Paleo-erosion rates in Central Asia since 9 Ma: a transient increase at the onset of Quaternary glaciations?

J. Charreau¹*, P.-H. Blard¹*, N. Puchol¹*, J.-P. Avouac², E. Lallier-Vergès³, D. Bourlès⁴, R. Braucher⁴, A. Gallaud³, R. Finkel⁴,⁵, M. Jolivet⁶, Y. Chen³ and P. Roy¹

¹. Centre de Recherche Pétrographique et Géochimique, 15 rue Notre Dame des Pauvres, B.P. 20, 54501 Vandoeuvre lès Nancy, France, phone : (33)383594227 Fax: (33)383511798, charreau@crpg.cnrs-nancy.fr, blard@crpg.cnrs-nancy.fr, puchol@crpg.cnrs-nancy.fr, Pierre.Roy@etudiant.ensg.inpl-nancy.fr

². Tectonics Observatory, California Institute of Technology; Mail Code 100-23, Pasadena CA 91125, Phone: (626)395-4239, Fax: (626) 395-1740, avouac@gps.caltech.edu

³. Institut des Sciences de la Terre d’Orléans; Bâtiment Géosciences, rue de Saint Amand, BP 6759, 45067 Orléans Cedex 2, France, Yan.Chen@univ-orleans.fr, audrey.gallaud@gmail.com, elisabeth.verges@univ-orleans.fr

⁴. Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement, Europole Méditerranéen de l’Arbois BP 80 13545 Aix-en-Provence cedex 4, bourles@cerege.fr, braucher@cerege.fr

⁵. Earth and Planetary Science Department, University of California, Berkeley, Berkeley CA, finkel@cerege.fr

⁶. Géosciences Rennes (UMR CNRS 6118), Université de Rennes1, Bâtiment 15, Campus de Beaulieu, CS 74205, F-35042 Rennes Cedex, FRANCE, marc.jolivet@univ-rennes1.fr

*These authors contributed equally to this work

Abstract

Erosion is a fundamental player of the interactions existing between internal geodynamics and climate, in particular through its influence on the carbon dioxide budget. However, long term (>1 Ma) erosion rates, estimated indirectly from sediment
budget, remain poorly constrained. While some studies suggest that worldwide erosion rates increased at the Plio-Pleistocene climatic transition (~4-2 Ma), the validity of this observation and its significance is a matter of debate due to potential biases of the sedimentary record and to the influence of sea level fall on the global sedimentary flux to marginal basins. In the present study, we estimate erosion rates over the last ~9 Ma using in situ produced cosmogenic 10Be concentrations measured in magnetostratigraphically dated continental sediments. We focus on an intracontinental endorheic watershed draining the northern Tianshan in Central Asia, a key region regarding the ongoing debate. While erosion rates between 0.1 and 1 mm.yr$^{-1}$ are derived from most of our record, they reach values as high as ~2.5 mm.yr$^{-1}$ from 2.5 to 1.7 Ma. Then, after 1.7 Ma, recent and modern erosion rates fell below 1 mm.yr$^{-1}$. This temporary increase is correlated with the onset of Quaternary ice ages and suggests that global climate had a significant and transient impact on erosion.

1 - Introduction

Erosion is a key factor governing the evolution of the Earth's surface evolution and provides a source of multiple feedback mechanisms linking climate and tectonics (France-Lanord and Derry, 1997; Molnar, 2004; Raymo and Ruddiman, 1992). First, erosion controls mass transfer from uplifting highlands. The ensuing redistribution of mass influences isostatic compensation in a way that induces tectonic deformation (Dahlen and Suppe, 1988; Whipple and Meade, 2006; Willett and Brandon, 2002). The resulting vertical movement of mass affects the thermal structure of the crust and hence its rheology (Avouac and Burov, 1996; Zeitler et al., 2001). Second, erosion is considered as a first order driving mechanism of Earth climate at the geological time scales because of its potential impact on atmospheric CO$_2$ through the creation of new surface enabling silicate weathering (Berner et al., 1983) but also
because of its influence on the mechanical burial of organic carbon (Galy et al., 2007). Quantitative records of past erosion rates over geological time scales are thus of major importance to untangle the complex interactions between tectonics, climate and surface processes. Importantly, records of erosion rate over the last 10 Ma are crucial for addressing the respective causes and effects of glacial cycles that were initiated at the Cenozoic-Quaternary boundary.

