Experimental determination of coexisting iron–titanium oxides in the systems FeTiAlO, FeTiAlMgO, FeTiAlMnO, and FeTiAlMgMnO at 800 and 900°C, 1–4 kbar, and relatively high oxygen fugacity - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Contributions to Mineralogy and Petrology Année : 2006

Experimental determination of coexisting iron–titanium oxides in the systems FeTiAlO, FeTiAlMgO, FeTiAlMnO, and FeTiAlMgMnO at 800 and 900°C, 1–4 kbar, and relatively high oxygen fugacity

Résumé

A synthetic, low-melting rhyolite composition containing TiO2 and iron oxide, with further separate additions of MgO, MnO, and MgO + MnO, was used in hydrothermal experiments to crystallize Ilm-Hem and Usp-Mt solid solutions at 800 and 900°C under redox conditions slightly below nickel–nickel oxide (NNO) to $$\approx 3\,\log_{10} f_{{{\text{O}}_{2}}}$$ units above the NNO oxygen buffer. These experiments provide calibration of the FeTi-oxide thermometer + oxygen barometer at conditions of temperature and oxygen fugacity poorly covered by previous equilibrium experiments. Isotherms for our data in Roozeboom diagrams of projected %usp vs. %ilm show a change in slope at ≈ 60% ilm, consistent with the second-order transition from FeTi-ordered Ilm to FeTi-disordered Ilm-Hem. This feature of the system accounts for some, but not all, of the differences from earlier thermodynamic calibrations of the thermobarometer. In rhyolite containing 1.0 wt.% MgO, 0.8 wt.% MnO, or MgO + MnO, Usp-Mt crystallized with up to 14% of aluminate components, and Ilm-Hem crystallized with up to 13% geikielite component and 17% pyrophanite component. Relative to the FeTiAlO system, these components displace the ferrite components in Usp-Mt, and the hematite component in Ilm-Hem. As a result, projected contents of ulvöspinel and ilmenite are increased. These changes are attributed to increased non-ideality along joins from end-member hematite and magnetite to their respective Mg- and Mn-bearing titanate and aluminate end-members. The compositional shifts are most pronounced in Ilm-Hem in the range Ilm50–80, a solvus region where the chemical potentials of the hematite and ilmenite components are nearly independent of composition. The solvus gap widens with addition of Mg and even further with Mn. The Bacon–Hirschmann correlation of Mg/Mn in Usp-Mt and coexisting Ilm-Hem is displaced toward increasing Mg/Mn in ilmenite with passage from ordered ilmenite to disordered hematite. Orthopyroxene and biotite crystallized in experiments with added MgO and MgO + MnO; their X Fe varies with $$\log_{10} f_{{{\text{O}}_{2}}}$$ and T consistent with equilibria among ferrosilite, annite, and ferrite components, and the chemical potentials of SiO2 and orthoclase in the liquid. Experimental equilibration rates increased in the order: Opx < Bt < Ilm-Hem < Usp-Mag.

Domaines

Volcanologie
Fichier principal
Vignette du fichier
Evans-Contrib-2006.pdf (1.38 Mo) Télécharger le fichier
Loading...

Dates et versions

hal-00085484 , version 1 (20-09-2006)

Identifiants

Citer

Bernard W. Evans, Bruno Scaillet, Scott M. Kuehner. Experimental determination of coexisting iron–titanium oxides in the systems FeTiAlO, FeTiAlMgO, FeTiAlMnO, and FeTiAlMgMnO at 800 and 900°C, 1–4 kbar, and relatively high oxygen fugacity. Contributions to Mineralogy and Petrology, 2006, 152, pp.2, 149-167. ⟨10.1007/s00410-006-0098-z⟩. ⟨hal-00085484⟩
160 Consultations
595 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More