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Abstract 

The Yili Block is important for understanding the Late Paleozoic geodynamic evolution of 

Central Asia. It is bounded to the north by the Northern Tianshan Carboniferous flysch and 

ophiolitic mélange. The center of the Block is dominated by Carboniferous sedimentary rocks with 

intercalation of volcanic rocks. Petrological and geochemical features of these Carboniferous 

volcanic rocks show that: (1) they belong to the calc-alkaline series, (2) they display prominent Nb-

Ta negative anomalies consistent with subduction-related magmas, and (3) HFSE-based 

discriminations place these volcanic rocks in the field of continental arcs. The depositional 

evolution of the sedimentary series shows evidence for Carboniferous sedimentation in a basin 

instead of rifting as previously proposed. All these evidences, together with the occurrence of 

contemporaneous turbidites and ophiolitic mélange along the northern boundary of the Yili Block, 

allow us to infer that the northern border of the Yili Block was a continental active margin during 

the Carboniferous. The Late Carboniferous southward subduction that finally closed the Late 
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Devonian to Early Carboniferous North Tianshan oceanic basin was followed by Permian-Mesozoic 

polyphase transcurrent faulting. 

Keywords: Geochemistry, volcanic rocks, continental arc, Carboniferous, Yili Block, Chinese 

Tianshan Belt

 

1. Introduction 

 

The "Yili Block" represents the easternmost part of a large continental block, which mainly 

occurs in Kazakhstan where it is known as the "Ili" block (Sengör and Natal’in, 1996). This large 

continental unit is bounded by suture zones and large scale strike-slip faults (Fig.1). It is composed 

of several tectonic units and their history of amalgamation remains controversial. A first model 

suggests a progressive growth of the Asian continent in the Paleozoic by colliding fragments in a 

continuously converging setting (Sengör, et al., 1993; Natal’in and Sengör, 1994; Shi et al., 1994; 

Shu et al., 2000). Alternatively, it has been suggested that the Tarim plate formed during the Late 

Proterozoic, and thereafter, the Yili Block was rifted from Tarim during the Ordovician. The final 

suturing event occurred between the Tarim, the Junggar, and the Kazakhstan blocks during the Late 

Paleozoic (Ma et al., 1993; Xiao et al., 1992; Gao et al., 1995; 1997; 1998; Chen et al., 1999). The 

final stages of suturing are still poorly understood as well. Models of continuous convergence (Xiao 

et al., 1992; Gao et al., 1998), or alternatively, marginal rifting and subsequent re-amalgamation 

(Che et al., 1996; Xia et al., 2003) have been proposed. In this paper, we intend to clarify the 

Carboniferous evolution of the northern part of the Yili Block by studying the Carboniferous 

volcanic rocks. 

In western China, the Yili Block geographically lies west of the Xinjiang Uygur Autonomous 



 3 

Region and is geologically one of the main parts of the Chinese Tianshan Belt. It separates the 

Northern Tianshan (NTS) to the north and the Central-Southern Tianshan (CSTS) to the south, 

respectively (inset B of Fig.1). The Yili Block is in contact with the NTS along the North Tianshan 

Fault (NTF in Fig. 1; Zhou et al., 2001) and with the CSTS along the Central Tianshan Northern 

Margin Fault (Xiao et al., 1992; CTNF in Fig. 1). The Sailimu (SLM)-Jinghe Fault (SJF in Fig.1) 

separates the Yili Block to the south from the “Bole Block” to the north. These boundaries were also 

defined and discussed by Sengör and Natal’in (1996). Late Paleozoic volcanic and volcano-

sedimentary rocks are widely developed in the northern, southern and eastern margins of the Yili 

Block, while Mesozoic and Cenozoic terrestrial sedimentary rocks cover the interior of the Yili 

Block, which is called the Yili Basin. The volcanic and volcano-sedimentary rocks were dated as 

Carboniferous by paleontologic and radiochronologic methods (XBGMR, 1993; Li et al., 1998). 

Since the 1990’s, the tectonic setting of Carboniferous volcanism in the Yili Block has been a matter 

of debate. It has been interpreted either as an active margin (Xiao et al., 1992; Jiang et al., 1995; 

Gao et al., 1997; 1998) or as a continental rift (Che et al., 1996; Chen et al., 2001; Xia et al., 2002; 

2003). Until now, only a few detailed geochemical data were available and thus the tectonic setting 

of these rocks was poorly constrained. In this paper, we describe the geochemical features of Yili 

Carboniferous volcanic rocks, and discuss their tectonic setting in relation to the published data. 

Geochemical evidence, combined with the occurrence of a Late Carboniferous ophiolitic mélange 

that crops out to the north of the Yili Block, allows us to propose a simplified model of the 

geological evolution and final amalgamation of Central Asia during the Late Paleozoic. 