Some authors (Molnar, 2004; Zhang et al., 2001) have reported a worldwide acceleration in accumulation rates at the Plio-Pleistocene transition (2-4 Ma) (Fig. 1) that they link to enhanced erosion. This finding, which suggests a major influence of Quaternary glaciation on global erosion rates, has recently been questioned on the ground of a new global 10Be/9Be record (Willenbring and von Blanckenburg, 2010). Interpreted as a proxy of continental weathering, this ratio has remained nearly constant over the last 12 Ma which led Willenbring and von Blanckenburg (2010) to conclude that the global Quaternary cooling had no profound effect on global weathering rates. Moreover, erosion rates derived from sediment budgets suffer from drawbacks and potential flaws due to uncertainties on depositional ages in intracontinental area (Charreau et al., 2009b), poor constraints on basin geometry (Clift, 2006) and inaccurate volume reconstruction methods (Métivier, 2002). Furthermore, the global sediment budget might actually be biased by the effect of the sea level drop during glacial times that remobilized loose sediments previously stored on the continental margins (Hay et al., 1988). Finally, the Quaternary increase of local accumulation rates could reflect an observational artifact, due to the increasing likelihood that sedimentary deposits will have been lost with the increasing age of the deposit (Sadler, 1999).

Central Asia stands out as a key area with regard to this debate. Indeed, because of its intracontinental endorheic setting, the sediment budget in this region is insensitive to global sea-level variations and can be constrained reasonably well from the closed basins systems
The large Pleistocene increase of sediment flux to the basins reported in previous studies (Métivier and Gaudemer, 1997; Zhang et al., 2001) is therefore a key observation. However, these observations are also prone to hiatus artifacts and they relied heavily on the assumption that the widely distributed conglomeratic units, often referred to the Xiyu Formation, were regionally synchronous. Several magnetostratigraphic studies (Charreau et al., 2009b; Heermance et al., 2007) have however shown that the onset of formation of the Xiyu conglomerates is, in fact, diachronous, with ages ranging between 1 and 15 Ma (Fig. 1). Moreover, accumulation rates derived from these studies (Fig. 1) yield widely varying results for the 0-5 Ma period, probably because of tectonics modulation on the available space in the piedmont (Charreau et al., 2008).

In situ produced cosmogenic nuclide concentration in river sediments allow the derivation of average erosion rates within a given watershed (Brown et al., 1998; Brown et al., 1995), because at steady state, the nuclide concentration is inversely proportional to the denudation rate and because the river sediments have moreover the remarkable property to provide a spatially averaged erosion rate for the whole drainage basin (von Blanckenburg, 2005). This method has been successfully applied to determine erosion rates in a broad range of modern (von Blanckenburg, 2005) and relatively recent (less than ~1 Ma old) environments (Blard et al., 2006; Schaller et al., 2002). So far, only Refsnider (2010) using cosmogenic analysis of cave sediments has provided an estimate of erosion rate since 5 Ma, in the Rocky Mountains.

Here, we expand the method to longer geological records to infer erosion rates by measuring the fossil in situ produced cosmogenic signal in buried sediments along a magnetostratigraphically dated section (Charreau, 2005) from the North Tianshan Piedmont in Central Asia (Fig. 1 and 2). This record spans from 9 Ma to present, a time period that is particularly relevant to address the feedbacks between long-term global climate, tectonics and
erosion. This study moreover demonstrates the possibility of estimating past erosion rates combining cosmogenic analyses with magnetostratigraphic dating of sediments.

2 - Geological settings and sampling

We analyze sediments from the Kuitun river watershed which drains the northern Tianshan shedding sediments to the Junggar foreland basin (Figs. 1 and 2). The Tianshan is a 2500-km-long tectonically active mountain range that dominates Central Asia with an average altitude of 2500 m and summits reaching up to 7000 m. While its geology consists of mainly island arc rocks linked to a long-lived Paleozoic history of subduction/collision (Burtman, 1975; Charvet et al., 2007; Gao et al., 1998; Lin et al., 2008; Wang et al., 2008; Windley et al., 1990), the present high topography attests to a more recent and intense deformation. This later owes its origin to the Cenozoic reactivation of the range during the Oligocene to early Miocene (>16 Ma) (Avouac et al., 1993; Bullen et al., 2003; Bullen et al., 2001; Charreau et al., 2009a; Charreau et al., 2005; Charreau et al., 2006; Dumitru et al., 2001; Sobel et al., 2006; Sobel and Dumitru, 1997; Windley et al., 1990; Yin et al., 1998), under the influence of the ongoing India-Asia collision. The Tianshan range indeed plays a major role in the India-Asia collision since it presently accommodates up to 40% of the total convergence between those two continents (Abdrakhmatov et al., 1996; Reigber et al., 2001). It is sandwiched between two large intracontinental basins (Fig. 1) filled by the eroded materials shed from the uplifting range. In the piedmonts, tectonic wedges constituted of numerous fold and thrust belts have overthrusted Lower Mesozoic to Quaternary sediments that were initially deposited in the foreland basin. Thanks to strong Holocene river entrenchment (Poisson and Avouac, 2004) into these piedmont fold-and-thrust belts, several exceptional sections are well exposed and now enable high resolution analysis of this thick and continuous sedimentary records.
Our study focuses on the 1.8-km-thick Kuitun section that is located near the Dushanzi city, 300 km west of Urumqi (Fig. 2). This location is very suitable because cosmogenic production due to recent exposure can be accurately quantified (Poisson and Avouac, 2004) and because depositional ages are independently well constrained by a magnetostratigraphic analysis (Charreau et al., 2005) that yielded ages from ~10.5 to ~1.5 Ma (Fig 3). Magnetostratigraphic dating also permitted these authors to constrain the sediment accumulation rates between 0.12 and 0.46 mm/yr. This constraint is fundamental to estimate the cosmogenic production during sediment burial (see below).

