G. R. Gavalas, P. H. , -. Cheong, and R. Jaln, Model of coal pyrolysis. 1. Qualitative development, Industrial & Engineering Chemistry Fundamentals, vol.20, issue.2, p.113, 1981.
DOI : 10.1021/i100002a001

P. R. Solomon, M. A. Serio, and E. M. Suuberg, Coal pyrolysis: Experiments, kinetic rates and mechanisms, Progress in Energy and Combustion Science, vol.18, issue.2, p.133, 1992.
DOI : 10.1016/0360-1285(92)90021-R

M. Monthioux, P. Landais, and J. Monin, Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia, Organic Geochemistry, vol.8, issue.4, p.275, 1985.
DOI : 10.1016/0146-6380(85)90006-3

H. J. Schenk, E. G. Witte, R. Littke, and K. Schwochau, Structural modifications of vitrinite and alginite concentrates during pyrolitic maturation at different heating rates. A combined infrared, 13C NMR and microscopical study, Organic Geochemistry, vol.16, issue.4-6, p.943, 1990.
DOI : 10.1016/0146-6380(90)90130-R

R. Michels and P. Landais, Artificial coalification: Comparison of confined pyrolysis and hydrous pyrolysis, Fuel, vol.73, issue.11, p.1691, 1994.
DOI : 10.1016/0016-2361(94)90154-6

I. Suárez-ruiz, L. Martínez, . Ph, J. G. Bertrand, J. Prado et al., Influence of rock particle size on the artificial thermal evolution of kerogen. A petrographic and geochemical study, International Journal of Coal Geology, vol.25, issue.1, p.47, 1994.
DOI : 10.1016/0166-5162(94)90004-3

A. Jiménez, M. J. Iglesias, F. Laggoun-défarge, and I. Suárez-ruiz, Effect of the increase in temperature on the evolution of the physical and chemical structure of vitrinite, Journal of Analytical and Applied Pyrolysis, vol.50, issue.2, p.117, 1999.
DOI : 10.1016/S0165-2370(99)00027-3

F. Behar and P. G. Hatcher, Artificial Coalification of a Fossil Wood from Brown Coal by Confined System Pyrolysis, Energy & Fuels, vol.9, issue.6, p.984, 1995.
DOI : 10.1021/ef00054a008

R. W. Wilkins and S. C. Geroge, Coal as a source rock for oil: a review, International Journal of Coal Geology, vol.50, issue.1-4, p.317, 2002.
DOI : 10.1016/S0166-5162(02)00134-9

J. Newman, L. C. Price, and J. H. Johnston, HYDROCARBON SOURCE POTENTIAL AND MATURATION IN EOCENE NEW ZEALAND VITRINITE-RICH COALS., Journal of Petroleum Geology, vol.16, issue.3, p.137, 1997.
DOI : 10.1016/0016-7037(84)90349-1

C. M. Norgate, C. J. Boreham, P. J. Kamp, and J. Newman, RELATIONSHIPS BETWEEN HYDROCARBON GENERATION, COAL TYPE AND RANK FOR MIDDLE EOCENE COALS, BULLER COALFIELD, NEW ZEALAND, Journal of Petroleum Geology, vol.48, issue.2, p.427, 1997.
DOI : 10.1016/0146-6380(91)90098-5

A. Jiménez, M. J. Iglesias, F. Laggoun-défarge, and I. Suárez-ruiz, Study of physical and chemical properties of vitrinites. Inferences on depositional and coalification controls, Chemical Geology, vol.150, issue.3-4, p.197, 1998.
DOI : 10.1016/S0009-2541(98)00048-5

S. Creaney, D. E. Pearson, and L. G. Marconi, Anomalous coking properties of the Wolgan Seam, NSW Australia, Fuel, vol.59, issue.6, p.438, 1980.
DOI : 10.1016/0016-2361(80)90199-4

A. Hutton and A. Cooke, Influence of alginite on the reflectance of vitrinite from Joadja, NSW, and some other coals and oil shales containing alginite, Fuel, vol.59, issue.10, p.711, 1980.
DOI : 10.1016/0016-2361(80)90025-3

M. Mastalerz, K. R. Wilks, and R. M. Bustin, Variation in vitrinite chemistry as a function of associated liptinite content; a microprobe and FT-i.r. investigation, Organic Geochemistry, vol.20, issue.5, p.555, 1993.
DOI : 10.1016/0146-6380(93)90023-5

E. Zhang, P. G. Hatcher, and A. Davis, Chemical composition of pseudo-phlobaphinite precursors: implications for the presence of aliphatic biopolymers in vitrinite from coal, Organic Geochemistry, vol.20, issue.6, p.721, 1993.
DOI : 10.1016/0146-6380(93)90057-I