 

2. Geological background 
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The Yili Block is a triangular area that extends more than 1 000 km across the borderlines of 

China, Kazakhstan and Kyrgyzstan, and its geodynamic evolution since the Late Paleozoic is 

closely related to the Tianshan Belt (Fig. 1). The eastern part of the Yili Block is one of the main 

parts of the Western Chinese Tianshan (WTS) Belt, which is bounded by two major active thrusts, 

the southern thrust zone (STZ) and the northern thrust zone (NTZ) that separate the WTS Belt from 

the Tarim Basin and the Junggar Basin (Fig. 1), respectively. The Chinese Tianshan Belt is 

generally divided into three units: the Northern, the Central and the Southern Tianshan belts, which 

are separated from one other by regional-scale strike-slip faults (Coleman, 1989; Windley et al., 

1990; Ma et al., 1993; Allen et al., 1993; 1999). The geological evolution of the Tianshan Belt has 

been discussed during the last two decades. Generally, it is considered a result of multiphase 

amalgamation and accretion of various micro-continents that include the Yili Block, magmatic arcs 

and terranes throughout the Paleozoic (Coleman, 1989; Shi et al., 1994; Shu et al., 2000; 2002). It 

was deformed again by Cenozoic intra-continental tectonics and subsequently uplifted in response 

to the India-Asia collision (Tapponnier and Molnar, 1979; Avouac et al., 1993; Cunningham, et al., 

1996; Burchfiel, et al., 1999; Shu et al., 2003).  

The Proterozoic basement of the Yili Block crops out along its boundaries (Fig. 1). The Meso- 

to Neoproterozoic carbonates and clastic rocks of the Jixian and Qingbaikou formations are 

developed in the Sailimu Lake (SLM)-Wenquan area and southeast of Tekesi. The Sinian red 

sandstone and minor “tillite” (XBGMR, 1993; Gao et al., 1998; Xia et al., 2002) are exposed to the 

south of SLM. Precambrian amphibolite facies metamorphic rocks mainly crop out in the 

Bingdaban-Baluntai area, south of Urumqi. They were also recognized at Nalati Pass, north of 

Bayinbuluke, and in the Haerke Mountains, south of Tekesi (Fig. 1), and respectively dated by U-Pb 

method on zircon at 882±33 Ma (Chen et al., 2000a) and 709±13 Ma (Chen et al., 2000b). Lower 
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and Middle Paleozoic strata are mainly developed along the northern margin of the Yili Block. 

Cambrian and Ordovician rocks consist of chert, and carbonates and predominantly crop out in the 

Sailimu Lake and Guozigou area (Fig. 1). Silurian flysch and intercalated calc-alkaline volcanic and 

volcano-sedimentary rocks are distributed along the southern side of NTF and along the eastern 

margin of the Yili Block (XBGMR, 1993; Zhou et al., 2001). The Devonian is only represented by 

granitoids in the Yili Block. 

Carboniferous rocks are widespread in the study area and are divided into two parts ranging 

from Early Carboniferous (C1) to Late Carboniferous (C2). Each part consists of several formations 

as shown in Fig. 2 that correlate with the international stratigraphic chart (ICS, 2004). The lower 

part (C1), ca. 3,500 m thick, is predominantly composed of limestone, sandstone and shale with 

subordinate volcanic rocks. The upper part (C2), which unconformably overlies C1, consists of 

limestone intercalated with volcaniclastic sandstone and massive volcanic rocks (Fig. 2). The 

basement and pre-Carboniferous rocks are croscut by voluminous granitoids of Carboniferous age 

(XBGMR, 1993; Figs 1, 2). This lithotectonic unit is quite different from that of the North Tianshan 

Belt, where Carboniferous rocks consist of turbidite flysch and ophiolitic mélange (Fig. 2). Due to 

possible tectonic duplication, the thickness of the North Tianshan flysch is difficult to establish. 

However it is estimated to be between 5,000 and 10,000 m thick. On paleontological grounds 

(ammonoids and plant fossils), the flysch has been correlated to the upper half of C1 to C2 

(XBGMR, 1993; Fig. 2). The mélange zone contains metre- to kilometer-scale blocks of Late 

Devonian to Early Carboniferous oceanic lithosphere such as radiolarian-bearing cherts (Xiao et al., 

1992) along with reworked Carboniferous flysch boulders (Fig. 2), and therefore formed during 

Late the C2 interval.  

Permian terrestrial sandstone and conglomerate unconformably overlie all the older rocks. A 
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prominent bimodal volcanic association developed in the Nileke area (Figs 1, 3b; XBGMR, 1992, 

1993; Wang et al., 1997). Felsic and/or mafic magmatism is also recognized and discussed for the 

Baiyanggou area of Bogdashan (Allen et al., 1995; Shu et al., 2005). Permian plutonic rocks are 

also widespread in the study area. Lateral shear zones deformed the boundaries of the Yili Block 

during the Late Carboniferous-Early Permian and underwent polyphase reactivation during the 

early Mesozoic (Bazhenov et al., 1999; Shu et al., 1999; 2003; Laurent-Charvet et al., 2002; 2003).  

 

3. Representative geological sections of Carboniferous volcanic rocks 

 

About 200 samples of Carboniferous volcanic rocks were collected for this study from the Axi 

section of the northern Yining, the northern Nileke section and the Nalati-Gongnaisi-Yuxi section as 

shown in Fig.1. Samples are listed in Table 1 and the sample locations are shown in Fig. 3. The 

rocks mainly belong to the basic-intermediate volcanic series, but also include a few acidic volcanic 

rocks, tuff, and greywackes.  

 

3.1. The Axi section 

    This section is located 30 km to the north of Yining City. It is composed of sandstone and basic to 

intermediate volcanic rocks (Fig. 3a). In the northern part of the section, the Early Carboniferous 

volcanic rocks are correlated to the Dahalajunshan Formation (C1d) (XBGMR, 1993). Pyroxene-

bearing andesites yield a Rb-Sr whole rock-mineral isochron age of 345.9±9Ma and a 
40

Ar-
39

Ar 

plateau age of 325.1±0.6 Ma (Li et al., 1998). The Dahalajunshan Formation is mainly composed of 

basalt, andesite and minor rhyolite and dacite. The Dahalajunshan Formation is overlain 

unconformably by the Akeshake Formation (C1ak), which is mainly composed of sandstone and 
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limestone (XBGMR, 1993). To the south, the intermediate to acidic volcanic and volcano-

sedimentary rocks in the lower part of the Late Carboniferous Naogaitu Formation (C2n) are 

overlain by limestone, mudstone, siltstone and sandstone of the Oyiman Formation (C2o) (Fig. 2).  