Seventeen sandstone samples were collected along the freshly exposed outcrop of this Cenozoic section (Fig. 2), as well as three modern sands from the Kuitun river bed and a 150-cm-thick profile from a 15±3 ka terrace (Molnar et al., 1994; Poisson and Avouac, 2004) (Fig. 2).

3 - Methods and measurements

3.1 - Cosmogenic isotopes in modern river sediments

At a single location i, in surficial rocks undergoing continuous thin-layers removal by erosion, the concentration (atom.g⁻¹) of cosmogenic isotopes N_i (e.g. ^{10}Be), is expressed by the following equation (Lal, 1991):

$$E_i = \frac{\Lambda}{\rho} \left(\frac{P_i}{N_i} - \lambda \right)$$ \hspace{1cm} (1)

where P_i (atom g⁻¹ a⁻¹) is the surface production rate, Λ (g.cm⁻²) the attenuation length, λ (a⁻¹) the radioactive decay constant of the nuclide, ε (cm.yr⁻¹) the erosion rate and ρ (g.cm³) the density. It must be noted that this equation is valid only if the surface exposure time is sufficiently long (i.e. $t >> 1/(\lambda + \varepsilon \rho / \Lambda)$) to have reached steady state and if the inherited cosmogenic concentration can be neglected.
Importantly, the cosmogenic nuclide concentration measured in river sands has the remarkable property of averaging the concentration of all surficial rocks outcropping in the drainage basin (Brown et al., 1995; von Blanckenburg, 2005). It is thus possible to determine the average erosion rate $\bar{\varepsilon}$ for a whole drainage basin by measuring the mean cosmogenic nuclide concentration $\overline{N_i}$ in river sand. Equation (1) requires calculation of the average production rate $\overline{P_i}$ at the surface in the drainage basin. The modern production rate was calculated here using the present day watershed hypsometry by combining the S.R.T.M. (Shuttle Radar Topography Mission) D.E.M. (Digital Elevation Model) of the Kuitun watershed (Fig. 2) along with the geological map to precisely identify the altitude of quartz rocks sources. A scaling factor multiplying the sea level production rate is associated to each altitude. The arithmetic mean of these scaling factors is 9.5 ± 0.7 for the whole drainage. The scaling factor is 1.9 ± 0.2 at the location of the sediment deposition. These values are obtained using the scaling scheme of Lal/Stone (Lal, 1991; Stone, 2000). The topographic shielding was also considered using the S.R.T.M D.E.M and following Dunne et al. (1999).

3.2 - Cosmogenic isotopes in buried sediments

Deriving erosion rates from cosmogenic isotopes in an old sedimentary sequence requires knowledge of: i) the age of deposition of the studied sedimentary archive, ii) the cosmogenic paleo-production rate of the whole drainage basin at the time of deposition and iii) the build-up of cosmogenic nuclides between the times of sediment deposition and sample collection (Fig. 4).

3.2.1 - Estimation of the cosmogenic paleo-production rate
Recent analyses of pedogenetic carbonate in the same Kuitun section yielded constant δ^{18}O over the last 10 Ma, which suggests the hypsometry of the Kuitun drainage basin was relatively steady during this time (Kent-Corson et al., 2008). Moreover, given the relatively high latitude of the Kuitun watershed (45°N), time variations of the geomagnetic field (Biggin et al., 2009) induced cosmogenic production variations of less than 5% over the considered time period (last 10 Myr) (Dunai, 2001). Therefore, we assume that the paleo-production rate of ^{10}Be was similar to the modern rate. To take into account the weight of this assumption, we also propagated to the calculated erosion rates an uncertainty of 150 m attached to the catchment average elevation. This elevation uncertainty results from the standard deviation of the δ^{18}O record (Kent-Corson et al., 2008) considering that the δ^{18}O-altitude dependence is -2.8 ‰/km (Chamberlain and Poage, 2000).

3.2.2 - Corrections of the post-depositional ^{10}Be accumulation

The ^{10}Be concentration analyzed in a given sample is the sum of the concentration inherited during the erosion on the hillslope plus that due to the post-depositional accumulation during burial and the accumulation during the modern exposure at surface (Fig. 4). Therefore, to retrieve the true paleo-erosion rates one must correct the measured concentration from both the post-depositional and modern exposure accumulation.

