samples inoculated for 4 and 6 weeks exhibited a densely-covered 
surface, resulting from the high development of cyanobacteria and the abundance of secreted 



material (Figs. 3 and 4). Cyanobacterial filaments and secreted material were closely 
associated and formed an intricate network (Fig. 3). They covered almost the entire surface of 
soil (Fig. 3A), tightly binding aggregates and particles (Figs. 3 and 4). The surface of samples 
inoculated for 6 weeks exhibited also organo-mineral aggregates, 150–350 μm in diameter, 
comprising filaments and EPS (Fig. 4B). 
 
Aggregate stability 

Fragment size distribution 

Figure 5 shows the fragment size distribution of material collected after the three tests of 
aggregate stability performed on un-inoculated and inoculated samples. The percentages of 
fragments larger than 2 mm (coarse fragments) and fragments smaller than 0.5 mm (fine 
fragments) in collected material reflected the resistance of soil samples against aggregate 
breakdown. 
 

In Fig. 5A we present the fragment size distribution of material collected from un-inoculated 
samples. All the samples showed low resistance to aggregate breakdown, because the 
collected material comprised more fine fragments (58–88%) than coarse fragments (3–31%). 
Material collected after wet stirring contained 3–10% of coarse fragments and 82–88% of fine 
fragments. This test induced higher aggregate breakdown than the fast and slow wettings, that 
produced more coarse fragments (16–30%) and less fine fragment (58–79%).  

In Fig. 5B we present the fragments size distribution of material collected after testing 
inoculated samples. Inoculated samples incubated for 2–6 weeks are more resistant than un-
inoculated samples as they produced more coarse fragments and less fine fragments. The 
lowest resistance to stability tests was obtained with inoculated samples incubated for 
2 weeks; the percentages of >2 mm and <0.5 mm fragments are 3–38% and 52–86% 
respectively. The greatest resistance is shown by inoculated samples incubated for 6 weeks, as 
the materials collected after their treatments contained 17–47% of fragments smaller than 
0.5 mm and 48–78% of fragments larger than 2 mm. Samples inoculated for one week 
showed the same behaviour as the bulk of un-inoculated samples; 78–94% of the collected 
material after all treatments occurred within <0.5 mm size range (Fig. 5B).  

Regardless the time of incubation, the highest disaggregation was obtained with the wet 
stirring test of stability. This test produced relatively low amount of coarse fragments (3–
48%) and high amount of fine fragments (47–88%) compare to fast and slow wettings (29–
78% of coarse fragments, 17–66% of fine fragments). Samples inoculated for 4 and 6 weeks 
showed a significant resistance to the wet stirring, the most destructive test. The material 
collected after wet stirring test contained 12–48% of coarse fragments on these samples 
compared with 1–4% in material collected from samples inoculated for 1, 2 and 3 weeks.  

 
 
 
 
Mean weight diameter 
 



Figure 6 shows the mean weight diameter of collected particles after the three tests of 
aggregate stability performed on un-inoculated and inoculated samples. These results are 
consistent with those indicated by fragment size distributions. MWD of the un-inoculated 
samples ranged between 0.72–0.90 mm, 0.77–1.29 mm and 0.28–0.52 mm, respectively, after 
fast-, slow-wetting and wet stirring (Fig. 6A). The highest value was recorded for the 6-weeks 
incubated samples after slow wetting. Values obtained after the fast wetting treatments were 
not significantly different according to the multiple comparison test (95% Tukey’s HSD). The 
mean value of the three tests showed no significant increase of aggregate stability between the 
different stages of incubation. Mean weight diameter values for inoculated samples, except 
those incubated for one-week, ranged between 1.14–2.34 mm, 1.25–2.81 mm and 0.31–
1.77 mm, respectively after fast-, slow-wetting and wet stirring (Fig. 6B). These values 
revealed a significant increase in aggregate stability after two weeks of cyanobacterial growth 
for fast and slow wetting tests and after four weeks of incubation for wet stirring test 
(Fig. 6B). There was a significant difference in MWD between inoculated and un-inoculated 
samples for both the fast and slow wetting tests. For the wet stirring tests only MWD of 4 and 
6-weeks inoculated samples were significantly different from those of un-inoculated samples 
(P = 0.05). 
 
 
 
 
Discussion 

Results of stability measurements reported here showed that the strain of Nostoc inoculated 
into soil increases the resistance of soil aggregates to breakdown. The rate of aggregate 
stability increase was higher than those reported in the literature. In a similar experience 
Bailey et al. (1973) obtained an increase of water stability of aggregates by 14% after 6 weeks 
following inoculation. Rogers and Burns (1994) and Zulpa de Caire et al. (1997) reported an 
increase in aggregate stability of respectively 18% in average after 300 days and 66% after 
365 days following inoculation of Nostoc muscorum into soil. Our results indicate an increase 
in aggregate stability by two to four times compared to that of un-inoculated samples 6 weeks 
following inoculation. From the second week of inoculation a high resistance to breakdown 
caused by fast- and slow-wettings was recorded, and after 6 weeks aggregates proved to resist 
even the wet stirring, the most destructive wetting treatment that simulates the rain drop 
impact. The aggregate stability values obtained after 6 weeks of cyanobacterial growth were 
similar to those of very stable soil material using the scale of erodibility described by Le 
Bissonnais (1996). These values are in the same range as those obtained on microbiotic soil 
crusts undisturbed for 4 years (Malam Issa et al. 2001a).  