 

3.2. The northern Nileke section 

    Along the highway to the northeast of Nileke County (Fig. 3b), the Aqialehe Formation (C1a) 

(Fig. 2; XBGMR, 1993) consist of intermediate to acidic volcaniclastic rocks. Although no age was 

documented for these volcanic rocks, they are correlated with the Early Carboniferous rocks that 

laterally crop out in the Borohoro Mountains, south of NTF (XBGMR, 1993; Fig.1). In this area, 

Early Carboniferous rocks consist of sandstone, conglomerate and limestone in the lower part, 

while volcanic and volcaniclastic rocks are predominate in the upper part (XBGMR, 1993; Che et 

al., 1996). In this section, basalt, andesite, tuffaceous andesite, dacite, rhyolite, volcanic breccia and 

greywacke are widespread with intercalation of tuffaceous-sandy rhythmites. Fragments of feldspar 

and quartz phenocrysts, clasts of andesite, pyroclastic rock and clastic rock may be observed both in 

hand-samples and in thin sections (Fig. 4).  

 

3.3. The Nalati-Gongnaisi-Yuxi section 

This section includes two segments from Nalati County to Gongnaisi along the G218 National 

highway, and from Nalati to Yuxi along the G217 national highway, respectively (Fig. 3c). Both 

segments are mainly composed of Carboniferous andesitic rocks, unconformably overlain by Early 

Permian conglomerate, sandstone and siltstone (XBGMR, 1993). Both the volcanic rocks and the 

sedimentary strata are intruded by undated basic-intermediate dykes (XBGMR, 1992). The Nalati-

Yuxi segment is composed of a large volume of porphyritic andesite referred to as the Yamansu 
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Formation (C1y) (Fig. 2) and characterized by 2-5 cm andesine phenocrysts. The Yamansu 

Formation is overlain by the C2 terrigenous deposits yielding plant fossils (XBGMR, 1993) that 

suggest an Early Carboniferous age. In the Gongnaisi area, the unconformable Late Carboniferous 

siltstone, sandstone and conglomerate also display prominent volcanic rocks matched by a more 

diverse series of volcanic rocks: porphyritic andesite and dacite, felsitic porphyry, albitophyre and 

intermediate-acidic tuff.  

 

4. Petrography and mineral composition of volcanic rocks 

 

In most of the volcanic rocks, the plagioclase phenocrysts are altered to calcite and/or albite. 

Phenocryst and glass matrix can be commonly identified (Figs 4a-e). The volcanic rocks are 

dominated by euhedral to subhedral plagioclase occurring both as phenocrysts and as fine needles in 

the groundmass (Figs 4c, e), some of which show multiple twins and compositional zonation (Figs 

4a, d-e). Hornblende is frequently observed as phenocrysts (Figs 4b-c) and in the groundmass, some 

parts of the hornblende having been altered to epidote and chlorite. Vesicles in some samples were 

filled with calcite and microcrystalline quartz (Fig. 4e). Clasts of andesite are observed in some 

samples (Fig. 4f). 

Four polished thin sections of andesite from the northern Nileke section and the Nalati-

Gongnaisi-Yuxi section were analyzed for mineral composition. Analysis was made on a JEOL 

JXA-8800 M electron microprobe located at the State Key Laboratory of Mineral Deposits, Nanjing 

University. Analysis was at 20 kV with a 2 x 10
-8

A electron beam width. Synthetic and natural 

minerals were used as standards. The analytical results (Table 2) show that most of the plagioclase 

grains are albite and some grains have been replaced by calcite. This is evidence of low temperature 
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recrystallisation. Therefore the “mobile element” compositions are to be considered carefully for 

geodynamic interpretation. 

 

5. Geochemistry and geological implications 

 

5.1. Analytical methods 

Nineteen representative samples of the three sections were analyzed for geochemical study. 

Major elements were determined by X-ray fluorescence (XRF) following the procedure described 

by Janney and Castillo (1997). Trace elements, including rare earth elements (REE), were 

determined by a PE-Elan 6000 ICP-MS. Both analyses were performed at the Guangzhou Institute 

of Geochemistry, Chinese Academy of Sciences. The analytical technique for ICP-MS analysis is 

similar to that described by Li (1997). Analytical errors are 1~3% for major elements and generally 

less than 0.7-10% for most trace elements. Major and trace elements data are shown in Table 1. 

 

5.2. Results 

Some samples exhibit relative high loss of ignition (LOI), especially samples XJ325, XJ326 

and XJ358 that have LOI > 7 % (Table 1). The compositions of mobile elements are likely to have 

changed and geochemical discriminations based on these elements cannot be used. Therefore in the 

following section, we only use geochemical diagrams based upon "immobile" elements such as 

REE, Zr, Ti, Yb, etc. 

On the Nb/Y versus Zr/Ti diagram (Fig. 5; Winchester and Floyd, 1976), volcanic rocks from 

each section are divided into three sub-groups: andesite (including one basaltic andesite), rhyodacite 

and trachyandesite. This diagram shows a linear differentiation trend within the calc-alkaline series 
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field. Three samples (XJ335, XJ335-1 and XJ336) from the Axi section plot in the trachyandesite 

field due to their distinctive lower Ti contents that likely resulted from ilmenite fractionation.  