When buried at a sufficient depth (~ 4 m), sediments are almost totally shielded from cosmic ray and, the radioactive cosmogenic nuclides consequently decays with time. In continental environments, the process of fluvial sediment deposition is in many cases too slow to provide an immediate shielding from cosmic rays. The ^{10}Be buildup during the progressive sediment burial can however be described by the following equation (Braucher et al., 2000):
\[N_{\text{shield}} = \sum_j \left(\frac{P_j}{\lambda - \frac{A_{r}\rho}{\Lambda_j}} \left(e^{-\frac{A_{r}\rho}{\Lambda_j}t} - e^{-\lambda t} \right) \right) \]

(2)

, with \(P_j \) the surface production rates by spallation, by fast muons and by slow muon captures (in at.g\(^{-1}\).yr\(^{-1}\), see below), \(\lambda \) the radioactive decay constant (4.997 \times 10^{-7} \text{ yr}^{-1}) (Chmeleff et al., 2010), \(\rho \) the overlying sediment density (2.4 \pm 0.13 g.cm\(^{-3}\), determined from seismic speeds), \(A_r \) the accumulation rate (cm.yr\(^{-1}\)), \(\Lambda_j \) the typical attenuation lengths (g.cm\(^{-2}\), see below) and \(t \) (yr) the time during which the sediment is getting buried.

To calculate the \(^{10}\)Be production during the burial accumulation, the crucial parameter \(A_r \) was determined by using the high-resolution paleomagnetic record of Charreau et al. (2005). This magnetostratigraphic study constraints the accumulation rate at the time of deposition between 0.115\pm0.006 and 0.418\pm0.021 cm.yr\(^{-1}\). The use of an "instantaneous" accumulation rate (i.e calculated for each magnetic chron) is justified for the spallation reactions from rapid neutrons because production by spallation is characterized by a short attenuation length (~160 g.cm\(^{-2}\)) (Lal, 1991), and becomes negligible below \~3 m. However, accumulation rate derived from magnetostratigraphy represent long term (>20 Ka) average. Yet, in such continental and fluvial settings, rapid and short time scale variations in accumulation rate probably exist. Their potential impact on the cosmogenic building remains difficult to constrain and will be assumed negligible in this study. In future studies, complementary cosmogenic analysis will be required to test this assumption.

In contrast, the production by slow muon capture and fast muon reactions has a long attenuation length (respectively 5300\pm950 g.cm\(^{-2}\) and 1500\pm100 g.cm\(^{-2}\)) (Braucher et al., 2003) and remains significant on long period of time even under several tens of meters of
sediments. We therefore used an average accumulation rate of the whole sedimentary pile overlying each sample to correct for the post burial muonic production.

We used a sea level, high latitude surface production rate of 4.5±0.3 at.g⁻¹.yr⁻¹ (Amidon and Farley (2010) recalculated after Balco et al. (2008)). Both fast and slow muonic production were taken as 0.8±0.25% (Braucher et al., 2003) of the total production rate at sea level, then scaled with the altitude following (Stone, 2000). Figure 4 shows the theoretical evolution of the cosmogenic concentration in a sedimentary material that has been successively eroded, transported and deposited. The present-day cosmogenic concentration \(N_{\text{analysis}}(t_0) \) measured in a given sediment sample is the sum of \(N_e(t_0) \), which represents the concentrations acquired during erosion and \(N_s(t_0) \), which represents the concentration acquired during sediment burial (Fig. 4). Given the considered time-scales, both \(N_e(t_0) \) and \(N_s(t_0) \) may have undergone a significant radioactive decay since the initial \(^{10}\text{Be} \) production (Blard et al., 2006). The possible later phase of accumulation during the recent exposure of the sample is not represented on Figure 4. Knowing independently the depositional age \(t_d \) and the accumulation rates \(A_r \), equation 2 allows calculation of \(N_s(t_0) \) and therefore \(N_e(t_0) \). Then, knowing \(t_d \), \(N_e(t_0) \) can be directly corrected for the radioactive decay to calculate \(N_e(t_0) \). Finally, \(N_e(t_d) \) is converted into erosion rate \(\varepsilon(t_d) \) at the time of deposition using equation 1.

It is important to note that the correction for production during sediment deposition is the major source of uncertainty of the paleoerosion rates determined here. Indeed, when the ratio erosion/accumulation is high (>> 1), then the measured paleoerosion rate is close to the detection limit of the method.

The sampled sediments were exposed during the Holocene incision of the Kuitun River at a rate constrained to 1 cm.yr⁻¹, by Optically Simulated Luminescence dating of terraces (Poisson and Avouac, 2004). Considering the present geometry of the Kuitun canyon at this location, this rate corresponds to a lateral cliff retreat of 3.5 cm.yr⁻¹. Due to this rapid
incision, along with the topographic shielding of the cliff and a sampling strategy designed to ensure a current burial thickness of at least 1 m, the contribution of the modern exposure can be considered as negligible (i.e. 15 at.g⁻¹). It indeed ranges between less than 0.1% and 0.3% of the total present-day cosmogenic signal.