W. A. Hartgers, J. S. Sinninghe-damsté, J. W. De-leeuw, Y. Ling, and G. R. Dyrkacz, Molecular Characterization of Flash Pyrolyzates of Two Carboniferous Coals and Their Constituting Maceral Fractions, Energy & Fuels, vol.8, issue.5, p.1055, 1994.
DOI : 10.1021/ef00047a008

B. A. Stankiewicz, M. A. Kruge, and M. A. Mastalerz, A geochemical study of macerals from a Miocene lignite and an Eocene bituminous coal, Indonesia, Organic Geochemistry, vol.24, issue.5, p.531, 1161.
DOI : 10.1016/0146-6380(96)00038-1

R. Sykes, M. G. Fowler, and K. C. Pratt, A Plant Tissue Origin for Ulminites A and B in Saskatchewan Lignites and Implications for R0, Energy & Fuels, vol.8, issue.6, p.1402, 1994.
DOI : 10.1021/ef00048a032

M. J. Iglesias, A. Jiménez, F. Laggoun-défarge, and I. Suárez-ruiz, FTIR Study of Pure Vitrains and Associated Coals, Energy & Fuels, vol.9, issue.3, p.458, 1995.
DOI : 10.1021/ef00051a010

URL : https://hal.archives-ouvertes.fr/hal-00142480

I. Suárez-ruiz, A. Jiménez, M. J. Iglesias, F. Laggoun-défarge, and J. G. Prado, Influence of Resinite on Huminite Properties, Energy & Fuels, vol.8, issue.6, p.1417, 1994.
DOI : 10.1021/ef00048a033

. Teichmüller, Textbook of Coal Petrology, Gebrüder Borntraeger, 1982.

A. C. Raymond and D. G. Murchison, Influence of exinitic macerals on the reflectance of vitrinite in Carboniferous sediments of the Midland Valley of Scotland, Fuel, vol.70, issue.2, p.155, 1991.
DOI : 10.1016/0016-2361(91)90146-2

M. G. Fowler, T. Gentzis, F. Goodarzi, and A. E. Foscolos, The petroleum potential of some Tertiary lignites from northern Greece as determined using pyrolysis and organic petrological techniques, Organic Geochemistry, vol.17, issue.6, p.805, 1991.
DOI : 10.1016/0146-6380(91)90022-C

L. Mansuy, P. Landais, and O. Ruau, Importance of the Reacting Medium in Artificial Maturation of a Coal by Confined Pyrolysis. 1. Hydrocarbons and Polar Compounds, Energy & Fuels, vol.9, issue.4, p.691, 1995.
DOI : 10.1021/ef00052a018

L. Mansuy and P. Landais, Importance of the reacting medium in artificial maturation of a coal by confined pyrolysis. 2. Water and polar compounds, Energy & Fuels, vol.9, issue.5, p.809, 1995.
DOI : 10.1021/ef00053a012

M. Monthioux, Expected mechanisms in nature and in confined-system pyrolysis, Fuel, vol.67, issue.6, p.843, 1988.
DOI : 10.1016/0016-2361(88)90160-3

M. Radke, H. Willsch, and M. Teichmüller, Generation and distribution of aromatic hydrocarbons in coals of low rank, Organic Geochemistry, vol.15, issue.6, p.539, 1990.
DOI : 10.1016/0146-6380(90)90101-5

. Hal, ) were deduced from the integrated areas in the 3100?3000 and 3000?2700 cm ?1 ranges, respectively. (c) The overall increase in intensity of the infrared spectra for the residues at 300 and 350 °C for TCV and the impregnated vitrinite, respectively, does not allow the semi-quantitative analysis to be performed for the entire range of pyrolysis temperatures. (d) The extremely low intensity of the aliphatic C?H modes in the 3000?2700 cm ?1 range does not allow their integration so that accurate values of Hal for the TCV residue at the 500 °C stage cannot be obtained. (e) The Hal data for the non-perhydrous vitrinite

W. Kuehn, R. W. Snyder, A. Davis, and P. C. Painter, Characterization of vitrinite concentrates. 1. Fourier Transform infrared studies, Fuel, vol.61, issue.8, p.682, 1982.
DOI : 10.1016/0016-2361(82)90240-X

F. P. Miknis, D. A. Netzel, and R. C. Surdam, NMR Determination of Carbon Aromatization during Hydrous Pyrolysis of Coals from the Mesaverde Group, Greater Green River Basin, Energy & Fuels, vol.10, issue.1, p.3, 1996.
DOI : 10.1021/ef950143k