All the analyzed volcanic rocks have relatively high total REE concentrations ranging from 66 

to 219 ppm (Table 1). Negative Eu anomalies (Eu=0.6113~0.9135) occur in most of volcanic rocks 

of the Axi and Nalati-Gongnaisi-Yuxi sections except sample XJ390, indicating crystal fractionation 

of plagioclase (Rollinson, 1993). Volcanic rocks of the northern Nileke section have no obvious Eu 

anomalies (Eu=0.9975~1.0417) except XJ174-6 (Eu=0.6838). The Chondrite-normalized REE 

distribution patterns (Fig. 6; using the normalizing values of Sun and McDonough, 1989) are 

characterized by a negative slope with (La/Yb)N> 2.66, indicating the fractionation of LREE 

relative to HREE. This feature is consistent with the calc-alkaline character of these rocks. 

On the REE and trace element expanded spider diagrams (Fig. 7; Pearce, 1982; 1983), LILE 

such as K, Rb, Th and Ba are prominently enriched relative to MORB, while HFSE (Zr, Hf, Ta and 

Sm) have MORB-like concentrations. Nb and Ta display moderate negative anomalies relative to 

Th and Ce. All samples have Nb contents of more than 3 ppm, similar to those of continental arc 

basalts (3.3±1.6 ppm) and considerably higher than those of oceanic arc basalts (1.5±1.0 ppm; 

McCulloch and Gamble, 1991). The Nb-Ta depletion is a common feature of calc-alkaline magmas 

generated from sources that contain a Nb receptor (metasomatized mantle wedge) or from already 

Nb-depleted sources (most crustal sources) (Rollinson, 1993; Pearce and Peate, 1995; Hawkesworth 

et al., 1995). 

 

5.3. Tectonic setting of the volcanic rocks 

The N-MORB normalized spider diagram (Pearce, 1982; 1983) shows a pronounced 

enrichment of LILE and a characteristic depletion of Ta and Nb (Fig. 7). Replotting already 
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published data (Che et al., 1996) indicates that the volcanic rocks of Guozigou, immediately to the 

west of Yining, and those of Tekesi, south of Yining (Fig. 1), display similar geochemical features 

(Fig. 7a) that are typical of: (1) subduction-related magmas; (2) magmas generated by the partial 

melting of lower continental crust; or (3) mantle-derived magmas significantly contaminated by 

continental crust. Sr, Nd and Pb isotopic studies are needed in order to provide compelling evidence 

concerning the origin of these volcanic rocks. However, “immobile element” ratios may eliminate 

some unlikely possibilities. In the case of magmas generated in a rifting environment as proposed 

by Perry et al. (1991) and Davis (1991), partial melting of the lower crust is generally triggered by 

high heat flow related to uplift of the asthenosphere. In addition, the early stages of uplift generate 

intraplate magmas (continental tholeiites or alkaline basalts). This is obviously not the case of the 

Yili Carboniferous volcanic rocks that display calc-alkaline features only. Moreover, in rift 

environments, the hybridation of asthenosphere (OIB-like) and lithosphere (MORB-like) sources 

generally occurs and results in variable Ta/Hf ratios on the Hf-Th-Ta diagram (Wood et al., 1979). 

On the Hf/3-Th-Ta triangular diagram (Fig. 8), all our samples (Fig. 8a), as well as those of Che et 

al. (1996) (Fig. 8b), plot along linear trends between typical calc-alkaline and IAT end-members 

without evidence for any occurrence of an intraplate (high Ta/Th) component. Therefore, the rifting 

hypothesis relative to partial melting of lower continental crust and contamination by the crust is 

considered unlikely. 

The Th/Yb vs Nb/Yb diagram (Fig. 9) distinguishes continental arc from oceanic-arc magmas 

(Pearce and Peate, 1995). All the samples plot within the continental-arc field and in the 

overlapping field of oceanic and continental arcs. The volcanic rocks in each section display a 

single linear trend depending upon slightly variable but high Th/Yb ratios, due to higher Th and/or 

lower Yb contents (Table 1). Since Yb is essentially “immobile”, these high Th/Yb ratios 
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presumably reflect the influence of subduction-derived fluids, resulting in Th enrichment. Although 

further isotopic evidence is needed to strengthen this interpretation, it may be concluded that 

Carboniferous calc-alkaline volcanic rocks of the Northern Yili Block are likely to have erupted in a 

continental active margin setting. 

 

6. Ophiolitic mélange of the Northern Tianshan Belt 

 

Ophiolitic mélanges are widely accepted as indicators of paleo-subduction and generally occur 

in association with island-arc volcanic rocks (Coleman, 1984, 1989; Zhang et al., 1984; Zhang and 

Zhou, 2001). In the study area, ophiolitic mélange was found in the Bayingou (Xiao et al., 1992; Li, 

1993; Gao et al., 1998) - Motuoshalagou - Gurt (Li and Du, 1994) zone located north of the Yili 

Block (Fig. 1). The mélange is composed of oceanic crust rocks, serpentinized peridotite, and 

flysch. The published geochemical results on the Bayingou and Gurt mafic rocks allow three 

magma types to be distinguished: N-MORB, OIB and IAT (Xiao et al., 1992; Li and Du, 1994; 

Zhang and Zhou, 2001), suggesting genesis within an oceanic basin. The petrological and 

geochemical similarities of Bayingou, Motuoshalagou and Gurt ophiolitic rocks, along with the 

occurrence of Late Devonian to Early Carboniferous radiolarian and conodont fossils in cherts of 

the Bayingou mélange (Xiao et al., 1992) and C1-2 radiolarians in cherts of the Gurt mélange (Li 

and Du, 1994), allow us to infer that they were probably derived within a single Late Devonian to 

Early Carboniferous oceanic basin. Closure of this basin during subduction generated the active 

continental margin calc-alkaline magmatism in the Yili Block.  