3.3 - Samples treatment and measurement of 10Be concentrations

Cosmogenic 10Be concentration measurements were mainly performed at the French national AMS (Accelerator Mass Spectrometer) facility ASTER (Accelerator for Earth Sciences, Environment and Risks) located at the CEREGE laboratory (Aix en Provence, France) except for two samples, RS1 and TP, which were analyzed at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory in California (USA). All samples were crushed and the 200-500 μm fraction was treated as follows. Quartz was first enriched through successive magnetic separation, and flotation. Then, the enriched fraction was leached in H₂SiF₆, HCl and HF to eliminate all remaining mineral phase but quartz and to decontaminate quartz surfaces from atmospheric 10Be following the chemical procedures developed earlier (Brown et al., 1991; Kohl and Nishiizumi, 1992). TP and RS1 were treated similarly but did not undergo flotation or H₂SiF₆ treatment. The purified quartz was then completely dissolved in HF after addition of 100 μl of an in-house 3.025 10^{-3} g/g 9Be carrier solution (in the case of TP and RS1 about 0.45 mg of a 9Be carrier with a 10Be blank of 10Be/9Be=6.7×10^{-15} was used). Following subsequent purification by anion exchange, cation exchange and alkaline precipitations, purified beryllium oxide samples were analyzed on the AMS. 10Be concentrations measured at ASTER are normalized to 10Be/9Be SRM 4325 NIST reference material with an assigned value of $(2.79±0.03)×10^{-11}$. This standardization is equivalent to 07KNSTD within rounding error. TP and RS1 were normalized to KNSTD3770 when they were measured in 1997 and were renormalized to 07KNSTD to take account of the
KNSTD renormalization (Nishiizumi et al., 2007). The \(^{10}\text{Be} \) half-life of \((1.39 \pm 0.01) \times 10^6 \) years used is that recently recommended by Chmeleff et al. (2010) and Korschienek et al. (2010) according to their two independent measurements. Measured \(^{10}\text{Be}/^{9}\text{Be} \) blank ratios were \(2.5\pm0.7\times10^{-15} \).

4 - Results

All \(^{10}\text{Be} \) results are presented in Table 1. In situ produced cosmogenic \(^{10}\text{Be} \) concentrations measured in these samples range between \((3.23\pm0.78) \times 10^3 \) and \((1.10\pm0.67) \times 10^5 \) at.g\(^{-1} \). Erosion rates were calculated after correcting for the \(^{10}\text{Be} \) radioactive decay and for the build up of \(^{10}\text{Be} \) during sediment accumulation following the methods presented above. Figure 5 shows the erosion rates plotted against the depositional ages along with the global deep-sea oxygen isotope records as a proxy for global climate (Zachos et al., 2001). Between 9 Ma and 3.5 Ma, erosion rates remained within 0.1 and 1 mm.yr\(^{-1} \), with little fluctuations around an average value of 0.4 mm.yr\(^{-1} \) over that period of time. A significant sediment pulse characterized by erosion rates larger than 1 mm.yr\(^{-1} \) is evidenced between 3.5 Ma and 1.7 Ma, with a peak of 2.5 mm.yr\(^{-1} \) at 2 Ma. One additional sample (KBe12) from this time period (with age estimated to 2.1 Ma) is characterized by a low \(^{10}\text{Be} \) concentration. Due to the supposed post-depositional correction, this precludes a precise estimation of erosion rates (see larges uncertainties in Table 1) for this sample. This is nevertheless consistent with the occurrence of very high (>2 mm.yr\(^{-1} \)) erosion rates over that period of time. After 1.5 Ma, the erosion rates dropped back to \(\sim\)0.5 mm.yr\(^{-1} \), a value consistent with the modern erosion rates of \(\sim\)0.6 mm.yr\(^{-1} \) derived from the river sands and not significantly different from the value of 0.3 mm.yr\(^{-1} \) inferred from the Holocene (~15 ka) terrace material (Table 1).

5 - Discussion and conclusion
This record shows a clear erosion pulse (from 3 to 1.7 Ma) that coincides with the onset of Quaternary glaciations as recorded by the global deep-sea oxygen isotope records (Zachos et al., 2001) (Fig. 5). Our data support the hypothesis that Quaternary glaciations was accompanied by a significant (>2 fold) increase of physical erosion rates in Central Asia, thereby confirming previous inferences that global climate influenced erosion rates (Shuster et al., 2005; Zhang et al., 2001). The apparent invariance of global weathering rates over the last 10 Ma (Willenbring and von Blanckenburg, 2010) might then indicate that physical erosion fluctuations during glacial times can be decoupled from weathering changes.