The resistance of inoculated soil aggregates to breakdown is likely related to the changes 
induced in micromorphological characteristics by cyanobacterial filaments and EPS. Similar 
to what has been observed in microbiotic soil crusts (Cameron and Devaney 1970; Belnap and 
Gardner 1993; Défarge et al. 1999; Malam Issa et al. 1999, 2001a), micrographs of inoculated 
samples show how soil particles and inoculated cyanobacteria material are bound together 
(Figs. 2–4). From the first week following the inoculation, cyanobacteria and abundant EPS 
formed a discontinuous coating over the surface of isolated mineral particles and in some 
places an organic-bridge between contiguous soil particles (Fig. 2). However these changes 
were not accompanied by improvement in aggregate stability. Moreover, aggregate stability 
lower than that of un-inoculated samples was recorded (Fig. 6). Perhaps this is due to the fact 
that spraying of inocula leads to aggregate breakdown and particle dispersion, and the 



aggregation of those dispersed particles took more than one week to reappear. After 4–
6 weeks following inoculation a densely covered surface and an intricate network of filaments 
resulted from further development of cyanobacteria and secretion of EPS (Figs. 3 and 4). That 
leads first to coating, enmeshment and then binding of soil particles and aggregates. This 
stage was followed by building up of soil particles into organo-mineral aggregates by 6 weeks 
following inoculation of cyanobacteria into soil material. These features due to the 
intertwining disposition of cyanobacterial filaments, their gluing effect and the coalescence of 
EPS were also described in microbiotic soil crusts (Marathe 1972; Campbell 1979; Malam 
Issa et al. 1999, 2001a). They are responsible of the resistance of inoculated sample 
aggregates to breakdown by fast and slow wetting. The behaviour of the 6-week inoculated 
samples after the wet stirring test is likely related to the presence of organo-mineral 
aggregates.  

Our results constitute a preliminary study of soil fertility prior to inoculation of some strains 
of cyanobacteria. They demonstrated the growth and proliferation of the selected 
cyanobacteria, their ability to produce EPS, and the improvement of soil aggregate stability. 
Size and stability of aggregates changed shortly after inoculation, and gradually increased 
with time and cyanobacteria growth. About 6 weeks were required to obtain stability values 
similar to that of undisturbed microbiotic soil crusts. Compared to the time required for a full 
and natural recovery of disturbed microbiotic crusts, i.e. 2–100 years (Cole 1990; Johansen 
et al. 1993; Belnap 1993). Our results showed that inoculation can increase the rate of 
recovery of disturbed soils. As stated by Warren (2001), subsequent improvement of water 
infiltration could result from cyanobacteria inoculation because stable aggregate render soil 
surfaces less sensitive to sealing and crusting.  

The ultimate objective of the work was to increase favourable substrates for seed germination 
and plant growth by field inoculation of cyanobacteria. However, more information is needed. 
For example, the influence of other microbes on soil physical characteristics should be 
considered, since compounds excreted as metabolites and organic matter through death and 
decay of inoculated cyanobacteria stimulate proliferation of algae, bacteria, fungi, and 
actinomycetes (Rogers and Burns 1994; Acea et al. 2001, 2003). The interaction of the 
inocula and other biotic components requires field study prior to any field application of 
cyanobacteria.  
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Figures 
 

 
 
Fig. 1 SEM micrographs of the soil surface Comparison between inoculated and un-
inoculated samples. (A) View of the surface of un-inoculated sample. Note that only mineral 
particles can be observed. (B) View of the surface of an inoculated sample. It is covered by an 
organic film. Note the extracellular polymer secretions in the interspaces between mineral 
particles 
 



 
 
Fig. 2 SEM micrographs of the soil surface. Sample inoculated for one week. (A) General 
view showing a partial coating of isolated mineral particles by cyanobacterial filaments and 
EPS. Note the presence of organic bridges between soil mineral particles. (B) Close-up of an 
organic bridge between two mineral particles 
 



 
 
Fig. 3 SEM micrographs of the soil surface. Sample inoculated for 4 weeks. (A) General view 
of the surface. Note the biofilm that covers the surface and binds together soil particles. (B) 
Close-up of the biofilm formed of extracellular polysaccharide secretions associated with 
Nostoc filaments exhibiting recognizable individual cells 
 



 
 
Fig. 4 SEM micrographs of the soil surface. Samples inoculated for 6 weeks. (A) View of the 
biofilm covering the surface of soil. (B) View of an organo-mineral aggregate of extracellular 
polysaccharide secretions and mineral particles 
 



 
 
Fig. 5 Fragment size distributions of soil aggregates after the three testing treatments (Values 
represent mean of triplicate measurements). (A). Comparison of tests results for un-inoculated 
samples incubated for 1, 2, 3 and 6 weeks (B). Comparison of tests results for samples 
inoculated and incubated for 1, 2, 3, 4 and 6 weeks 
 



 
 
Fig. 6 Values of the Mean Weight Diameter (mean of triplicate measurements). (A) un-
inoculated samples incubated for 1, 2, 3 and 6 weeks. (B) Inoculated samples incubated since 
1, 2, 3, 4 and 6 weeks. Values represent mean of three measurements. Values with the same 
letter are not significantly different, according to the multiple comparison test (95% Tukey 
HSD) 
 
 
 
 
 
 
 



Table 
 
Table 1 The main characteristics of the studied soil  
Particle-size fraction
Clay Silt (%) Sand

Aggregate stability MWD (mm) pH C (g/kg) N (g/kg) C/N 

13.5 41.0 45.5 0.56  5.4 6.1 0.4 15.3 

 