Although detailed petrological and structural studies of this unit are beyond the scope of this 

paper, the ophiolitic mélange and the North Tianshan turbidite can be interpreted as a subduction-
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accretion complex, and the northward thrusting observed in these units corresponds to south-

dipping subduction of the oceanic basin. On the basis of age constraints provided by the active 

margin magmatic activity, this basin probably closed due to southward subduction during 

Tournaisian and Visean times. Since the mélange includes the C1 to C2 turbidite blocks (Fig. 2), it 

probably formed in the Late Carboniferous due to collision between the Yili Block and the North 

Tianshan and the Junggar Plate (Gao et al., 1998). 

 

7. Discussion 

 

In all studied sections, the calc-alkaline volcanic rocks are closely associated with either 

carbonate sedimentary rocks or shallow water clastic deposits. In general, the Carboniferous 

sequence of the Yili Block displays a regressive character with a progressive evolution from a 

gently subsiding platform during the Early Carboniferous (C1) towards a Late Carboniferous 

sedimentation environment. No evidence for deepening or accelerating subsidence is found. 

Therefore, the calc-alkaline volcanic rocks erupted at the C1-C2 boundary cannot be related to a 

rifting event as proposed earlier by Che et al. (1996) and Xia et al. (2002; 2003) on the basis of 

“Within-plate basalt” discrimination diagram (i.e. Zr-Zr/Y). In contrast, an active margin setting is 

consistent with: 1) the overall geochemical features of the erupted rocks, 2) evolution from a 

platform to a shallow water or terrestrial environment due to a C1 to C2 tectonic event, 3) 

accumulation of turbidite to the north of the Yili Block, and 4) the formation of a Late 

Carboniferous ophiolitic mélange. This tectonic setting is also consistent with that of the Bogda Arc 

in northern Eastern Tianshan, which is considered to be a Carboniferous continental volcanic arc 

formed by subduction of the Junggar Paleo-ocean (Charvet et al., 2001) or Turkestan Ocean (Sengör 
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and Natal’in, 1996; Heubeck, 2001). 

Carboniferous volcanic arc rocks are widespread in the Yili Block. From north to south, they 

crop out nearly 200 km wide, which is uncommon for a volcanic arc. Such a width might not be a 

primary feature of this arc but probably was the result of later multiphase transcurrent 

displacements. On the basis of paleomagnetic data in the West Tianshan Belt in Kyrgyz (Bazhenov 

et al., 1999), earlier sinistral shearing along the southern boundary (CTNF) and later dextral 

shearing along the northern boundary (NTF) have been distinguished. The earlier event is proposed 

to have taken place during the “Early-Late Permian”, but is still poorly constrained by structural and 

geochronological data. The later one, which is considered to have occurred during Late Permian to 

Early Jurassic times, is corroborated by kinematic and radiochronological studies. The Ar-Ar dating 

on biotite and muscovite from ductilely sheared slates or mylonites in the East Tianshan Belt 

constrains the age of this dextral wrenching at 280-250 Ma (Shu et al., 1999; Laurent-Charvet et al., 

2002; 2003). Further evidence of Permian transcurrent faulting within the interior of the Yili Block, 

such as the “Nilak fault” (Zhao et al., 2003; NLKF in Fig. 1), needs to be documented. 

It is worth noting that Early Permian deposits unconformably overlie the Carboniferous strata. 

In most places, terrestrial Permian sediments are associated with intra-plate volcanic rocks, such as 

alkaline basalt or continental tholeiites and associated felsic rocks (XBGMR, 1993; Allen et al., 

1995). Moreover in the Baiyanggou area (Fig. 1), Permian alkaline pillow basalts are associated 

with chert and turbidite deposited in a narrow and deep basin that likely formed in a transtensional 

setting (Shu et al., 2005). Therefore we suggest that southward subduction closed the northern 

Tianshan oceanic basin and generated the active continental margin magmatism and ophiolitic 

mélange. This event was followed by Permian to Mesozoic regional intra-continental extension and 

transtensional faulting that was responsible for opening of the pull-apart basin, such as Turfan Basin 
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(Fig. 1; Allen et al., 1995; Natal’in and Sengör, 2005) associated with intraplate magmatism and the 

formation of the present shape of the Yili magmatic arc. 

 

8. Conclusions 

 

Carboniferous volcanic rocks in the Yili Block erupted along a continental active margin as 

evidenced by (1) their calc-alkaline geochemistry, (2) prominent Nb-Ta negative anomalies, (3) 

high Th/Ta and Hf/Ta ratios, and (4) marginal sedimentary series intercalated with volcanic rocks. 