In addition, our record suggests a decrease of erosion rates after 1.7 Ma possibly suggesting that the erosional response to the onset of glaciations in the Quaternary would have been transient. This transient impact of climate on erosion is questionable at this point because there is only a limited number of data over the last 2Ma. The large amplitude of the 100 ka glacial cycles, which appeared after 1.8 Ma, could in particular have produced a high frequency variability of the erosion signal. Therefore, we cannot exclude that the 3 younger samples of our record (at 1.58 Ma, 15 ka and present-day river sands) might fortuitously coincide with periods of low erosion. If true, this reduction in erosion observed after 1.7 Ma would only reflect a sampling bias. However, the probability of such a systematic observational artifact is low considering that interglacial periods have a short duration (<20 ka). In addition Shuster et al., (2005) have presented a thermochronometric record from the Coast Moutains suggesting a similar transient increase in erosion. Such a transient augmentation of erosion could make sense at a global scale. Indeed, under constant tectonic forcing and climate, the topography of an uplifting range is supposed to reach a steady state in which the sediment flux balances crustal shortening (Whipple and Meade, 2006). If the shortening rate across the orogeny is assumed constant while climate changes, it may cause enhanced physical erosion, leading to a transient disequilibrium until the balance between
erosion and tectonic is restored back. Whipple and Meade (2006) provide simulations showing such a transient adjustment within the framework of the critical wedge theory. The time needed for this adjustment is probably scale dependent and must depend on the factors which govern isostatic rebound (i.e., the mechanical properties of the crust, lithosphere an asthenosphere), as well as on the erodability of exhumed rocks under fluvial and hillslope processes. Our study suggests that in the case of North Tianshan, the erosional response to the onset of Quaternary glaciations (at about 3 Ma) might thus have lasted less than 2 Ma only.

However, this scenario could also be criticized because if tectonic is constant while erosion increases, this would actually implies a reduction of the watershed altitude. This might affect the accuracy of the erosion rates that we compute here under the assumption of a constant hypsometry. However, given that the eroded material is partially balanced by isostatic and tectonic inflows, the total net altitudinal change due to enhanced erosion is probably already accounted in our uncertainties. Moreover, if true, a decreasing altitude should have lower the production rate and yield lower cosmogenic 10Be concentrations while since ~2 Ma we observe higher concentrations (Table 1). As Shuster et al. (2005), we suggest that the onset of glaciations implied a shift from fluvial to glacial erosion processes (typically V-shape to U-shape valleys) which yield to enhanced erosion. After ~2Ma, most of the surplus material has been removed, leading to more stable U-shape glaciated valley and, then, a new equilibrium with lower erosion rates.

Finally, as this record is only focused on one single drainage basin, a limitation of this study is that the Kuitun river watershed could have been impacted by local tectonic particularities. It must also be considered that the erosion rates of Central Asia could also be partially decoupled from the global erosion rates, because of superimposed regional tectonic or local climatic particularities. Consequently, we acknowledge that the debate remains open
and that this apparent transient response of erosion to climate must be tested in the future by applying this method to other localities of Central Asia and other regions of the world.

In any case our study presents a new and quite powerful approach to obtain quantitative estimates of paleo-erosion rates. It moreover provides the first record of long term erosion in a region where, as pointed out by Molnar (2004), the mass transfer is only driven by the competition between tectonics and climate and not altered by sea level changes and exposure of continental platforms.

Aknowledgements

This study was financed by the French INSU/CNRS program SYSTER and ANR. We thank Peter Molnar and one anonymous reviewer for their very constructive comments that greatly improved the manuscript. Fruitful discussions with Jérôme Lavé and Raphaël Pik were useful for interpreting this record. Expert Jean-Pierre Valet and Yves Gallet are also thanked for their advice about the long term variations in the earth virtual magnetic moment. We are also grateful to Robert Joussemet for his help in separating quartz and to the ASTER team for the cosmogenic nuclide concentration measurements (M. Arnold, G. Aumaître, K. Keddadouche, L. Léanni and F. Chauvet). ASTER AMS national facility (CEREGE, Aix en Provence) is supported by the INSU/CNRS, the French Ministry of Research and Higher Education, IRD and CEA. This is CRPG contribution n° 2101.
Figures Caption