The occurrence of a Late Carboniferous ophiolitic mélange and turbiditic rocks exhibiting a north-

directed thrusting is attributed to a southward subduction of the North Tianshan oceanic basin, 

which was responsible for Yili calc-alkaline magmatism. This subduction was followed by Permian-

Mesozoic intra-continental extension and transtensional faulting.  
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Figure captions 

 

Fig. 1. Simplified geological map of the Western Tianshan Belt showing the localities of the main 

tectonic boundaries (modified from XBGMR, 1992). Inset A shows the location of inset B, which 

defines the Yili Block, the North Tianshan (NTS), the Central-South Tianshan (CSTS), Junggar and 

Tarim. Abbreviations: NTZ, the Northern Thrust Zone; STZ, the Southern Thrust Zone; NTF, the 

Northern Tianshan Fault; CTNF, the Central Tianshan Northern Margin Fault; SJF, the Sailimu 

(SLM)-Jinghe Fault; NLKF, the Nileke Fault; SLM, Sailimu Lake; BST, Bosteng Lake. KZKST, 

Kazakhstan; SBR, Siberia; TRM, Tarim; NCB, North China Block; SCB, South China Block; IND, 

India. 

 

Fig. 2. Schematic Carboniferous chronostratigraphic columns of the Yili Block and the Northern 

Tianshan Belt compared to the international stratigraphic chart (ICS, 2004). Time scale and 

stratigraphy modified from XBGMR (1992; 1993). C2o, the Oyiman Formation; C2n, the Naogaitu 
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Formation. 

 

Fig. 3. Geological maps of (a) the Axi section, (b) the Northern Nileke section and (c) the Nalati-

Gongnaisi-Yuxi section. 

 

Fig. 4. Photomicrographs of volcanic rocks of the Yili Block. (a) Sample XJ174-6 showing volcanic 

micro-texture and feldspar phenocrysts with multiple twins, (b) hornblende phenocrysts in sample 

XJ388, (c) sample XJ328 showing pyroxene phenocrysts and plagioclase needles in the matrix, (d) 

strongly altered feldspar and ilmenite mineralization in sample XJ325, (e) sample XJ365 showing 

feldspar and quartz-infilled vesicle, (f) andesite clast in sample XJ325. Abbreviation of minerals: 

Fds: feldspar; Hbl: hornblende; Px: pyroxene; Ilm: ilmenite; Qtz: quartz. 

 

Fig. 5. Nb/Y versus Zr/Ti diagram (Winchester and Floyd, 1976) plotting the volcanic rocks of the 

Yili Block. Open symbols: volcanic rocks of the Axi section; grey symbols: volcanic rocks of the 

northern Nileke section; black symbols: volcanic rocks of the Nalati-Gongnaisi-Yuxi section. 

 

Fig. 6. Chondrite normalized REE patterns of volcanic rocks from the Yili Block. Normalizing 

values are from Sun and McDonough (1989). (a) Volcanic rocks of the Axi section; (b) volcanic 

rocks of the northern Nileke section; (c) volcanic rocks of the Nalati-Gongnaisi-Yuxi section. 

Symbols same as Fig. 5. 

 

Fig. 7. N-MORB normalized spider diagrams of the volcanic rocks from the (a) Axi section, (b) 

northern Nileke section and (c) Nalati-Gongnaisi-Yuxi section, showing subduction related 
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enrichment of LIL elements relative to HFS elements. Normalizing values are from Pearce (1983). 

Data of volcanic rocks from Tekesi and Guozigou are after Che et al. (1996). Symbols same as Fig. 

5. 

 

Fig. 8. Th-Hf-Ta discrimination diagrams (after Wood et al., 1979) of volcanic rocks from the Yili 

Block showing subduction-related calc-alkaline compositions. (a) This study, symbols same as Fig. 

5; (b) Black stars: volcanic rocks of Guozigou; open stars: volcanic rocks of Tekesi, all data are 

from Che et al., 1996. Fields: A, N-MORB; B, E-MORB and within-plate tholeiites; C, alkaline 

within-plate basalts; D, calc-alkaline basalts; E, Island-arc tholeiites. 

 

Fig. 9. Th/Yb versus Nb/Yb diagram after Pearce and Peate (1995) showing the subduction related 

continental arc affinities of the Carboniferous volcanic rocks of the Yili Block. Symbols same as in 

Figs. 5 and 8. 
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Table 1 

 

ICP-MS whole rock analyzed results of representative samples from the Yili Block 

Samples The Axi section   The Northern Nileke section   The Nalati-Gongnaisi-Yuxi section 

  XJ-325           XJ-326           XJ-327           XJ-328           XJ-329           XJ-335           XJ-335-1         XJ-336            XJ-174           XJ-174-1         XJ-174-6          XJ-363           XJ-365           XJ-388           XJ-389         XJ-390           XJ-354           XJ-357           XJ-358           

SiO2(wt%) 53.42 54.04 53.18 55.19 59.21 68.81 67.42 68.83  49.70 50.61 66.54  57.43 68.71 46.63 46.56 50.05 56.15 55.93 36.55 

TiO2 0.84 0.85 0.94 1.21 0.90 0.44 0.38 0.43  0.99 0.93 0.71  0.98 0.89 0.94 0.90 1.11 0.85 2.22 1.80 

Al2O3 16.54 16.78 17.20 16.55 16.32 15.71 14.15 15.62  19.60 19.02 15.86  17.51 13.00 18.44 17.28 18.60 17.63 13.86 26.61 

Fe2O3 8.21 7.21 7.94 7.52 5.58 3.12 1.91 2.52  10.26 9.74 4.30  7.33 4.18 8.32 8.96 9.65 8.49 10.48 24.62 

MnO 0.12 0.13 0.13 0.12 0.10 0.13 0.19 0.11  0.40 0.22 0.14  0.19 0.13 0.70 1.18 0.30 0.20 0.36 0.15 

MgO 3.13 3.40 5.98 4.43 3.30 0.36 0.41 0.36  4.33 3.94 1.29  1.56 0.69 3.57 2.67 2.94 1.95 2.82 0.02 

CaO 6.83 7.99 3.32 6.97 3.51 1.46 5.06 1.75  4.92 7.19 1.16  2.63 1.12 8.83 6.55 4.52 1.81 3.97 0.26 

Na2O 3.05 2.80 5.21 3.21 3.32 3.88 1.55 4.24  4.80 4.12 5.36  3.68 2.82 2.81 2.66 6.13 3.11 4.43 0.10 

K2O 0.60 0.52 0.22 2.24 2.97 4.12 3.49 3.16  0.99 1.22 4.01  6.53 6.58 3.77 6.27 1.59 7.05 3.40 0.22 

P2O5 0.16 0.16 0.18 0.25 0.18 0.12 0.11 0.10  0.25 0.24 0.16  0.60 0.19 0.28 0.23 0.22 0.54 0.92 0.58 

LOI 8.39 7.79 5.96 2.23 4.42 2.09 5.98 2.51  4.52 2.72 1.21  1.45 0.89 5.88 6.45 5.36 1.73 1.41 9.44 

                      Total 101.29 101.67 100.26 99.91 99.79 100.23 100.64 99.63  100.75 99.95 100.72  99.88 99.20 100.18 99.69 100.46 99.50 99.80 100.36 

                      Sc (ppm) 23.49 24.05 27.27 22.58 16.74 3.552 2.978 3.022  31.2 30.46 12.84  13.86 26.52 24.7 16.64 11.25 27.81 28.36 22.29 

Ti 4746.1 5096.7 5484.9 8417 5237.1 2756.1 2351.7 2557.1  5655.1 5459.4 4134.3  4924.2 15014 10797 5405.7 4987.2 5444.6 4921.4 5844.7 

V 130.4 180.3 229.6 197.3 129.8 18.59 21.31 15.8  253.5 243.2 45.46  102.4 169.6 572.9 105.4 12.17 278.6 241.8 231.4 

Cr 62 65.07 95.27 62.18 74.07 3.014 2.759 5.727  33.8 30.53 5.416  10.58 2.697 50.92 5.476 10.77 85.73 16.89 10.82 

Mn 866.8 937.8 975.8 920.9 738 939.9 1410.8 801.3  2865.6 1704.8 989.7  1502.7 2534 1029.5 1366.7 870.5 5174.8 6698.6 2034.2 

Co 18.69 20.47 26.23 21.56 16.95 4.174 2.22 3.538  28.47 26.94 5.944  12.66 17.33 13.02 23.52 2.124 28.56 14.45 32.86 

Ni 21.45 22.84 33.06 41.01 32.13 2.519 4.616 4.754  18.44 18.97 3.471  7.678 2.95 16.96 13.73 6.644 59.24 11.36 21.67 

Cu 20.78 71.54 174.2 60.34 70.41 5.416 16.06 5.83  22.58 84.56 11.31  156.8 9.101 22.39 295.8 5.357 21.95 50 34.76 

Zn 64.45 56.89 69.08 71.22 57.55 70.74 74.71 110  254.5 90.27 153.6  135.4 172.6 46.38 101.7 147.6 667.1 398 158.7 

Ga 17.07 18.26 23 19.09 19.01 18.83 17.4 18.75  17.36 18.36 15.63  17.72 18.46 32.86 17.75 13.75 18.68 16 17.71 

Ge 0.879 0.957 1.271 1.245 0.966 1.09 1.471 1.258  0.983 1.25 1.155  1.434 1.677 2.2 1.174 1.251 1.311 1.394 0.855 

Rb 24.08 22.9 5.84 86.8 126 142.2 141.2 111.4  21.87 27.52 118.2  262.6 162.9 9.573 252.5 196.3 144.7 295.4 84.55 

Sr 194.8 201.9 124.4 463.3 194.2 145.5 86.66 128.5  457.2 613.1 105.4  221.6 338.4 4382 344.2 19.96 486.8 509.3 306.7 

Y 19.29 21.09 23.3 30.77 26.19 26.9 25.31 29.24  18.78 19.55 34.7  28.36 54.52 22.94 30.9 59.77 22.13 19.8 27.84 

Zr 124.7 134.5 165.2 220.2 209 208.8 189.8 210.8  62.81 78.11 261.8  222.2 237.5 212.2 198.4 352.8 79.16 61.46 113.4 
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Table 1 (continued) 

Samples The Axi section   The Northern Nileke section   The Nalati-Gongnaisi-Yuxi section 

  XJ-325           XJ-326           XJ-327           XJ-328           XJ-329           XJ-335           XJ-335-1         XJ-336            XJ-174           XJ-174-1         XJ-174-6          XJ-363           XJ-365           XJ-388           XJ-389         XJ-390           XJ-354           XJ-357           XJ-358           

Nb 5.976 6.396 8.115 10.35 11.11 34.39 31.53 32.51  3.158 3.16 13.33  10.3 9.415 9.828 10.97 13.49 3.524 2.445 4.302 

Ba 575.6 180.4 26.37 353.8 538.4 638.4 99.68 441.5  197 339.7 933.2  928.3 772.3 141.7 682.5 183.4 883.5 2234.9 108.2 