Figure 1: Sediment flux and accumulation rates in Central Asia basins over the last 25 Myr. Topographic map of Central Asia with locations of all accumulation rate records derived from magnetostratigraphy in this region (see references in (Charreau et al., 2009b)). The basal age of the conglomeratic ‘Xiyu’ formation found at each of these locations is indicated in bracket (see references in (Charreau et al., 2009b)). At the bottom, from left to right, the evolution of sediment flux to basins for the world (Zhang et al., 2001), and Central Asia (Métivier and Gaudemer, 1997) and the accumulation rates records derived from magnetostatigraphy around the Tianshan (see references in (Charreau et al., 2009b)). The red box shows the location of Fig. 2.
Figure 2: Geographic and stratigraphic setting of the samples. Map of the Kuitun river’s watershed area with location of the river sands (RS) and terrace profile (TP) cosmogenic samples. Red line AA’ shows location of the magnetostratigraphic section where samples were also collected for cosmogenic analysis. Top: structural cross section of the the Dushanzi anticline and extent of the magnetostratigraphic section. Right: magnetostratigraphic column of the Kuitun section and its correlation to the polarity reference scale with red stars indicating the stratigraphic position of the samples collected for cosmogenic analysis.
Figure 3: Magnetostratigraphic analysis of the Kuitun section (after Charreau et al., 2005) (a) Magnetic declination and inclination measured in the Kuitun section. (b) Magnetostratigraphic column of the Kuitun section. Each normal (black) and reverse (white) polarity chron is defined by at least two samples from two different sedimentary horizons. Reversals found in a single bed are shown in gray. (c) Reference polarity time scale after Lourens et al. (2004); (d) Age versus depth plot of the Kuitun section, using the data and correlation from 3b and 3c.
Figure 4: Theoretical evolution of the 10Be concentration in a quartz grain from its erosion on the hillslope to its deposition and burial in the foreland basin. The possible later phase of accumulation related to exhumation of the sample is not represented here. t_0: time of the analysis, t_d: time of deposition; N_{analysis}: concentration measured at a time t_0 in a given sediment sample (in at.g$^{-1}$.yr$^{-1}$); $N_e(t_0)$: concentration acquired during sediment burying minus the loss due to radioactive decay (in at.g$^{-1}$.yr$^{-1}$); $N_e(t_d)$: concentration acquired during the erosion minus the loss due to radioactive decay (in at.g$^{-1}$.yr$^{-1}$). A_r: accumulation rate (in cm.yr$^{-1}$), P_j: the surface production rates by spallation, fast muons and slow muons captures (in at.g$^{-1}$.yr$^{-1}$) at the deposition location; λ: the radioactive decay constant (in yr$^{-1}$); ρ: the overlying sediment density (in g.cm$^{-3}$); Λ_j: attenuation lengths (g.cm$^{-2}$) of spallogenic and muogenic productions; $P_e(t)$: the average spallation production rate for the whole drainage basin (in at.g$^{-1}$.yr$^{-1}$); $\varepsilon(t_d)$: the erosion rates on the drainage basin at the time of deposition (in cm.yr$^{-1}$).
Figure 5: Erosion rates as function of depositional age (Charreau et al., 2005) and global deep-sea oxygen isotope record (Zachos et al., 2001) over the last 10 Myr. The 1σ uncertainty envelop is shown in grey. Sample KeBe12 is not shown because it presents very large uncertainties, but its low 10Be concentration nevertheless suggests high erosion rates.
References

Charreau, J., Avouac, J.-P., Chen, Y., Dominguez, S., and Gilder, S., 2008, Miocene to present kinematics of fault-bend folding across the Huergouxi anticline, northern Tianshan (China), derived from structural, seismic, and magnetostratigraphic data: Geology, p. 871-874