                      La 14.73 15.17 18.67 23.11 27.55 49.49 41.37 50.25  10.23 10.18 36.72  29.06 26.29 38.68 37.54 25.54 19.29 12.6 10.73 

Ce 32.35 34.03 41.36 50.95 58.06 93.61 81.05 95.04  22.99 22.28 73.64  68.6 62.48 164.6 79.44 62.73 37.59 26.94 25.06 

Pr 3.938 4.202 5.078 6.22 6.757 10.19 8.941 10.63  3.109 2.979 8.309  8.586 8.559 39.01 10.51 8.941 4.793 3.529 3.541 

Nd 15.99 17.42 20.14 25.38 26.29 35.51 31.35 36.66  13.96 13.48 32.66  34.45 39.06 213.2 42.66 39.34 20.68 16.06 15.63 

Sm 3.7 3.878 4.389 5.507 5.571 6.021 5.839 6.225  3.237 3.257 6.592  7.41 9.726 36.19 8.467 9.875 4.86 3.835 4.046 

Eu 0.99 1.053 1.232 1.307 1.169 1.181 1.422 1.164  1.189 1.13 1.52  1.462 2.719 5.207 1.72 2.317 1.297 0.953 1.335 

Gd 3.874 3.998 4.641 5.682 5.267 4.922 5.164 5.132  3.757 3.653 6.897  6.581 11.17 7.621 7.151 11.03 4.89 4.202 4.921 

Tb 0.62 0.642 0.707 0.904 0.839 0.807 0.817 0.834  0.573 0.559 1.051  0.961 1.664 0.782 1.025 1.729 0.72 0.614 0.776 

Dy 3.551 3.769 4.176 5.268 4.875 4.623 4.31 4.694  3.441 3.346 6.177  5.204 9.904 3.867 5.476 10.37 4.113 3.555 4.787 

Ho 0.709 0.746 0.858 1.06 0.988 0.916 0.816 0.952  0.695 0.674 1.27  1.025 1.974 0.842 1.091 2.115 0.815 0.728 0.995 

Er 2.04 2.086 2.339 2.922 2.685 2.609 2.336 2.685  1.904 1.863 3.62  2.843 5.419 2.631 3.073 6.183 2.175 2.013 2.801 

Tm 0.316 0.322 0.364 0.437 0.417 0.4 0.353 0.426  0.277 0.294 0.573  0.447 0.802 0.458 0.454 0.946 0.336 0.303 0.447 

Yb 2.108 2.212 2.403 2.951 2.639 2.813 2.393 2.941  1.869 1.9 3.879  2.892 5.309 3.422 3.07 6.316 2.22 2 2.898 

Lu 0.335 0.366 0.394 0.481 0.426 0.475 0.388 0.493  0.308 0.311 0.663  0.486 0.857 0.569 0.498 1.035 0.362 0.325 0.477 

                      Hf 3.437 3.521 4.16 5.405 5.744 5.825 5.012 5.577  1.673 1.951 7.012  4.807 5.962 4.996 4.989 9.168 2.066 1.692 2.804 

Ta 0.437 0.446 0.567 0.701 0.874 2.34 2.087 2.193  0.183 0.194 0.866  0.666 0.611 0.558 0.686 0.845 0.204 0.146 0.261 

Th 4.016 4.128 5.895 7.989 10.87 23.85 20.69 22.23  1.272 1.217 11.12  16.07 6.425 10.78 17.55 10.06 4.351 2.883 1.97 

U 1.043 1.139 1.558 1.994 3.119 4.147 4.922 4.513   0.39 0.337 2.846  2.996 1.979 3.061 4.297 2.811 1.124 1.059 0.551 
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Table 2 

Electron microprobe analyzed data of mineral compositions of andesite in the Yili Block 

 

Samples XJ325  XJ354  XJ388  XJ390 

Analyse

s 

1 2 3 4  5 6  7 8 9  10 11 12 

Minerals Ab(C) Ab(C) Si(R) Ab(C)  Ab(C) Ab(C)  Hbl(C) Cal(C) Hbl (C)  Cal(R) Ab(C) Ab(C) 

Na2O 11,673 0,076 0,007 10,112  11,669 10,235  0,407 0,078 0,314  0,036 10,349 9,368 

K2O 0,115 0,016 0,025 0,237  0,069 0,273  0,023 0,004 -  0,018 0,58 0,688 

MnO 0,004 0,301 - 0,015  - 0,007  0,093 2,18 0,148  1,447 0,089 - 

MgO 0,906 1,757 0,146 1,528  0,004 0,058  13,388 0,393 14,693  0,412 0,064 0,081 

TiO2 0,038 0,139 0,08 0,037  0,005 -  0,777 0,008 0,477  - 0,093 0,016 

FeO 0,457 0,799 3,65 0,628  0,059 0,309  7,884 0,45 7,199  0,329 0,633 0,711 

Al2O3 22,086 0,62 0,441 20,91  20,553 21,542  5,99 0,155 4,141  0,151 21,831 22,216 

CaO 0,443 52,54 - 3,477  2,195 0,342  22,007 56,584 21,744  56,743 0,586 0,617 

SiO2 65,48 3,236 93,364 62,838  66,628 67,133  48,7 1,321 49,718  0,382 66,695 65,999 

                Total 101,2 59,484 97,713 99,782   101,18 99,899   99,269 61,173 98,434   59,518 100,92 99,696 

Abbreviations: Ab=albite. Si=silica. Cal=calcite. Hbl=hornblende. C=center. R=rim. 

 