of River Terraces across Growing Anticlines on the North Flank of the Tien Shan, China: Journal of Geology, v. 102, p. 583-602.
<table>
<thead>
<tr>
<th>Sample</th>
<th>t_d (Ma)</th>
<th>Δt_d</th>
<th>Ar</th>
<th>N_a (at/gr)</th>
<th>1σ (N_a)</th>
<th>N_a (at/gr)*</th>
<th>1σ (N_a)</th>
<th>N_a/N_s</th>
<th>ε (m/Myr)</th>
<th>$\Delta \varepsilon$ (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF500</td>
<td>8.80</td>
<td>0.298</td>
<td>0.03</td>
<td>0.027</td>
<td>3.46E+03</td>
<td>9.1E+02</td>
<td>353</td>
<td>55</td>
<td>53</td>
<td>9.80</td>
</tr>
<tr>
<td>TF400</td>
<td>7.72</td>
<td>0.390</td>
<td>0.02</td>
<td>0.030</td>
<td>4.82E+03</td>
<td>7.6E+02</td>
<td>553</td>
<td>116</td>
<td>109</td>
<td>8.72</td>
</tr>
<tr>
<td>KBe1</td>
<td>5.88</td>
<td>0.154</td>
<td>0.64</td>
<td>0.023</td>
<td>3.23E+03</td>
<td>7.8E+02</td>
<td>1702</td>
<td>246</td>
<td>238</td>
<td>1.90</td>
</tr>
<tr>
<td>TF200</td>
<td>5.60</td>
<td>0.430</td>
<td>0.37</td>
<td>0.023</td>
<td>7.29E+03</td>
<td>1.2E+03</td>
<td>1955</td>
<td>282</td>
<td>273</td>
<td>3.73</td>
</tr>
<tr>
<td>KBe3</td>
<td>5.34</td>
<td>0.696</td>
<td>0.10</td>
<td>0.023</td>
<td>1.32E+04</td>
<td>1.8E+03</td>
<td>2234</td>
<td>353</td>
<td>338</td>
<td>5.93</td>
</tr>
<tr>
<td>KBe4</td>
<td>4.97</td>
<td>0.262</td>
<td>0.17</td>
<td>0.015</td>
<td>7.19E+03</td>
<td>8.4E+02</td>
<td>3722</td>
<td>523</td>
<td>508</td>
<td>1.93</td>
</tr>
<tr>
<td>KBe5</td>
<td>4.63</td>
<td>0.007</td>
<td>0.13</td>
<td>0.020</td>
<td>9.22E+03</td>
<td>1.3E+03</td>
<td>3579</td>
<td>528</td>
<td>509</td>
<td>2.58</td>
</tr>
<tr>
<td>KBe6</td>
<td>4.18</td>
<td>0.01</td>
<td>0.60</td>
<td>0.019</td>
<td>1.34E+04</td>
<td>1.8E+03</td>
<td>4594</td>
<td>674</td>
<td>651</td>
<td>2.91</td>
</tr>
<tr>
<td>KBe7</td>
<td>3.73</td>
<td>0.453</td>
<td>0.14</td>
<td>0.019</td>
<td>1.54E+04</td>
<td>1.6E+03</td>
<td>5767</td>
<td>812</td>
<td>788</td>
<td>2.68</td>
</tr>
<tr>
<td>KBe8</td>
<td>3.43</td>
<td>0.161</td>
<td>0.10</td>
<td>0.021</td>
<td>1.16E+04</td>
<td>1.3E+03</td>
<td>5682</td>
<td>811</td>
<td>785</td>
<td>2.03</td>
</tr>
<tr>
<td>KBe9</td>
<td>3.28</td>
<td>0.051</td>
<td>0.07</td>
<td>0.042</td>
<td>2.15E+04</td>
<td>1.8E+03</td>
<td>6141</td>
<td>879</td>
<td>864</td>
<td>3.5</td>
</tr>
<tr>
<td>KBe10</td>
<td>3.09</td>
<td>0.028</td>
<td>0.06</td>
<td>0.023**</td>
<td>1.07E+04</td>
<td>1.1E+03</td>
<td>6755</td>
<td>982</td>
<td>949</td>
<td>1.59</td>
</tr>
<tr>
<td>KBe11</td>
<td>2.72</td>
<td>0.316</td>
<td>0.13</td>
<td>0.023**</td>
<td>1.82E+04</td>
<td>1.8E+03</td>
<td>8135</td>
<td>1218</td>
<td>1198</td>
<td>2.23</td>
</tr>
<tr>
<td>KBe12</td>
<td>2.07</td>
<td>0.508</td>
<td>0.13</td>
<td>0.023**</td>
<td>1.25E+04</td>
<td>1.9E+03</td>
<td>11213</td>
<td>1591</td>
<td>1540</td>
<td>1.12</td>
</tr>
<tr>
<td>KBe13</td>
<td>1.99</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1.58E+04</td>
<td>2.0E+03</td>
<td>11697</td>
<td>1691</td>
<td>1634</td>
<td>1.35</td>
</tr>
<tr>
<td>KBe14</td>
<td>1.68</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2.09E+04</td>
<td>1.8E+03</td>
<td>13655</td>
<td>1940</td>
<td>1878</td>
<td>1.53</td>
</tr>
<tr>
<td>KBe15</td>
<td>1.57</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.95E+04</td>
<td>4.6E+03</td>
<td>14401</td>
<td>1880</td>
<td>1842</td>
<td>2.74</td>
</tr>
<tr>
<td>TP</td>
<td>0.015</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1.10E+05</td>
<td>6.62E+03</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>RS1</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>4.84E+04</td>
<td>2.14E+03</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>RS2</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>5.15E+04</td>
<td>1.15E+04</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>RS3</td>
<td>0.00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>4.12E+04</td>
<td>6.06E+03</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- includes 15 at/gr due to the recent exposure at surface, N/A: non-applicable, ** average accumulation rates. In the Xiyu conglomeratic formation (above ~500m in thickness) the paleomagnetic sampling density was lower which yield large uncertainties on the accumulation rates at the time of deposition. Therefore, for samples KBe10 to KBe15, we estimated their ages and erosion rates based on average accumulation rates found in the lower part of the section.

Table 1: 10Be data. Abbreviations are: t_d, depositional age; Δt_d, the minimum and maximum ages of the reference polarity chron in which the sample fall; Ar, the accumulation rate at the time of deposition; N_a (1\σ), the 10Be concentration in measured in the sample and its 1\σ
analytical uncertainty, respectively; $N_s(1\sigma)$, the post-accumulation correction and its 1σ uncertainty, respectively; ε and $\Delta\varepsilon$, paleo-erosion rate and its uncertainty, respectively.